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Abstract. The language LRTp is a non-deterministic language for exact
real number computation. It has been shown that all computable first
order relations in the sense of Brattka are definable in the language. If we
restrict the language to single-valued total relations (e.g. functions), all
polynomials are definable in the language. In this paper we show that the
non-deterministic version of the limit operator, which allows to define all
computable first order relations, when restricted to single-valued total
inputs, produces single-valued total outputs. This implies that not only
the polynomials are definable in the language but also all computable
first order functions.
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1 Introduction

Several papers on real number computation follow an idea originally due to
Scott [19] of interpreting a type for real numbers in the domain of compact in-
tervals (for simplicity, often restricted to the closed unit interval). In particular,
extensions to PCF following this approach are investigated in [5, 3, 18, 7, 9]. One
of the most striking results along this line is Escardó, Hofmann and Streicher’s
proof [6] that “parallel if” can be implemented in a language that includes ad-
dition extended canonically to the domain of partial reals. This means that in
order to have a reasonably expressive language with sequential interpretation,
one must give up the canonical extension of addition. One way to do this is to
introduce non-deterministic choice into the language. In [10, 11], the sequential,
non-deterministic language LRT is defined. In those papers, it is also shown that
the non-determinism must be interpreted via the Hoare power domain. So, the
ground types of the language are interpreted as Hoare power domains. It is the
interaction of partiality and non-determinism that characterizes the basic idea
of LRT.

The first objective in the construction of LRT was to show its expressivity
when restricted to single-valued total relations, e.g. functions. In that direction
Marcial et al. [9–11] show that all polynomial functions are definable in the
language.
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LRT, with its sequential, non-deterministic semantics, seemed naturally suited
to a relational view of computation. In [12] the language LRTp is introduced. This
languague is an extension of LRT with a let construct added. The interpretation
of let is parameterized by a positive real number p. The extended part is used
to define some of the recursive relations defined by Brattka [2]. The correspond-
ing denotational semantics employs several ideas familiar to domain theorists,
including measurement as defined by Martin in [13] and a monadic treatment of
the distinction between value and computation as in Moggi [15]. Furthermore,
product types were also included in the language to have explicit products of
ground types. As a result, all computable first order relations in Brattka sense
were shown to be definable in the language. However, it was an open question
to know if all computable functions of first order type are defined using this
extended language. Obviously LRTp allows to define computable functions, but
it has to be proved that a computable first order single-valued function when
defined in the language, produces correct singled-value total outputs. In this
paper we prove that it is the case.

In order to verify that all computable first order functions are definable in
the language, we show that the limit operator when restricted to single-valued
total inputs, produces single-valued total outputs. We use the argument stated
by [8] that the polynomials together with the limit operator allow to define all
computable first order functions in the language. As previously mentioned, all
polynomials are defined in the language LRT and in the extended language LRTp.

LRTp is tied to the call-by-partial-value evaluation defined in [12], because
the parameter p does not allows to have a call-by-name evaluation strategy as
is the case in LRT. In particular, call-by-value simply makes no sense for the
real number type in LRTp because a “value” only corresponds to a converging
sequence of partial results. In this paper we use the call-by-partial-value of LRTp
but as we are interested in single-valued computations, it corresponds to a call-
by-name strategy.

The paper is organized as follows: after the foundations, in Section 3 we
present the notions of strongly convergence of programs. In Section 4, we intro-
duce the language LRTp. In Section 5, we present the program that computes the
limitation (in some places called limit) operator and we prove that it strongly
convergence for single-valued inputs. Finally, Section 6 is devoted to conclusions.

2 Foundations

2.1 Continuous relations

In [2], Brattka extends Kleene’s system of recursive partial functions on the nat-
ural numbers to other metric spaces, particularly to R. Continuity is a necessary
condition for effectiveness, and yet the fact that R is connected means there
are no non-constant continuous functions, e.g., from R to the discrete space N.
So Brattka gives up functionality and retains a generalization of continuity to
relations.
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Definition 1. For binary relation R between sets X and Y and element x ∈ X,
define R(x) := {y ∈ Y | xRy}. For B ⊆ Y , define R−1(B) := {x ∈ X : R(x) ∩
B 6= ∅}, and let dom(R) = R−1(Y ) = {x ∈ X | R(x) 6= ∅}. Thus we think of a
relation as a partial function from X to non-empty subsets of Y . For this reason,
we follow Brattka by usually writing f , g, etc., as names for binary relations.
Binary relations from X to Y will be indicated by f : X ↔ Y .

If X and Y are topological spaces, then f is said to be continuous if and
only if f−1(V ) is open in X whenever V is open in Y . Also f is said to have
closed images if f(x) is closed in Y for every x ∈ X. Additionally, f is said to
be single-valued if f(x) is a singleton in Y for every x ∈ X.

If X and Y are topological (or metric) spaces, then X × Y denotes the stan-
dard topological (metric) product.

Clearly, for a function h between spaces, the graph of h is a continuous
relation if and only if h is continuous in the usual sense. In particular, the
graphs of projection maps for cartesian products are continuous. If the codomain
is T1, graphs of functions also have closed images. Furthermore, any relation f
is continuous if and only if f(A) ⊆ f(A) for every A ⊆ dom(f). Note that A
ranges only over subsets of dom(f), not over all subsets of X. This jibes with
our interpretation of f(x) = ∅ as meaning that f is undefined at x.

Continuous relations are not closed under the usual relational composition.
On the other hand, for continuous relations f : X ↔ Y and g : Y ↔ Z, define
g � f by

(g � f)(x) :=
{

(g ◦ f)(x), if f(x) ⊆ dom(g);
∅, otherwise.

where g ◦ f is the usual relational composition. A simple exercise shows that
continuous relations are closed under �.

By definition, g� f has closed images. The graph of the identity function on
a space Y satisfies f = I � f if and only if f has closed images, and similarly
for g = g � I. So � defines composition for a category of topological (or metric)
spaces in which the morphisms are continuous relations with closed images. This
can be taken to be the ambient category for Brattka’s recursive relations. Note
that the graphs of projections on products of T1 spaces are continuous with
closed image. So the category can be given a monoidal structure.

In addition to the � composition, he defines combinators on binary relations
for juxtaposition, iteration, minimization and limitation, in this section, we only
present the limitation combinator as it will be used in our later discussion.

Limitation In a (complete) metric space, a sequence {Bn}n of subsets is strongly
Cauchy provided that for each i and each bi ∈ Bi, bi is the i-th element of a
strong Cauchy sequence {bn}n for which bn ∈ Bn for each n. In other words,
all elements of Bi participate in some strong Cauchy sequence obtained from
the sets Bn. For such a sequence of subsets, define limi→∞Bi to consist of
all limits (in the usual sense) of all strong Cauchy sequences 〈bn〉n such that
bn ∈ Bn.
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For a relation C : X ×N ↔ Y , the limitation combinator is defined by

lim[C](a) :=
{

limn→∞ Cn(a), Cn strongly Cauchy, where Cn(a) = C(a, n);
∅, otherwise.

2.2 The interval domain

The ideas discussed in this section are considered in more detail in [5].
The set R of non-empty connected compact subsets of the Euclidean real

line forms a continuous dcpo when ordered by reverse inclusion: x v y iff x ⊇ y.
We regard elements of R as “partial real numbers”; the v-maximal intervals

are singletons, corresponding to “total numbers”. That is, the continuous map
x 7→ {x} embeds R as maximal elements, making R into a domain model for R.
The dcpo R, however, does not have a least element. By adding a least element,
corresponding to the completely under-specified partial real number R, we obtain
a bounded complete continuous domain R⊥.

For any x ∈ R⊥, we write x = inf x and x = sup x so that x = [x, x], and
define κx := x− x.

The upper bound of a subset A ⊆ R⊥ is
⋂
A when this is not empty. Alter-

natively, ⊔
A =

⋂
A =

[
sup
x∈A

x, inf
x∈A

x

]
.

The way-below relation of R⊥ is given by x� y iff x < y and y < x.
This amounts to y being a subset of the interior of x. Of course R = ⊥ � a

for any compact interval a. The intervals with distinct rational end-points form
a basis for R⊥.

For basis element a, consider the partial function x 7→ a t x defined when a
and x are consistent. This join map has a total continuous extension:

joinax =

a t x, a and x are consistent;
{a} , x < a;
{a} , a < x.

Lemma 1. For basis elements a and b,

1. joinajoinb = joinatb if a t b exists;
2. joinajoinb = ka if b < a;
3. joinajoinb = ka if a < b;

where kx denotes the constant map x 7→ {x}. Thus joina v joinajoinb always
holds.

Each basis element a is also associated with a positive affine map rrconsa : R→
R given by x 7→ κax + a. Taking images, rrconsa extends to a strict continuous
map on R⊥. These maps form a left group action on R⊥. Because of this, we will
think of the basis of R⊥ as itself forming a group, writing ab for concatenation,
a−1 for inverse and I for the identity (that is, the interval [0, 1], corresponding
to the identity affine map).

Composites of joins and affine transformations interact as follows:
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Lemma 2. For basis elements a and b,

1. rrconsajoinb = joinabrrconsa;
2. rrconsarrconsb = rrconsab;

The functions rrconsa and joina are said to be strongly convergent, meaning
that they send maximal elements to maximal elements. In addition, the functions
rrconsa are all homeomorphisms (rrconsarrconsa−1 = rrconsI = id), so they also
send non-maximal elements to non-maximal elements.

2.3 The Hoare powerdomain

In [9–11], the first author shows that under certain assumptions, a suitable se-
mantics for sequential, non-deterministic real number computation requires the
Hoare powerdomain (PH). That is, starting from the assumption that some
functorial powerdomain is needed to model non-determinism, general consider-
ations about continuity show that the Hoare powerdomain is the only one that
can be used. We refer the reader to the cited work for an explanation. In that
work, however, the fact that PH is actually a free construction is not used ex-
plicitly (though certain definitions in the semantics depend on it implicitly). In
this section, we review the basic facts about PH as the construction of free in-
flationary semi-lattices. The reader may consult [1] for a general theory of free
domain constructions defined by inequalities.

A semi-lattice in the category of domains is simply a domain equipped with a
continuous binary operation ∪ : X×X → X that satisfies the usual semi-lattice
laws. Such a semi-lattice is inflationary if x v x ∪ y. It is not hard to see that
idempotency is equivalent to ∪ ◦δ = idX , and inflationarity to idX×X v δ◦ ∪,
where δ : X → X×X is the diagonal map. Since these two conditions constitute
a Galois connection between ∪ and δ, if ∪ exists it is unique.

The Hoare powerdomain is the free construction for inflationary semi-lattices [1].
If f : X → Y is a continuous map and (Y,∪) is an inflationary semi-lattice, then
there is a unique continuous map f : PH(X) → Y that preserves ∪ for which
f = fη, where η is the unit of the powerdomain monad. There is also a unique
continuous map f̂ : PH(X)→ PH(Y ) defined by f̂ := PH(f).

In domains, the binary formal join of an inflationary semi-lattice extends
automatically to formal joins of non-empty sets: For A ⊆ X, take the closure
of A under ∪. This is automatically a directed set and hence has a supremum,
which we denote by

⋃
A. If the generating domain has a least element, then so

does PH(X). So
⋃

is defined for all subsets of PH(X).
Concretely, elements of PH(X) are non-empty Scott closed subsets of X, the

unit sends x ∈ X to the closure of {x}. Also, ∪ is simply binary union, and
⋃

is
closure of union.

To mediate between products and powerdomains, we exploit the fact that the
Hoare powerdomain is a monoidal monad with natural transformationm : PH(X)×
PH(Y ) → PH(X × Y ) satisfying the usual coherence conditions. In concrete
terms, m(A,B) := A×B.
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Thus the relevant structure of the Hoare powerdomain, for our purposes, is
given by the functor PH itself, the unit η : X → PH(X), the formal union
∪: PH(X)×PH(X)→ PH(X) and the transformation m : PH(X)×PH(Y )→
PH(X × Y ).

A continuous map f between inflationary semi-lattice domains X and Y
preserves ∪ if f(x ∪ y) = f(x) ∪ f(y).

3 Hoare power domains of domain environments
specialized to functions

If D and E are domain environments for spaces X and Y respectively, we can
ask when a continuous function F : PH(D) → PH(E) corresponds naturally to
a continuous single-valued relation from X to Y . The next definition answer this
question.

Definition 2. Suppose X is a topological space, EX is a domain model for X
with embedding eX and d ∈ PH(EX). Let

uX(d) := {x ∈ X | νX(x) v d} = (νX)−1(↓d) νX := η ◦ eX .

We said that u is single-valued if there is a unique x ∈ X such that uX(d) =
{x}. The subscripts will be ommited when possible.

Furthermore, suppose that Y is a second space and EY is a correspond-
ing domain model. It is said that a relation f from X to Y is captured by
F : PH(EX) → PH(EY ) (written f ∼ F ) iff for each x ∈ dom(f), f(x) =
u(F (νX(x))). Moreover, say that a single-valued relation f from X to Y is
strongly captured by F : PH(EX) → PH(EY ) (written f

⊗∼ F ) if and only
if for each x ∈ dom(f), f(x) = u(F (νX(x))), i.e. u is single-valued. Say that f
is exactly captured by F (written f ' F ) iff

f ∼ F and dom(f) = {x ∈ X | u(F (ν(x))) 6= ∅}.

Say that f is exactly strongly captured by F (written f
⊗' F ) if and only if

f
⊗∼ F and

dom(f) = {x ∈ X | u(F (ν(x))) 6= ∅, u is single-valued} .

Say that d ∈ PH(EX) is convergent provided that d =
⋃
{ν(x) | x ∈ u(d)}.

Say that d ∈ PH(EX) is strongly convergent provided that d = ν(x) where x is
the unique value of the single-valued function u(d). Also say that d is divergent
provided that ν(x) 6v d for all x ∈ X. Moreover, say that d is strongly divergent
provided that either ν(x) 6v d for all x ∈ X or u(d) is not single-valued. Say that
continuous F : PH(EX) → PH(EY ) is disciplined provided that it preserves ∪
and for each x ∈ X, F (νX(x)) is either convergent or divergent. Also, say that
continuous F : PH(EX) → PH(EY ) is strongly disciplined provided that for
each x ∈ X, F (νX(x)) is either strongly convergent or strongly divergent.
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For the remainder of this section, we assume that X, Y , EX , EY , and em-
beddings eX , eY are fixed.

We can verified that, for any singleton {x} ⊆ X, {x} = u(ν(x)), to see this,
ν(x) is a directed set with supremum x, hence x ∈ u(ν(x)), as x is the only
element belonging to {x} then {x} = u(ν(x)).

In [12] is was proved that for any F : PH(EX)→ PH(EY ), there is a unique
relation that is exactly captured by F . If F is disciplined, the exactly captured
relation is a continuous relation with closed images.

Lemma 3. For any continuous F : PH(EX) → PH(EY ), if F is strongly dis-
ciplined, there is a unique relation that is exactly strongly captured by F , this
relation is a continuous relation with single-valued image.

Proof. The relations strongly captured by F , understood as subsets of X × Y ,
are closed under unions, and trivially the empty relation is captured. So there is
a maximal relation strongly captured by F . Clearly, the condition on domains
means that this maximal relation is exactly strongly captured and any strongly
captured relation is contained in an exactly strongly captured relation.

Suppose F is strongly disciplined. Consider the composition u�F . We claim
that this is a continuous relation (u itself is not generally continuous) with single-
valued image. For open U , the inverse image is

{d ∈ EX | u(F (d)) ∩ U 6= ∅, u single-valued}

which is clearly an upper subset of EX . For directed D, if u(F (
⊔
D)) ∩ U 6= ∅,

and u is single-valued then for some x ∈ X, η(eX(x)) v
⊔
F (D).

Define f : X ↔ Y by f(x) = u(F (η(eX(x)))) for single valued u. Because u
only yields singletons, f has single-valued images. As, F is strongly disciplined,
dom(f) agrees precisely with the definition of “exact strongly capture.” It re-
mains to verify that f ⊗∼ F . Suppose {x} = u(d). Then d = η(eX(x)) ∪ d′ where
u(d′) = ∅. As F is strongly disciplined, u(F (d)) = u(F (η(eX(x)))) = f(x). �

This leads to the following fundamental connection between continuous re-
lations with closed images and disciplined functions. Disciplined functions are
closed under composition. Moreover, if F and G are disciplined, f and g are
continuous with closed images, f ∼ F and g ∼ G and these “type check” in the
obvious way, then (g � f) ∼ (G ◦ F ) [12].

The previous result can be extended to continuous relatons with single-valued
image and strongly disciplined functions.

Theorem 1. Strongly disciplined functions are closed under composition. More-
over, if F and G are strongly disciplined, f and g are continuous with single-
valued images, f ⊗∼ F and g

⊗∼ G and these “type check” in the obvious way,
then (g � f) ⊗∼ (G ◦ F ).

Proof. Closure under composition for preservation of ∪ follows from the gen-
eral theory of power domains. By definition of strongly disciplined, there is a
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unique z such that {z} = u(G(F (ν(x)))) for all x in the domain of f , hence
z ∈ G(F (ν(x))).

Conversely, if there are unique y and z such that {z} = u(G(ν(y))) and
{y} = u(F (ν(x))) then ν(z) v G(ν(y)) v G(F (ν(x))). So G ◦ F is disciplined.

The second statement is now routinely checked. �

Strongly discipline is related to the operational concept of strong conver-
gence discussed at length in [11]. There a closed term of ground type is strongly
convergent if it denotes ν(x) for some x in the modeled space (although the def-
inition is given operationally and adequacy of the operational semantics justifies
the present characterization). A closed first-order term is strongly convergent if
it preserves strong convergence of inputs. The reason an operational definition
is given is that proof of strong convergence typically involves the operational
semantics. The reader may consult [9], [10] or [11] for discussion and examples.

The ground spaces about which we are concerned have additional structure
that allow a form of call-by-value, which we refer to as call-by-partial-value. In
[14], Martin introduces the concept of a measurement on a continuous domain,
D, as a Scott continuous function M : D → ([0,∞],≥). That is, M assigns a
positive extended real to each element of D so that M(

⊔
A) = infa∈AM(a) for

directed A. A measurement is also required to satisfy M(a) = 0 if and only if
a ∈ maxD.

The domains R⊥, T⊥ and N⊥ clearly can be equipped with measurements:
in R⊥, M(a) = κa; in T⊥, M(true) = M(false) = 0; in N⊥, M(n) = 0; and
in all of these M(⊥) = ∞. In a finite product of domains with measurements,
a measurement on a tuple is obtained by taking the minimum measurement of
the components. For any positive p, any domain D with least element and with
measurement M , the function pvp : D → D given by pvp(a) = a if M(a) < p and
pvp(a) = ⊥ otherwise is continuous. Its extension to PHD satisfies p̂vp(d) v d

and allows us to isolate the maximal part of an element d ∈ PH(D) that can
be written

⋃
a∈A η(a) where all elements of A have “small” measurement. As

p decreases, pvp decreases as well. Importantly, each p̂vp(d) is the identity map
when restricted to convergent d, and

⊔
p p̂vp is the identity on R⊥.

4 The LRTp Language

The language LRT is a modification of RealPCF considered by Escardó [4]
for real number computation. In LRT, parallel conditional pif is replaced by a
non-deterministic test rtestl,r. In this section, we describe a variant of LRT.
The language LRTp differs from LRT in three ways: products of ground types
are made explicit, the type I for the compact interval [0, 1] is eliminated in favor
of a type corresponding to R, and a let construct is introduced that provides
for call-by-partial-value semantics. This language is described at length in [12].
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4.1 Syntax

Syntactically, the type system for LRTp is given by

γ := nat | bool | real
β := γ | γ × β
τ := β | (τ → τ)

Types in the first clause are ground types; in the second clause, basic types; and
in the third clause, general types. As usual, we associate → right to left, and
omit parentheses when we can.

The raw syntax of the language is given by

x ∈ V ariable,

P ::= x | n | true | false | (+1)(P ) | (−1)(P ) | (= 0)(P ) |
ifP thenP elseP | rrconsa(P ) | joina(P ) | rtestl,r(P ) |
λxτ .P | PP | YP | let x = P in P | priP | 〈P0, . . . , Pn〉

where (+1)(P ), (−1)(P ) and (= 0)(P ) amount for successor, predecessor and
equality for zero respectively; the subscripts of the constructs rrcons and join
are proper rational intervals and those of rtest are rational numbers. In the let
construct, the first term P must be of basic type.

In addition, we allow ourselves the syntactic sugar of writing
let 〈x0, . . . , xn〉 = P1 in P2 where the notation 〈x0, . . . , xn〉 stands for a vari-
able of the appropriate product type and where free occurrences of xi in P2

abbreviate pri〈x0, . . . , xn〉.
Terms can be associated with types in the familiar style by proof rules and

judgements, but in the interest of brevity, we trust the reader to fill in the details.

4.2 Denotational Semantics

We define denotational semantics [[−]]p for LRTp subject to a positive real
number parameter p in such a way that [[M ]]p is semi-continuous in p and⊔
p [[M ]]p corresponds to call-by-name interpretation. The idea is to employ pvp

(see page 8) in the interpretation of the let construct to ignore differences due
to “badly” divergent behavior. As p increases, the semantics ignores less. We use
B [[]] to denote basic types, which includes ground types and product types.

The ground types bool, nat and real are interpreted, first, as the domains of
booleans (T⊥), natural numbers (N⊥) and compact intervals (R⊥), respectively.
That is,

B [[bool]] := T⊥, B [[nat]] := N⊥, B [[real]] := R⊥.
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Finite products are interpreted the usual way: B [[γ × β]] := B [[γ]]×B [[β]]. Basic
types are interpreted as Hoare powerdomains of finite products:

[[β]] := PH(B [[β]]).

Function types are interpreted as function spaces in the category of dcpos:

[[σ → τ ]] := [[σ]]→ [[τ ]].

These definitions reflect a call-by-name semantics in which product types are
interpreted as consisting of computations of tuples, rather than tuples of com-
putations.

The interpretation of constants is given as follows:

[[true]]p = η(true), [[false]]p = η(false), [[n]]p = η(n), [[(+1)]]p = (̂+1),

[[(−1)]]p = (̂−1), [[(= 0)]]p = (̂0 =), [[joina]]p = ĵoina,

[[rrconsa]]p = ̂rrconsa, [[rtestl,r]]
p = rtestl,r, [[Y]]p(F ) =

⊔
n≥0

Fn(⊥),

[[if]]p(B,X, Y ) =


X, if B = η(true),
Y, if B = η(false),
X ∪ Y, if B = η(true) ∪ η(false),
⊥, if B = ⊥,

with syntactic sugar [[if M then N else P ]]pρ := [[if]]p( [[M ]]pρ, [[N ]]pρ, [[P ]]pρ)

[[pri]]
p = π̂i,

where πi is the usual projection map. Tuples are interpreted by

[[〈X1, . . . , Xn〉]]pρ := m( [[X1]]pρ, . . . , [[Xn]]pρ)

Note that so far, none of these definitions depend on the parameter p. The let
construct enforces what we refer to as call-by-partial-value.

[[let x = M in N ]]pρ := [[N ]]pρ(x/p̂vp( [[M ]]pρ))

Here the symbols η, ̂, and m derive from the Hoare powerdomain monad:
η is the unit, f̂ := PH(f), f denotes the transpose of f : X → PH(Y ), m is
the natural transformation PH(X0) × . . .PH(Xn) → PH(X0 × . . . ×Xn). The
functions (+1), (−1), (= 0) are the standard interpretations in the Scott model of
PCF [16], the functions joina, rrconsa are defined in section 2.2, and the function
rtestl,r is defined by:

rtestl,r(x) =


η(true) ∪ η(false), if l < x < x < r;
η(true), if x ≤ r;
η(false), if x ≥ l;
⊥, otherwise.
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In [12] it was proved that the constants (+1), (−1), (= 0), rtestl,r, joina,
rrconsa and pri denote disciplined functions.

Lemma 4. The constants (+1), (−1), (= 0), joina, rrconsa and pri denote
strongly disciplined functions but not the constant rtestl,r.

Proof. The convergence requirement is straightforward. That rtestl,r is not
strongly disciplined follows by definition.

Notice that although rtestl,r is not strongly convergent, it can be used to
define strongly convergent functions as is shown in [11].

Lemma 5. The semantics [[−]]p is semi-continuous in p: for bounded A ⊆ R+,⊔
p∈A

[[M ]]p = [[M ]]supA
.

Moreover, define [[]]∞ exactly as [[]]p for all cases except

[[let x = M in N ]]∞ρ := [[N ]]∞ρ(x/ [[M ]]∞ρ ))

Then [[M ]]∞ =
⊔
p [[M ]]p.

Proof. The proof is an straigthforward induction on the structure of M.

4.3 Operational Semantics

We now develop single-step operational semantics, also parametric in p, so that
the “p-th” operational interpretation is complete for [[−]]p. We do not need an
operational semantics corresponding to [[−]]∞.

Definition 3. For each basic type β, we define a subset of the closed terms to
be output terms, and for each output term M we define it’s output o(M) to be
a value in B [[β]]. For real, a term of the form joinaM is an output term, and
o(joinaM) := a. For nat, a term of the form n is an output term, and o(n) = n.
For bool, a term of the form true or false is an output term, and o is defined
obviously. For γ × β, a term of the form 〈M,N〉 is an output term provided M
and N are output terms, and o(〈M,N〉) = 〈o(M), o(N)〉.

Lemma 6. For an output term M and p > 0,

η(o(M)) v [[M ]]p v
⋃
{ν(x) | o(M) v ν(x)} .

Proof. [12].

We define→p to be the least relation that includes single-step reduction rules
for PCF [16] and is closed under rules for the type real and for let as follows.
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(1) rrconsa(rrconsbM)→p rrconsabM
(2) joinajoinbM →p joinatbM if b > a or a > b

(3) joinajoinbM →p rrconsaY (rrcons(−1,0)joinI) if b ≤ a
(4) joinajoinbM →p rrconsaY (rrcons(0,1)joinI) if a ≤ b
(5) rrconsa(joinbM)→p joinab(rrconsaM)
(6) rtestl,rjoinaM →p true a < r
(7) rtestl,rjoinaM →p false l < a
(8) if true then M else M ′ →p M
(9) if false then M else M ′ →p M

′

(10) pri〈M0, . . . ,Mn〉 →p Mi

(11) let x = M in N →p [M/x]N M is an output term
and µ(o(M)) < p

(12)
N →p N

′

MN →p MN ′
if M is joina, rrconsa,
rtestl,r, if, pri, let.

Definition 4. We define the operational meaning of a closed term M of basic
type β in i steps of computation, written [M ]pi ∈ [[β]].

For a closed term of basic type β, define [M ]i as follows:

[M ]pi =
⋃
{η(o(M ′)) | ∃M ′∃k ≤ i,M ′ is an output term and M k→p M

′ },

where an empty formal join is ⊥, and k→p denotes the k-fold composition of the
relation →p.

Finally, [M ]p =
⊔
i[M ]pi . which is justified by the obvious fact that [M ]pi v

[M ]pi+1.

Note that implicit in this definition is the fact that the operational rules are
such that M k→p M

′ can only hold for finitely many output terms M ′. This can
be established easily by induction on the operational rules.

The operational interpretation of closed terms is adequate with respect to
the denotational semantics.

Lemma 7. [[M ]]p =
⋃
{ [[N ]]p |M →p N} (this is a finite union).

Proof. [12].

Lemma 8. For all closed terms M of ground type, [M ]p v [[M ]]p.

Proof. [12].

Definition 5. A closed term is said to be p-computable as follows:

1. A closed term M of basic type is p-computable whenever [[M ]]p v [M ]p,
2. A closed term M : σ → τ is p-computable whenever MQ : τ is p-computable

for every closed p-computable term Q of type σ,

An open term M : σ with free variables x1, . . . , xn of type σ1, . . . , σn is p-
computable whenever [N1/x1] · · · [Nn/xn]M is p-computable for every family Ni :
σi of closed p-computable terms.
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Lemma 9. Every term of LRTp is p-computable.

Proof. [12].

Theorem 2. [M ]p = [[M ]]p, for all closed LRTp terms M and all positive reals
p.

Proof. Lemma 8 and Lemma 9 �.

Remark 41 We are interested in those continuos functions F : PH(X)→ PH(Y )
for which u(F (ν(x))) is a singleton. As we observed previously, this property can
be verified using the denotational semantics. Although ⊥ cannot be distinguised
from any other element of the Hoare powerdomain, u allows to get those maximal
elements of a given element of the Hoare powerdomain, hence, we just have to
verified that the image of u is a singleton, which can be done denotationally. By
adequacy there is a program which denotes such continuous function. Notice that
LRTp is more expressive because we can define relations, however, in this paper,
we are not concerned about the full expressivity of LRTp, we only care about the
definability of first order computable functions.

5 The limitation operator

Definition 6. For basic LRTp types, we define a set-theoretic interpretation as
follows:

R [[nat]] = N, R [[bool]] = T, R [[real]] = R, R [[γ × β]] = R [[γ]]×R [[β]]

Theorem 1 establishes that composition in LRTp corresponds to�-composition.
That is, if F and G are closed terms of type β1 → β2 and β2 → β3, both are
strongly disciplined and f ⊗∼ [[F ]] and g ⊗∼ [[G]], then g�f ⊗∼ [[λx.let y = F (x) in G(y)]]p.
In [12] it is extended to the combinators presented in section 2. Here, we only
present the limit combinator.

Definition 7. Define the following closed term of LRTp:

Lim[F ](x) := aux lim F (x, 0) id

where

aux lim F (x, n) G :=
let r = G(F (x, n)) in
if rtest−1,1(r)
then if rtest−1,−1/2(r)

then join[−2,−1](aux lim F (x, n) (rrcons[1,2] ◦ G))
else aux lim′ F (x, n) G

else if rtest1/2,1(r)
then aux lim′ F (x, n) G
else join[1,2](aux lim F (x, n) (rrcons[−2,−1] ◦ G))
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aux lim′ F (x, n) G :=
let r = G(F (x, n)) in
if rtest−5/16,5/16(r)
then if rtest−5/16,−4/16(r)

then consL(aux lim F (x, (+1)(n)) (tailL ◦ G))
else consC(aux lim F (x, (+1)(n)) (tailC ◦ G))

else if rtest4/16,5/16(r)
then consC(aux lim F (x, (+1)(n)) (tailC ◦ G))
else consR(aux lim F (x, (+1)(n)) (tailR ◦ G))

consa := joinA ◦ rrconsa taila := joinA ◦ rrconsa−1

A := [−1, 1] L := [−1/2, 0] C := [−1/4, 1/4] R := [0, 1/2]

In these definitions we understand Lim, for example, to be a second-order
term, where F is an argument. We set them apart for readability using square
brackets.

Theorem 3. For any p < 1/4, in the semantics [[−]]p, the term Lim preserves
disciplined. Moreover, if f ⊗∼ F and g

⊗∼ G for single-valued f and g and these
“type check” in the obvious way, then lim f

⊗∼ [[Lim]]pF . In other words if the
input of Lim is a single-valued function F then Lim[F ] convergences to a single-
valued output

Proof. The assumption p < 1/4 is needed to ensure that the limit of the strong
Cauchy sequence in which ri appears as the i-th term is bounded within a dis-
tance of 2−(i+2) from ri. In fact, this is the only point at when the assumption
that p is small is required. Plume [17] and Farjudian [8] give a detailed explana-
tion of the limit algorithm used here �.

6 Conclusions

By allowing a reasonable definition of strongly convergence for relations, we get a
characterization of single-valued relations (e.g. functions). This characterization
differs from the one presented in [11] in that the former is denotational while the
further is operational. We have already noticed in [11] that the proofs of partial
correctness and strong convergence agreed, but they had to be presented. In this
paper, we proved that for first order computable functions a denotational proof
is sufficient.
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