Implementing the p-stable semantics

Angel Marin George,
Claudia Zepeda Cortés

Benemérita Universidad Auténoma de Puebla,
Facultad de Ciencias de la Computacién
misterilei@hotmail.com, czepedac@gmail.com

Abstract. In this paper we review some theoretical results about the
p-stable semantics, and based on that, we design some algorithms that
search for the p-stable models of a normal program. An important point
is that some of these algorithms can also be used to compute the stratified
minimal models of a normal program.

Key words: non-monotonic reasoning, p-stable, stratified minimal model

1 Introduction

Currently, is a promising approach to model features of commonsense reasoning.
In order to formalize NMR the research community has applied monotonic logics.
In [7], Gelfond and Lifschitz defined the stable model semantics by means of an
easy transformation. The stable semantics has been successfully used in the
modeling of non-monotonic reasoning (NMR). Additionally, Pearce presented a
characterization of the stable model semantics in terms of a collection of logics in
[20]. He proved that a formula is “entailed by a disjunctive program in the stable
model semantics if and only if it belongs to every intuitionistically complete and
consistent extension of the program formed by adding only negated atoms”. He
also showed that in place of intuitionistic logic, any proper intermediate logic
can be used. The construction used by Pearce is called a weak completion.

In [14], a new semantics for normal programs based on weak completions
is defined with a three valued logic called G% logic. The authors call it the P-
stable semantics. In [12], the authors define the p-stable semantics for disjunctive
programs by means of a transformation similar to the one used by Gelfond and
Lifschitz in their definition of the stable semantics. The authors also prove that
the p-stable semantics for disjunctive programs can be characterized by means of
a concept called weak completions and the G4 logic, with the same two conditions
used by Pearce to characterize the stable semantics of disjunctive programs, that
is to say, for normal programs it coincides with the semantics defined in [14].
In fact, a family of paraconsistent logics studied in [12] can be used in this
characterization of the p-stable semantics.

In [13], the authors offer an axiomatization of the G% logic along with a
soundness and completeness theorem, i.e., every theorem is a tautology and
vice-versa. We also remark that the authors of [12] present some results that

90

Ivan
90

2 Angel Marin George, Claudia Zepeda Cortés

give conditions under which the concepts of stable and p-stable models agree.
They present a translation of a disjunctive program D into a normal program N,
such that the p-stable model semantics of N corresponds to the stable semantics
of D when restricted to the common language of the theories. Besides, they show
that if the size of the program D is n then the size of the program N is bounded
by An? for a constant A. The relevance of this last result is that it shows that the
p-stable model semantics for normal programs is powerful enough to express any
problem that can be expressed with the stable model semantics for disjunctive
programs.

One major recent result of the p-stable semantics is in the context of argu-
mentation theory [6], which explores ways to carry out into the theory of compu-
tation the mechanisms humans use in argumentation. The three major semantics
of argumentation theory (grounded, stable, and preferred) can be characterized
in terms of three logic programming semantics: the well founded semantics [22],
the stable semantics [7] and the p-stable semantics, respectively in terms of a
unique normal logic program P, that is constructed only in terms of the ar-
gumentation framework AF [3]. Argumentation theory does not depend on a
particular semantics. Then, if we want to obtain the stable semantics of AF, we
compute the stable semantics of logic programming over P4p. If, on the other
hand, we want to obtain the preferred semantics of AF', we compute the p-stable
semantics over Pap. Moreover, if we want to obtain the grounded semantics of
AF | we compute the well founded semantics over Pap.

There are also initial work about other two approaches for knowledge rep-
resentation based on the p-stable semantics: updates, and preferences. In case
intelligent agents get new knowledge and this knowledge must be added or up-
dated to their knowledge base, it is important to avoid inconsistencies. An up-
date semantics for update sequences of programs based on p-stable semantics is
proposed in [15]. The concept of preferences is considered a vital component of
reasoning with real-world knowledge. In [16], the authors introduce preference
rules which allow us to specify preferences as an ordering among the possible
solutions of a problem. Their approach allow us to express preferences for arbi-
trary programs. They also define a semantics for those programs. The formalism
used to develop their work is p-stable semantics.

It is important to mention that the p-stable semantics, which can be de-
fined in terms of paraconsistent logics, shares several properties with the stable
semantics, but is closer to classical logic. For example, the following program
P ={a « —b,a «— b,b — a} does not have stable models. However, the set
{a, b} could be considered the intended model for P in classical logic. In fact, it
is the only p-stable model of P.

In [18], a schema for the implementation of the p-stable semantic using two
well known open source tools: Lparse and Minisat is described. In [18], a pro-
totype! written in Java of a tool based on that schema is also presented. In
this paper we present an implementation of the p-stable semantics implemen-
tation with aim to improve the implementation presented in [18], considerable

! http://cxjepa.googlepages.com/home

91

Ivan
91

Implementing the p-stable semantics 3

effort has been made in the optimization the code and in the design of the al-
gorithms used, which are theoretically more efficient than those used in [18]. As
this implementation started recently, we have not yet made definitive tests to
warrantee that the solver is error-free, nor we can give conclusive comparative
tests between our implementation and that on [18].

In the section 2 the basic concepts about the p-stable semantics are intro-
duced, specially the transformations. In the section 3 are presented the algo-
rithms used to apply the transformations. In the section 4 and 5 is explained
how to construct the graph of dependencies of the program and how this graph
is used to reduce the search space when looking for the p-stable models.

2 Background

In this section, we define some basic concepts in terms of logic programming
semantics, including the definitions of the transformations, which are used to
simplify a program.

2.1 Syntax

A signature £ is a finite set of elements that we call atoms. A literal is either
an atom a, called positive literal, or the negation of an atom —a, called negative
literal. Given a set of atoms {ay, ..., a,}, we write ={aq, ..., a,} to denote the set
of atoms {—ay,...,7a,}. A normal clause or normal rule, r, is a clause of the
form

a — b17"'7bn7_‘bn+1a"'7ﬂbn+m-

where a and each of the b; are atoms for 1 < i < n + m, and the commas mean
logical conjunction. In a slight abuse of notation we will denote such a clause by
the formula a < B*(r) U =B~ (r) where the set {b1,...,b,} will be denoted by
BT (r), the set {b,11,---,bnim} will be denoted by B~ (r), and BT (r) U B~ (r)
denoted by B(r). We use H(r) to denote a, called the head of r. We define a
normal program P, as a finite set of normal clauses. If for a normal clause r,
B(r) = 0, H(r) is known as a fact . We write Lp, to denote the set of atoms
that appear in the clauses of P.

2.2 Semantics

From now on, we assume that the reader is familiar with the single notion of
minimal model[8]. In order to illustrate this basic notion, let P be the normal
program {a < —b., b «— —a., a < —c.,, ¢ < —a.}. As we can see, P has
five models: {a}, {b,c}, {a,c}, {a,b}, {a,b,c}; however, P has just two minimal
models: {b, ¢}, {a}. We will denote by M M (P) the set of all the minimal models
of a given logic program P. Usually M M is called minimal model semantics.
Now we give the definition of p-stable model semantics for normal programs.

92

Ivan
92

4 Angel Marin George, Claudia Zepeda Cortés

Definition 1. [19] Let P be a normal program and M be a set of atoms. We
define the reduction of P with respect to M as RED(P, M) = {a +— BTU=(B™N
M)|a — BT U-B~ € P}.

Definition 2. [19] A set of atoms M is a p-stable model of a normal program
P iff RED(P,M) = M, where the symbol = means logical consequence under
classical logic semantics. The set of p-stable models of P is denoted by PS(P).

We say that two normal programs P and P’ are equivalent if and only if they
have the same set of p-stable models, this relation is denoted by P = P’. An
important theorem relating the p-stable and minimal models is the following.

Theorem 1. [1] Let P be a normal program. If M € PS(P) then M €
MM(P).

2.3 Transformations preserving equivalence

The main purpose of the transformations presented in this section is to simplify
the input normal program, reducing its size. What allows the use of those trans-
formations under the p-stable semantics are the propositions proved in [17,4]
about equivalence of normal programs under these transformations. Let P be a
normal program, the definition of the transformations SUB, TAUT, RED ™,
RED", SUCC, LOOP, NAF and EQUIV when applied to P is as follows
1. SUB(P)=P\{r'} <=1 eP,I" eP:r 47" B (") C B~ (+'),BT(r") C
BY(r"),H(r) = H(r").
2. TAUT(P) = P\ {r'} <=+ € P, H(+') € BT (+).
3. EQUIV() = (P\ {rHu{r} < r €e PH(') € B (+'),B (r) = B~ (r")\
{H(r")}, BT (r) = B ('), H(r) = H(r").
4. SUCC(P) = (P\{rHui{r} <=1 € PB (r) = B~

(r'
P:B(r") =0,H(r") € BY(r'), B"(r) = B (') \ {H(r’).
5. REDT(P) = (P \ {r' })U{r}<:>7’ € P,BT(r) = BT (+'),H(r) = H(r'),3a €
Lp:a€B (r'),B (r)=B (r')\{a}, Ar'" € P: H(r) a.
RED (P) = \{r}<:>r eP,IeP: B(r”)—(Z) "y e B~ (r)

Sl

P
NAF(P)=P\{r'} <=1 €PJacLp:ac BT (), A" e P: Hr") = a.
LOOP(P) = {r': v’ € P,B*(r') C M}, where M is the unique minimal model of
MM(POS(P)). The definition of POS(P) is given by
POS(P)={r'":B (+')=0,3rc P: BY(r) = BT (+'),H(r) = H(r')}.
Proposition 1. [17, 4] Let P be a normal program, and let P’ be the resulting
program from the application to P of any of the transformations SUB, TAUT,
EQUIV, SUCC, RED", RED , NAF or LOOP. Then P = P'.

3 Computing the p-stable models

Now we present the implementation of a p-stable model solver. To find the
p-stable models of a program P we can first apply the transformations to P,
however the application of the transformations is not absolutely necessary nor
sufficient to find the p-stable models of P. In this section we start presenting the
implementation of the application of the transformations, and then we give three
approaches to find the p-stable models of P, one that follows from the theorem
1, and the others from the theorem 2 which is also presented in this section.

93

Ivan
93

Implementing the p-stable semantics 5

3.1 Implementing the transformations

Given a program P as input to the p-stable solver, we associate to each atom
a € Lp three sets that are used for the application of the transformations, those
sets are initialized as follows,

1. H(a) ={r:re P, H(r) =a}.
2. Pla)={r:ae P,B*(r)}.
3. N(a) ={r:a€ P,B~(r)}.

With the information in those sets it is efficient the application of some trans-
formations, because it is avoided the use of a search algorithm, for example, it
will not be necessary to search through all the program P when we require all
the rules whose head is a particular atom a. Each atom a € Lp also has asso-
ciated a variable state(a), which can hold one of the following values (we refer
to this variable as the state of a): if state(a) = state_fact then a is a fact, if
state(a) = state_no_fact then a can not be a fact, if state_undefined then we
can not tell yet if @ is or can not be a fact.

The application of the transformations TAUT and EQUIV is easily im-
plemented, and in this paper we do not write the algorithms that apply those
transformations. The transformations SUCC, RED", RED ", NAF and a par-
ticular case of SUB are applied iteratively by the algorithm
trans formations_iterated(...). This particular version of SUB consists in delet-
ing the rules whose head is a fact. For the general case of SUB it is necessary
to check for set inclusion between the bodies of all pairs of rules with the same
head, some of our experimental implementations showed that it was very in-
efficient and in most cases only a few rules were deleted. The LOOP trans-
form was implemented using the Dowling-Gallier algorithm [5] (which finds the
unique minimal model of a positive program in linear time) it is presented in the
LOOP(...) algorithm. Also a watched variables scheme[9] might be used, this
technique is effective in some cases when the deletion of atoms from rules needs
to be continuously undone, but at this stage we do not need undo any changes.

For the algorithm transformations_iterated(...) we need two lists (see the
algorithm at the end of the paper), they are Lp and L f, which have to be initial-
ized before calling to transformations_iterated(...). Lp is initialized with the
atoms that are facts, then for all a € Lp it is assigned state(a) = state_fact. Lf
initialized with the atoms a such that there is no rule with head a, then for all
a € Lf it is assigned state(a) = state_no_fact. In transformations_iterated(...)
the auxiliary algorithms remove_rule(r) and remove_atom_from_rule(a,r, B)
are used. remove_rule(r) removes the rule r and if all the rules with head
H(r) have been removed, set state(H(r)) = state_no_fact and add a to Lf.
remove_atom_from_rule(a,r, B) removes the atom a from B, where B = BT (r)
or B = B~ (r), if after removing a from B, |B| = 0, then set state(H(r)) =
state_fact and add a to Lp

In the next example we illustrate how the algorithm trans formations_iterated...)
behaves with the program P as input

94

Ivan
94

6 Angel Marin George, Claudia Zepeda Cortés

Ezample 1. Example of the execution of transformations_iterated

P ={ IT, ={ s ={
71U < not v. r1:Uu < not v
11U < not v.
r9 i U not u. ro 1 U« not u.
r9 1 U < not u.
r3 : u < not r,not x,b. r3 : u < not r,not x,b.
r3 :u < not r,not x,b.
T4 1T — Y, T,N0t C. T4 X — Y, T, N0t C.
T4 X — Y, T, N0t C.
Ts 1Y < not x,z,not v. rs 1Y < not x,z,not v.
rs 1Y < not x,z,not v.
re : & <— not z,t,not d. 76 : & «— not z,t,not d.
T6 : T < not z,t.
r7 iz —t,0. r7 iz —t,v.
r7 iz —t,v.
rg 1 2 <+ r,not u,not x. rg 1 2 < r,not u,not .
rg 1 2 < r,not u,not x.
r9 : T +— not t,not a. rg : 7 < not t,not a.
T9 : 7+ not t,not a.
r10 : t < not r,b. r10 : t < not r,b.
r10 : t < not r,b.
711 : a < not a,c. 11 :Q < C.
11 a — C.
r12 1 b+ not d. r12 : b+ not d.
T12:b<—.
riz:d <« ¢, d. 714 : Cc < not a,b,d, z.
r15 : Cc < not b, a,x.
14 : Cc < not a, b, d, z. r15: Cc < not b, a,x.
r16 : b < not a,not u.}
ri5 . c < not b, a,x. ri6 : b < not a,not u.} I {b} Lf {}
ri6 : b — not a,not u.} Lp={}, Lf ={d}. p ’
II; ={
IT, ={ ITs ={
r1 U < not v.
r1:Uu < not v 71U+ not v
r9 1 UV < not u.
T2 1V < not u T2 1V not u
T3 U < not r,not x.
r3 U < not r,not x. T3 U < not r,not x.
T4 T — Y, T,n0t C.
T4IT — Y, T T4IT — Y, T
5 1Y < not x,z,not v.
rs 1y < not x,z,not v. rs 1Y < not x,z,not v.
T6 1 T <— not z,t.
re : T «— not z,t. 6 1 & < not z,t.

r7 iz —t,v.
r7 iz —t,v. r7 iz —t,v.

rg 1 2 < r,not u,not x.

rg : 2z < r,not u,not . rg 1 2 < r,not u,not .
Tr9 : T+ not t,not a.
rg : 7 < not t,not a. r9 : 1T < not t.
r1i0 : t < not r.
raiae) T10 : t < not r.} ri0 : t < not r.}
Lp={}, Lf ={a}. Lp={}, Lf =A{}.

Lp=A}, Lf ={c}.

Before starting the transformations_iterated(...) algorithm, the EQUIV
and TAUT transformations are applied obtaining I7; (this is an optional step),
also Lp and L f have to be initialized. Then we call trans formations_iterated(Il;).
In the first iteration d is removed from Lf, we apply NAF and RED™ until d
do not appear in the program, obtaining Il5. In the second iteration remove b
from Lp then apply SUB by removing all the rules whose head is b, then SUCC
and RED™ are applied until b do not appear in the program, obtaining I3. In
the third iteration remove ¢ from Lf, and apply NAF and RED™ until ¢ do
not appear in the program obtaining I14. In the fourth iteration remove a from
Lf, and apply NAF and RED™ until a do not appear in the program obtaining
II5. At this point Lp and Lf are empty making the algorithm stop.

During the execution of trans formations_iterated(P) have been removed all
the rules whose head is a fact, including the rules r for which B(r) = (), which
are precisely the rules that indicate that H(r) is a fact, it does not represent
any problem because we can recover the atoms that are facts just by gathering
the atoms whose state is state_fact. As the transformations applied preserve
equivalence, P = IT5 U {b <}, we added the rule b < to IT5 because state(b) =

95

Ivan
95

Implementing the p-stable semantics 7

state_fact. The state of all the atoms that were added to Lp was set to state_fact
(in this case {b}), and the state of the atoms that were added to Lf was set to
state_no_fact ({d,a,c}), it means that b must be in all the p-stable models of P
and {d, a,c} can not be in any.

It is not hard to see that after the application of this algorithm we can no
longer apply SUCC, RED~, RED™ or NAF.

3.2 The graph of dependencies

In most cases the application of the transformations is not enough to find a
p-stable model of a normal program, and other techniques are required. One of
those techniques is to partition the program into sets of rules called modules.
Those modules are created based on its graph of dependencies. Before explaining
this technique in detail we give the next definition

Definition 3. A strongly connected component C of a graph G is a subset of
nodes of G. C is a maximal set of nodes(mazimal respect to inclusion) such that
there is a directed cycle in G that contains all the nodes in C'.

When we have the rule a; «— ai,a9,...,am,,not ay41,n0t amya, ..., N0t ay.,
ap, is dependent of all the als, i = 1...n, in a graph this dependencies can be rep-
resented with the directed edges (a;, ap),i = 1,...,n. The graph of dependencies
of a program P represents all the dependencies between the atoms in Lp, given
by all the rules of P.

The following definition states the definition of stratification and module of
a program P.

Definition 4. Let P be a normal program which can be partitioned into the
disjoint sets of rules {P1, ..., P,}. Let P;, P; € {Py,...,P,}, P, # P;, we say that
P, < Pjif3reP;:3r" € P,: H(r') € B(r), if from this condition we do not
conclude that P; < P; or P; < P; then we can choose to hold whether P; < P; or
P; < P; as long as the following properties hold. For every X,Y,Z € {P, ..., P,},
the strict partial order relation properties and the totality property hold:

1. X < X is false (this property holds trivially).
2. If X <Y then (Y < X is false).

3 If(X<Y andY < Z) then X < Z.

4. P <...< P,

then we refer to this partition as the stratification of P, sometimes we will write
it as P= PyU...UP,. And we will refer to P;,;1 <i <n as a module of P.

Fortunately we do not have to worry about how to construct this order be-
cause there exists a well known algorithm [21](that we implemented in the algo-
rithm get Modules(P)) which obtains a sequence C1, ..., C,, of strongly connected
components of the graph of dependencies of P, from which we can construct a
stratification of P, P = PiU...UP,, where P, = {r:r € P,H(r) € C;},1 < i <n.

Now we define h(P;, P)

96

Ivan
96

8 Angel Marin George, Claudia Zepeda Cortés

Definition 5. Let P be a normal program, C; a strongly connected component
of the graph of dependencies of P, and P; the module constructed from C;. We
define h(P;, P) as the atoms which are represented as nodes in C;.

3.3 Computing the p-stable models

The purpose of this section is to show how to compute the p-stable models of
a program, three approaches to find the p-stable models of a program P are
presented. One way is a direct application of the theorem 1, it consist in com-
puting the minimal models of P and choosing those which satisfy the definition
of p-stable model. By theorem 2 the p-stable models of P can be computed
by computing the p-stable models of the modules of P after the application of
certain transformations.

Theorem 2. [19] Let P be a normal logic program, and M a model of P with
stratification P = Py U Py, then RED(P,M) |= M iff RED(Py,My) = My and
RED(P}, Ms) = My with Py, My, and My defined as follows: M = My U M,
M, = h(P,,P)N M, My = h(P2, P) N M, and P} is obtained by transforming
Py as follows:

1. Removing from P, the rules ' such that B~ (r') N My # O or BT (') N
(h(Py, P)\ M) # 0, obtaining a new program Py .

2. For every r € Pj, removing from B(r) the occurrences of the atoms in
h(Py, P), obtaining Pj.

In other words M is a p-stable model of P iff M is a p-stable model of P;
and Ms is a p-stable model of Pj, where Pj is obtained by removing from P,
the occurrences of the atoms in h(P;, P) according to the theorem 2. If P can
be stratified as P= PLU...UP,, n > 2, then P= P UQ with @ = P,U...UP,
is also an stratification of P that has only two modules, and then we can apply
the theorem 2.

From theorems 1 and 2, three different approaches to compute the p-stable
models of a program P are known. The first approach has been implemented in
[18]. We propose the other two approaches that reduce the search space respecto
to the first approach in many practical examples.

1. From theorem 1, it follows that in order to find the p-stable models of P, we
can generate minimal models M € MM(P) and accept as p-stable models
those for which the consequence test RED(P, M) = M is true. To implement
the consequence test we take advantage of the fact that RED(P, M) E
M <= RED(P, M)U{—-M} is unsatisfiable, to test it RED(P, M)U{-M}
is unsatisfiable it is used a SAT solver, in this case we used MINISAT/1], the
consequence test is implemented in the algorithm consequence_test(...)(not
presented here for lack of space). Using this approach the search space to
find the p-stable models of P is MM (P). The computation of the p-stable
models following this approach is implemented in new_PS(...).

97

Ivan
97

Implementing the p-stable semantics 9

2. As we have said, if P can be stratified into n modules P = P, U ... U P,,
then P can also be stratified into two modules P = P; U @, where Q =
P,U...UP,,;n > 2, and now we can apply the theorem 2 to find the p-
stable models of P, this approach is based on the fact that Q' (obtained
from @ according to theorem 2) can be stratified as Q' = Q' U ... U @,
where Q;’,2 < i < n is obtained by removing from P; the occurrences of £p,
according to theorem 2. If n > 3, to compute the p-stable models of Q’, we
argument the same way but now instead of P, we have Q' with stratification
Q' = Q' U...UQ,’. We can proceed this way whenever we want to compute
the p-stable models of a program stratified into more than two modules,
when it only has two modules, we just apply the theorem 2. The search
space to find all the p-stable models of a program P using this approach is
in the worst case MM (P), but sometime this search space is bigger than in
the third approach. The advantage of this approach over the third approach
is that it is not necessary to compute the stratification of a module before
computing its p-stable models, we compute only once the stratification of P.

3. Again following the theorem 2, to compute a p-stable model of P with strat-
ification P = Py U P»(as we have said a program with n modules can also be
stratified into two modules), we can compute a p-stable model of P; and one
p-stable model of Pj, and if Pj can be stratified into Py = Q1 U Q2, we can
apply again the theorem and compute the p-stable models of @1 and Q5.
The difference with the second approach is that in the second approach the
stratification is computed only once, and in this approach we compute the
stratification with getModules(...) each time we want to compute a p-stable
model of a module. Using this approach the search space is in many cases
considerably smaller than MM (P), this is because the problem of finding
the p-stable models of a program is translated into the problem of finding the
p-stable models of many small subprograms, the smaller these subprogram,
more chances are to reduce the search space. We distinguish between finding
the first and the subsequent p-stable models, to find the first p-stable model
use the first_PS_recursive(...) algorithm and to find the another p-stable
model use next_PS_recursive(...).

We illustrate the second approach by finding the p-stable models of the pro-
gram I15 that resulted from the application of the transformations in the example
1. In the graph 1 we see the graph of dependencies of II5, the dotted edges trace
maximal cycles, and determine the strongly connected components of IT5.

98

Ivan
98

10 Angel Marin George, Claudia Zepeda Cortés

Graph 2

Based on the graph of dependencies of IT5 (graph 1), we see that IT5 can be
stratified into two modules IT5 = P; U P,. To compute a p-stable model of 115 we
start by finding a p-stable model of P, in this case we found {r} to be a p-stable
model of P;. Then compute Pj by removing the occurrences of the atoms r and
t from P, according to the theorem 2, in the next figure you can see P, P> and
P

Py ={ P, ={

71U < not v. rg 11 < not t.

79 1 U < not u. r10 : t < not r.}

rs :u < not r,not . P, ={

T4IX — Y, T 1 U < not v.

Ts 1Yy < not x,z,not v. T9 1 UV« not u.

re : T +— not z,t. TLIT — Y.

r7 iz —tv. T5 1Y < not x, z,not v.
rg iz < r,not u,not x.} rg : 2z < not u,not x.}

Then find a minimal model of Pj and do the consequence test, a mini-
mal model of Pj is {v,z}, but when doing the consequence test we find that
RED(Pj, {v,z})U{—={v,z}} = RED(Py, {v,x}) U {-vV -z} is satisfiable, thus
{v,x} is not a p-stable model of P;. We generate another minimal model of
P}, {v, z}, this time RED(Py, {v,z}) U {—v V =z} is unsatisfiable and {v, z} is
accepted as a p-stable model of Pj. Merging the p-stable model of P; and the
p-stable model of Pjy we obtain a p-stable of Ty, {r,v,z}. To look for another
p-stable model of IT5, we start by looking for another p-stable model of Pj, we
find that {u} is a p-stable model of Pj, for instance another p-stable model of
IT5 is {r,u}. Again we try to generate another p-stable model of Pj, but we note
that all the p-stable models of Pj have been generated (all M € MM (Pj) have
been computed), then we go to the anterior module(P;) and try to generate
another p-stable model of P;, we find that {t} is another p-stable model of Py,
then compute Pj again :

Py |

r1: U < not v.

o 1 UV < not u.

r3 U < not x.

T5 1Y < not x,z,not v.
ré : T < not z.

r7 iz v}

99

Ivan
99

Implementing the p-stable semantics 11

We encounter the two p-stable models of Py, {{x,u},{z,v}}, from which
we find another two p-stable models of IT5, {{¢,z,u}, {t,z,v}}. When trying to
generate another p-stable model of Pj we can not find any so we go to P, and
can not find another p-stable model of P; so we stop. We end up with the four p-
stable models of II5, PS(II5) = {{t,z,u}, {t, z, v}, {r,v, 2z}, {r,u}}. Recall form
the example 1 that b was found to be a fact after the application of the transfor-
mations to P, for instance PS(P) = {{b,t,x,u}, {b,t,x,v},{b,r,v, 2z}, {b,r,u}}.

When using the third approach, we stratify II5 into IIs = P; U P, as in
the second approach, but after obtaining Pj, try to stratify Pj, we can see in
the graph of dependencies of Pj (graph 2), that Pj can be stratified into two
modules, so Pj is stratified into Py = Q1 UQ2 which can be seen in the next figure

Q1 ={

71U — not v. R, ={}

re 1V« not u.} Q, ={ Ry ={z+ y.}
Q2=A1 TyT — Y. R3 ={z« not z.}
ryiT— Y. rg 1z < not x.} R, ={}

r5 1y < not x, z,not v. R, ={z.}

rg 1 z < not u,not .}

Applying again the theorem 2, first choose a minimal model of @1, {v} and
when doing the consequence test we find that {v} is a p-stable model of Q;.
Now obtain @ (see the anterior figure) which is further partitioned into Q% =
R, U Ry U R3 which are respectively the sets of rules with head y, z and z. Then
compute a p-stable model of Ry, the only p-stable model of R; is the empty set,

% is also empty and also has an empty p-stable model. R (obtained by removing
from Rg the occurrences of Lr, and Lpg,) only has an empty rule z < and its
unique p-stable model is {z}. Merging the p-stable model of the modules Py, Q1,
Ry, R, and R} we get a p-stable model of IT5, it is {r} U {v}U{}U{} U{z} =
{r,v, z}. When trying to generate another p-stable model, first we try to generate
another p-stable model of R}, it does not have more p-stable models, thus we go
back and try on R) but it has neither, then try on R; that has no more p-stable
models, finally we find that @); has another p-stable model, {u}, from this point,
to find the other p-stable models of T, we proceed as we did when we had {v}
as a p-stable model of Q1.

To show the performance of each approach we use some examples in [2]. In
the next table we can see the time in seconds it took to find a p-stable model
of some of those examples using each of the three approaches. A ”-” character
means that we stopped the execution after 10 seconds. In the fifth column is the
time to find a stable model by smodels. The sixth and seventh columns show
the number of atoms and rules of each test program. In the last column is the
number of modules in which the program was initially partitioned.

100

Ivan
100

12 Angel Marin George, Claudia Zepeda Cortés

problem app- llapp. 2|app. 3|smodels|atoms| rules |modules
blocks world - 4 14 228 | 2848 | 28238 600
blocks world variant - .15 18 188 | 3227 | 28817 487

n queens .01 | 1.24 | .83 .016 149 | 1539 3
spanning tree 14 | .05 1 .008 | 930 | 1572 276
planning from initial - 21 2 .26 | 4910 | 41439 510
weight constraints .26 .22 .23 228 | 887 | 29662 115
planning in observations| - - - 6.172 |24639|1098619| 22100

It is worth to mention that if we modify the consequence_test(...) such that it
always return true, instead of using tran formations_iterated(...) we apply some
similar reductions (see [10]), and if all the tautological rules like a « b, not b, c
are removed, then we end up with a stratified minimal model solver, a detailed
description of our stratified minimal model semantics solver can be found in [10].

4 Conclusions and future work

Some preliminary tests to the p-stable solver presented in this paper, shows a bad
performance respect to a stable semantics solver(smodels[11]), for big programs,
due to the backtracking driven by the failure of the consequence test, one of the
inconveniences of this implementation is that the search space is very big for
some programs, research is needed to develop algorithms that reduce the search
space or heuristics that show a good performance for some classes of programs.

101

Ivan
101

Implementing the p-stable semantics 13

Algorithm 1 function getM odules()

ModuleList modules {list of modules}
create the graph of dependencies G
numerate the nodes of G according to the DFS exiting time
transpose the graph(compute G7)
Do a DFS(depth first search), and in the main loop choose the nodes with bigger
exiting time first.
{Each tree found by the DFS represents a strongly connected component}
for each strongly connected component ¢ do

create a new module mod

for each atom a in ¢ do

add to mod all the rules r that H(r) = a

end for

modules.add(mod)
end for

Algorithm 2 function transformations_iterated(Module P))

{when P is a module obtained from the stratification of a bigger set of rules, use
{r € P:a € B+ (r)} instead of P(a), and use {r € P : a € B — (r)} instead of
N(a)}
global List Lp,Lf
while [LpULf| > 0do
if Lp is not empty then
a = Lp.removeElement()
{apply a partial version of SUB}
remove all rules in H(a)
for all r in P(a) do
{apply SUCC}
remove_atom_from_rule(a,r, BT (r))
end for
for all r in N(a) do
{apply RED™ }
remove_rule(r)
end for
else
a = Lf.removeElement()
for all r in P(a) do
{apply NAF }
remove_rule(r)
end for
for all rin N(a) do
{apply RED™ }
remove_atom_from_rule(a,r, B~ (1))
end for
end if
end while

102

Ivan
102

14 Angel Marin George, Claudia Zepeda Cortés
References
1.
2. Chitta Baral. Knowledge representation, reasoning and declarative problem solv-

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

ing. http://www.baral.us/bookone/code/smodels.html.

J. Carballido, J.C. Nieves, and M. Osorio. Inferring preferred extensions by pstable
semantics. Accepted in Revista Iberomericana de Inteligencia Artificial, 2008.

J. L. Carballido. PhD thesis, BUAP, 2008.

W.F. Dowling and J.H. Gallier. Linear time algorithm for testing the satisfiability
of propositional horn formulae. Journal of logic programming, 1984.

Phan Minh Dung. On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games. Artificial
Intelligence, 77(2):321-358, 1995.

Michael Gelfond and Vladimir Lifschitz. The Stable Model Semantics for Logic
Programming. In R. Kowalski and K. Bowen, editors, 5th Conference on Logic
Programming, pages 1070-1080. MIT Press, 1988.

John W. Lloyd. Foundations of Logic Programming. Springer, Berlin, second
edition, 1987.

Yuting Zhao Lintao Zhang Matthew H. Moskewicz, Conor F. Madigan and
Sharad Malik. Chaff. Chaff: Engineering an efficient sat solver. In DAC 01: Pro-
ceedings of the 38th Conference on Design Automation, Las Vegas, NV, USA, June
2001., 2001.

Angel Marin George Mauricio Osorio, Juan Carlos Nieves. Computing the stratified
minimal models semantic(unpublished). 2009.

Ilkka Niemela and Patrik Simons. Smodels - an implementation of the stable model
and well-founded semantics for normal logic programs. volume 1265 of Lecture
Notes in Artificial Intelligence (LNCS), pages 420-429, 1997.

Mauricio Osorio, José Arrazola, and José Luis Carballido. Logical weak comple-
tions of paraconsistent logics. Journal of Logic and Computation, Published on
line on May 9, 2008.

Mauricio Osorio and Jose Luis Carballido. Brief study of G’s logic. To appear in
Journal of Applied Non-Classical Logic, 18(4):79-103, 2009.

Mauricio Osorio, Juan Antonio Navarro, José Arrazola, and Verénica Borja. Logics
with common weak completions. Journal of Logic and Computation, 16(6):867-890,
2006.

Mauricio Osorio and Claudia Zepeda. Update sequences based on minimal gener-
alized pstable models. In MICAI, pages 283-293, 2007.

Mauricio Osorio and Claudia Zepeda. Pstable theories and preferences. In Elec-
tronic Proceedings of the 18th International Conference on Electronics, Communi-
cations, and Computers (CONIELECOMP 2008), March, 2008.

S. Pascucci and A. Lopez. Syntactic transformation rules under p-stable semantics:
theory and implementation. 2009.

S. Pascucci and A. Lopez. Implementing p-stable with simplification capabilities.
Submmited to Inteligencia Artificial, Revista Iberoamericana de I.A., Spain, 2008.
Simone Pascucci. Syntactic properties of normal logic program under pstable se-
mantics: theory and implementation. Master’s thesis, March 2009.

David Pearce. Stable Inference as Intuitionistic Validity. Logic Programming,
38:79-91, 1999.

Clifford Stain Thomas H. Cormen, Charles E. Leiserson Ronald L. Rivest.

Allen van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded seman-
tics for general logic programs. Journal of the ACM, 38:620—650, 1991.

103

Ivan
103

Implementing the p-stable semantics 15

Algorithm 3 function LOOP (Module P)

{for this algorithm it is necessary to associate to each rule r an integer pCount(r)
and to each atom a a boolean of MM (a). }
List prop
initialize pCount(r) = | B (r)| for each rule r
initialize of MM (a) = false for each atom a
initialize prop ={a € Lp:Ir € P: H(r) = a, BT (r) = 0}
{ sets of MM (a) = true iff a € MM (POS(P)) }
while |prop| > 0 do
a = prop.remove_element()
set of MM (a) = true
for each r such that a € B*(r) do
pCount(r) = pCount(r) — 1
if pCount(r) =0 then
prop.add(H (r))
end if
end for
end while
{removes rules r for which of M M (a) = false and a € B (r) }
for each atom a for which of MM (a) = false do
for each r in P(a) do
remove_rule(r)
end for
end for

104

Ivan
104

16 Angel Marin George, Claudia Zepeda Cortés

Algorithm 4 function bool new_PS(Module P)

{solver is a MINISAT solver associated to P, IDS(a) is the integer that represents
the atoms a in solver, when solver = NULL no models of P have been computed}
if solver = NULL then
transformations_iterated(P)
end if
if the number of atoms in Lp whose state is state_undefined is >= 2 then
{initialize solver}
if solver = NULL then
solver=new solver()
add to solver all the rules in P
set 1 = —1
for each a € Lp for which state(a) = state_unde fined do
solver.newVar()
set IDS(a) =+ +1
end for
end if
{generates minimal models of P, returns true if the consequence test returns true}
while solver.solve() do
if consequence_test(solver.model) then
{create a clause lits with the model generated but negated}
for each atom a in the solver do
if solver.model[IDS(a)] = . True then
set state(a) = state_fact
lits.push(~ IDS(a))
else
set state(a) = state_no-fact
end if
end for
{add the clause to the solver to generate a different minimal model the next

iteration}
if ¢ > 0 then
solver.addClause(lits)
else
add to solver the clauses {a} and {—a} for some atom a
end if
return true
end if
end while
{returns false because no p-stable model of P was found}
solver=NULL
return false
else
{there is nothing to solve, the p-stable model was found by
trans formations_iterated(P)}
if solver # NULL then
set solver = NULL
return false
else
set solver = (Solverx)1{just assign a non-NULL value}
return true
end if
end if

105

Ivan
105

Implementing the p-stable semantics 17

Algorithm 5 function bool first_PS_recursive(Module P)

{stratify(P) returns true iff P could be stratified into more than two modules }
{If P is stratified into P = P, U...UP,, as the modules P; are in the list submodules,
head(submodules(P)) = P1, rear(submodules(P)) = Pp, next(P;) = Pit1 1 <=1 <
n, back(P;) = Pi—1 1 < i <= n, next(P,) = back(P,) = NULL}
if stratify(P) then
reductions_iterated(P)
set @ = head(submodules(P)) {picks the first element of submodules(P)}
if not new_PS(Q) then
return false
end if
set Q = next(Q)
while @ # NULL {visits all the modules in submodules(P)} do
while not first_PS_recursive(Q) do
{backtracking}
if not next_PS_recursive(back(Q)) then
return false
end if
end while
set Q = next(Q)
end while
else
if not new_PS(P) then
return false
end if
end if
return true

Algorithm 6 function bool next_PS _recursive(P)

repeat
{if P was not divided into more than one modules}
if |submodules(P)| = 0 then
if new_PS(P) then
return true
end if
else
Q = rear(submodules(P))
if next_PS_recursive(Q) then
return true
end if
end if
if back(P) = NULL or not next_PS_recursive(back(P)) then
return false
end if
{leaves the module as it was when created}
reset_component(P)
until first_PS_recursive(P)
return true

106

Ivan
106

