
P-stable as an extension of WFS

José Luis Carballido and Claudia Zepeda

Benemérita Universidad Atónoma de Puebla
Facultad de Ciencias de la Computación,

Puebla, Puebla, México
{jlcarballido7,czepedac}@gmail.com

Abstract We summarize the foundations and applications of the new
semantics called p-stable and we show that it holds the important prop-
erty of extending the WFS semantics.

Keywords: WFS semantics, p-stable semantics.

1 Introduction

The research community has long recognized the study of non-monotonic rea-
soning (NMR) as a promising approach to model features of commonsense rea-
soning. On the other hand, monotonic logics have been successfully applied as
a basic building block in the formalization of non-monotonic reasoning. In this
direction, Veloso et al. [27] provide a precise treatment of notions such as ‘ge-
nerally’, ‘rarely’, ‘most’, ‘many’, etc. in terms of logics of qualitative reasoning.
These (monotonic) generalized logics, with simple sound and complete deductive
calculi, are proper conservative extensions of classical first-order logic. Another
line of research considers non-classical logics based on some form of logical com-
pletions. This paper explores some properties of one of the semantics based on
this second formalization.

The stable semantics, which has been successfully used in the modeling
of non-monotonic reasoning, was introduced by Gelfond and Lifschitz [11] by
means of a simple transformation. More recently, a new semantics useful to
model non-monotonic reasoning has been developed: the p-stable semantics.
The original ideas that motivated this semantics can be found in [16]. Several
works on the p-stable semantics have been done, some of the more relevant are
[17,18,15,14,4,28,22].

In [18] the authors define the p-stable semantics for normal programs in terms
of the G′3 logic and a construct called weak completion.

In [15] the authors generalize to disjunctive programs what was done in [18].
They introduce the p-stable semantics for disjunctive programs by means of a
transformation similar to the one used by Gelfond and Lifschitz [11]. Thus, the
p-stable semantics for normal and disjunctive programs can be expressed in two
ways: in terms of a fixed point operator and classical logic after applying such
transformation, and also in terms of the G′3 logic and weak completions. For

Ivan

Ivan
142

this reason we refer to this semantics with either of the two names: p-stable or
G′3-stable semantics.

We emphasize that the p-stable semantics presented here, is a two-valued
semantics that can be characterized by the three-valued logic G′3. This semantics
should not be confused with the partial stable semantics defined by Przymusinski
[24].

This work has two main contributions, the first one corresponds to a sum-
mary about the foundations of the new semantics called p-stable which includes
its applications and its relationship with paraconsistent logics. The second one
corresponds to showing that the p-stable semantics holds the important prop-
erty of extending the well founded semantics (WFS) defined in [26]. In this way
we continue with the study of the p-stable semantics.

The structure of the paper is as follows: Section 2 tells about the foundations
of the G′3-stable semantics and some of its applications. Section 3 starts with
basic background and definitions of the G′3-logic, the p-stable semantics, the
X-stable semantics for any logic X and programs with variables. In section 4,
we review how the well founded semantics (WFS) can be induced by a powerful
method called a Confluent LP-Systems CS [9]. Section 5 shows that the p-stable
semantics extends the WFS semantics. Then, we present our conclusions.

2 Motivation of the G′
3-stable semantics

This section is dedicated to review the p-stable semantics. We review its origins
and foundations, its major known results, and some of its extensions. Although
the contribution of this paper is not based on all the results presented in this
section, we consider that it is worth to know more about the state of the art of
this new semantics.

2.1 Origins and logical foundations of the G′
3-stable semantics

Recently, in [15] an approach for knowledge representation was proposed in terms
of any paraconsistent logic stronger than or equal to Cω, the weakest paracon-
sistent logic introduced by da Costa [7]. The authors of [14] present a deep study
of the paraconsistent logic G′3 which is a 3-valued logic. The matrices that define
the logic G′3 were originally introduced by Carnielli et al. [6] only to prove that
a certain formula is not a theorem in Cw. In fact, the set of theorems of G′3 is a
superset of the set of theorems of Cw.

One interesting feature of the G′3-logic presented in [14], is that it can be
expressed in terms of the ÃLukasiewicz L3-logic, and vice-versa, the ÃLukasiewicz
L3-logic can be expressed in terms of the G′3-logic. In particular, G′3 can define
the same class of functions as ÃLukasiewicz 3-valued logic and also can express
very directly the strongest intermediate logic (also known as the Gödel’s 3-valued
logic) G3. In the same survey, the authors also prove that the logic G′3 admits a
finite axiomatization, in fact, the one presented there consists of the axioms for
Cw plus four new axioms.

2

Ivan
143

The authors of [18] introduce the p-stable semantics for normal programs,
they also introduce the X-stable semantics for arbitrary programs and for any
logic X. The construction used in this definition is called weak completion.
The authors present several paraconsistent logics, all of them between Cw, the
weakest paraconsistent logic, and Pac, a well known maximal paraconsistent logic
studied by Avron [1], and prove that the weak completions of all of these logics
are equivalent to each other for normal programs. In [15] the authors establish
this last result for disjunctive programs.

Weak completions have been used by D. Pearce [23] to characterize the stable
semantics of disjunctive programs. Pearce’s result states that weak completions
of intermediate constructive logics (in particular G3 logic and intuitionism) de-
fine the stable semantics of disjunctive programs.

In a parallel way, the p-stable semantics of disjunctive programs can be de-
fined in terms of weak completions of paraconsistent logics, in particular G′3
[17,18]. It can also be expressed in terms of modal logics [17], and it can express
the stable semantics of disjunctive programs [15].

We can say then, that two major classes of logics are successfully used to
model NMR: constructive intermediate logics and paraconsistent logics. A well
known semantics for modeling NMR is the stable semantics, which can be de-
fined in terms of Intermediate logics. This semantics provides a fairly general
framework for representing incomplete information and for reasoning with it.
The p-stable semantics, which can be defined in terms of paraconsistent logics,
shares several properties with the stable semantics, but is closer to classical logic.

2.2 Major Known Results

[15] offers several results about the relation between the stable and the p-stable
semantics, in particular every stable model of a normal program is also a p-
stable model, but the converse is not true as shown by the program a ← ¬a,
which has {a} as its unique p-stable model and does not have stable models.
The authors also give a sufficient condition on disjunctive programs for a stable
model to be a p-stable model, we refer to this condition as “being closed under
D-shifts“, namely: a disjunctive program P is closed under D-shifts if for any of
its disjunctive rules: H ← B+,¬B−, and any a ∈ H, the rule a ← B+,¬{B∪H−
{a}}− also belongs to P . Then we have that any stable model of a disjunctive
program closed under D-shifts is also a p-stable model of the program.

One of the main results presented in [15], is the fact that the G′3-stable seman-
tics is powerful enough to express the well known stable semantics of disjunctive
programs; more precisely, the authors present a translation of a disjunctive pro-
gram D into a normal program N, such that the p-stable model semantics of N
corresponds to the stable semantics of D when restricted to the common lan-
guage of the theories.

The G′3-stable semantics shares properties with the stable semantics, but is
closer to the semantics defined by classical logic. Consider the normal program
P1 : {a ← ¬b}.

3

Ivan
144

The well known stable semantics by Gelfond et al. [11] of P1, as well as the
G′3-stable semantics give {a} as the unique intended model of this program. If
we use classical logic we obtain {b} as a second model, but this is against the
spirit of logic programming.

Now, let us consider the following program P2: {a ← ¬b, a ← b, b ← a}.
P2 does not have stable models, but the set {a, b} is a model of P in classical

logic. Indeed, this set is also the only G′3-stable model of P2.
The main purpose of argumentation theory (Dung [10]), is to study the fun-

damental mechanism humans use in argumentation, and to explore ways to im-
plement this mechanism on computers. Recently, in [4,19] it was shown that
given an argumentation framework, its preferred semantics1 can be characte-
rized by means of a normal program, such that the preferred extensions of the
argumentation framework correspond exactly to the G′3-stable models of the nor-
mal program. The three major semantics of argumentation theory (grounded,
stable, and preferred) can be characterized in terms of three logic programming
semantics: the well founded semantics (van Gelder et al. [26]), the stable seman-
tics (Gelfond et al. [11]), and the p-stable semantics, respectively, in terms of
a unique normal logic program PAF , which is constructed only in terms of the
argumentation framework AF . PAF does not depend on any particular seman-
tics. If we want to obtain the stable semantics of AF , we compute the stable
semantics of logic programming over PAF . If, on the other hand, we want to
obtain the preferred semantics of AF , we compute the p-stable semantics over
PAF . Moreover, if we want to obtain the grounded semantics of AF , we compute
the well founded semantics over PAF .

These results help to understand the close relationship between two suc-
cessful approaches to non-monotonic reasoning: argumentation theory and logic
programming with negation as failure.

2.3 Expressivity of p-stable semantics

In order to finish this brief motivation, we consider the expressivity of p-stable
semantics. We mention three different approaches for knowledge representation
based on this semantics: updates, preferences and argumentation (see previous
section).

In case intelligent agents get new knowledge and this knowledge must be
used to update the knowledge base, it is important to avoid inconsistencies. An
update semantics for update sequences of programs based on G′3-stable semantics
is proposed in [20].

The concept of preferences is considered a vital component of reasoning with
real-world knowledge. In [21], the authors introduce preference rules which allow
to specify preferences as an ordering among the possible solutions to a problem.
Their approach allows us to express preferences for arbitrary programs. They

1 It is worth mentioning that the preferred semantics is one of the most accepted
argumentation semantics in argumentation theory. Bench-Capon et al. [2]

4

Ivan
145

also define a semantics for those programs. The formalism used to develop their
work is the G′3-stable semantics.

Finally, we mention that the theory of the p-stable semantics is closely related
to topics that have been active areas of research: The theory of paraconsistent
logics, the theory of ground non-monotonic modal logics, and the theory of
weak completions created by D. Pearce to characterize the stable semantics of
disjunctive programs in terms of constructive intermediate logics.

Thus, the G′3-stable semantics is one of several semantics defined by a family
of paraconsistent logics, all of which define the p-stable semantics when restricted
to disjunctive programs.

3 Background

Since the present work continues the study of the p-stable semantics, we review
the background necessary to understand the definition of the p-stable semantics.
In this way, this section summarizes the G′3 logic, however some different results
of the p-stable semantics are related to other logics; we present here some basic
background about these logics. We also present some important definitions useful
to understand this work.

3.1 Syntax and semantics of logic programs

A signature L is a finite set of elements that we call atoms, or propositional
symbols. The language of a propositional logic has an alphabet consisting of

proposition symbols: p0, p1, . . .
connectives: ∧, ∨, ←, ¬
auxiliary symbols: (,),

where ∧, ∨, ← are 2-place connectives and ¬ is a 1-place connective. Formulas
are built up as usual in logic. If F is a formula we will refer to its signature LF

as the set of atoms that occur in F . The formula F ≡ G is an abbreviation for
(F ← G)∧ (G ← F). The formula A ← B is just another way of writing B → A.
A literal is either an atom a, or the negation of an atom ¬a.

When a formula is constructed as a conjunction (or disjunction) of a set of
literals `, F =

∧
` (or F =

∨
`), we denote by Lit(F) such set of literals. A

clause is a formula of the form H ← B (also written as B → H), where H and
B, arbitrary formulas in principle, are known as the head and body of the clause
respectively. The body of a clause could be empty, in which case the clause is
known as a fact and can be noted just by: H ←. In the case when the head of
a clause is empty, the clause is called a constraint and is noted by: ← B.

A normal clause is a clause of the form a ← ∧
(B+ ∪ ¬B−) where a is an

atom, and B+, B− are, possibly empty, sets of atoms. A disjunctive clause is a
clause of the form

∨H ← ∧
(B+ ∪¬B−) where H is a set of atoms, and B+, B−

are, possibly empty, sets of atoms.

5

Ivan
146

The symbol ¬, before one of such sets, denotes the conjunction of the nega-
tions of the atoms belonging to the set. Sometimes a disjunctive clause may be
written as H ← B+,¬B− following typical conventions for logic programs, simi-
larly for normal clauses. A definite program is a normal program whose rules do
not have negations in their bodies.

Finally, a program is a finite set of clauses. If all the clauses in a program
are of a certain type, we say that the program is also of that type. For instance
a set of disjunctive clauses is a disjunctive program, a set of normal clauses is a
normal program and so on.

For arbitrary programs, and proper subclasses, we will use HEAD(P) to
denote the set of all atoms occurring in the heads of the clauses of P .

Let ProgL be the set of all normal programs with atoms from the signature
L. A partial interpretation based on a signature L is a disjoint pair of sets 〈I1, I2〉
such that I1 ∪ I2 ⊆ L. A partial interpretation is total if I1 ∪ I2 = L.

Given two interpretations I = 〈I1, I2〉, J = 〈J1, J2〉, we set I ≤k J if, by
definition Ii ⊆ Ji, i = 1, 2. Clearly ≤k is a partial order. We may also see an
interpretation 〈I1, I2〉 as a set of literals I1∪¬I2. When we look at interpretations
as sets of literals then ≤k corresponds to ⊆.

A general semantics SEM is a function on ProgL which associates with
every program a partial interpretation. Given a signature L and two semantics
SEM1 and SEM2, we define SEM1 ≤k SEM2 if for every program P ∈ ProgL,
SEM1(P) ≤k SEM2(P). When SEM1 ≤k SEM2, we say that SEM2 is an
extension of SEM1.

Next, we proceed to give definitions of the relevant logics and semantics.

3.2 The G′
3, Cw and I logics

The G′3 logic is a 3-valued logic with truth values in the domain D = {0, 1, 2}
where 2 is the designated value. The evaluation functions of the logic connectives
are then defined as follows: x ∧ y = min(x, y); x ∨ y = max(x, y); the ¬ and →
connectives are defined according to the truth tables given in Table 1.

x ¬x

0 2
1 2
2 0

→ 0 1 2

0 2 2 2
1 0 2 2
2 0 1 2

Table 1. Truth tables of connectives ¬ and → in G′3.

We define a tautology as any formula that takes only the designated value
2, regardless of what the truth values the atoms in the formula may take. We
will use the notation |=G′3 A, to express the fact that A is a tautology in G′3.
We must notice the subtle difference between the logic G′3 and the best known
logic G3 due to Gödel; the latter is defined exactly by the same functions as
the former, except that the negation corresponding to the truth value 1 is 0.

6

Ivan
147

As a consequence, whereas G′3 accepts the principle of the excluded middle, G3

does not. An axiomatization for G′3 is presented in [14]. In particular all of the
axioms of Cw are included in such axiomatization. Modus Ponens is the only
rule of inference. We will use the notation `G′3 A, to express the fact that the
formula A is a theorem in G′3; i.e. A can be inferred from the axioms of G′3, by
using modus ponens.

Positive Logic is defined by the following set of axioms:
Pos 1: A → (B → A)

Pos 2: (A → (B → C)) → ((A → B) → (A → C))

Pos 3: A ∧B → A

Pos 4: A ∧B → B

Pos 5: A → (B → (A ∧B))

Pos 6: A → (A ∨B)

Pos 7: B → (A ∨B)

Pos 8: (A → C) → ((B → C) → (A ∨B → C))

G′3 is defined by all axioms of positive logic plus the following six axioms:
1: A ∨ ¬A

2: ¬¬A → A

3: (¬A → ¬B) ↔ (¬¬B → ¬¬A)

4: ¬¬(A → B) ↔ ((A → B) ∧ (¬¬A → ¬¬B))

5: ¬¬(A ∧B) ↔ (¬¬A ∧ ¬¬B)

6: ((B ∧ ¬B) ∧ (∼∼ A ∧ ¬A)) → A

In order to simplify notation, we use A ∨B as an abbreviation for ((A → B) →
B) ∧ ((B → A) → A) in the first of the new six axioms, and in the last axiom
we use the abbreviation: ∼ A := A → (¬A ∧ ¬¬A).

One of the main results presented in [14], is a soundness and completeness
theorem for the G′3 logic, namely: a formula is a tautology in the three-valued
logic G′3 if and only if, it is a theorem according to the axiomatization; we can
express this in the notation we have introduced: |=G′3 A if and only if `G′3 A.
We will use any of the two terminologies when referring to such a formula.
Positive logic plus the two axioms: A ∨ ¬A and ¬¬A → A, define the Cw logic,
the weakest paraconsistent logic defined by da Costa [7].

We observe that the formula (¬A∧A) → B is not a theorem in either of the
two logics. This fact indeed makes these two logics paraconsistent.
The G′3 logic is strictly stronger than Cw, and both of them are strictly weaker
than classical logic. In particular the formula B → [(¬B ∧A) → C], where A,B
and C are arbitrary formulas, which is a tautology in classical logic, is not always
a tautology in G′3, as is seen in the particular case when A, B, C take the truth
values of 2,1 and 0 respectively. As a useful result we also mention that the
formula (¬A → A) → A is a tautology in the G′3 logic for any formula A.
Intuitionistic logic, that we abbreviate as I, is defined as positive logic plus the
following two axioms: (A → B) → [(A → ¬B) → ¬A] and ¬A → (A → B).
These two axioms allow to do proofs by contradiction but in some limited way;
other constructions such as the law of the excluded middle: (A ∨ ¬A), are not

7

Ivan
148

valid in intuitionistic logic; however the formula (¬A ∧ A) → B is valid in this
logic. All of these properties are shared with the logic G3 mentioned before; in
fact, G3 is stronger than I in the sense that any theorem in I is also a theorem
in G3.

Notice the opposite situation occurring between intuitionistic and G3 logics,
and the paraconsistent logics Cw and G′3 regarding the last two formulas above;
as it was mentioned before, the first one is valid in Cw and G′3, but the second
one is not. See van Dalen [25] for a good introduction to intuitionistic logic.
We will use the following notation: |= denotes the consequence relation in cla-
ssical logic, `X denotes the inference relation in any particular logic X. For any
two formulas A and B, A ≡X B denotes the fact that A and B are equivalent
in logic X, i.e. A → B and B → A are both theorems or tautologies in logic X,
depending on how logic X is defined. Two programs P and Q are equivalent in
logic X, denoted: P ≡X Q, if the conjunction of the rules in P is equivalent, in
logic X to the conjunction of the rules in Q.
As a known fact, we observe that the first two axioms of positive logic guarantee
the deduction theorem, namely: for Γ,A, B, where Γ is a set of formulas, and
A,B are formulas: Γ, A ` B if and only if Γ ` A → B.

3.3 p-stable semantics

From now on we assume that the reader is familiar with the notion of classical
minimal model, Lloyd [13].

Here we define the p-stable semantics for disjunctive programs.

Definition 1. [15] Let P be a disjunctive program and M be a set of atoms.
We define: RED(P,M) = {H ← B+,¬(B− ∩M) | H ← B+,¬B− ∈ P}.

Definition 2. [15] Let P be a disjunctive program and M be a set of atoms. We
say that M is a p-stable model of P if the conjunction of the atoms in M is a
logical consequence in classical logic of RED(P,M) (denoted as RED(P, M) |=
M) and M is a classical model of P (i.e. a model in classical logic).

Remark 1. If M is a p-stable model of a disjunctive program P , then:
1. M ⊂ HEAD(P)
2. If a fact a ← ∈ P , then a ∈ M .

1) follows from the fact that HEAD(P) = HEAD(RED(P, M)) and the con-
dition RED(P, M) |= M ; 2) follows from the fact that M is a classical model of
P .

For convenience and to be consistent with the definition of a semantics SEM
as a function on ProgL which associates with every program a partial interpre-
tation, from now on, we denote a p-stable model M of a disjunctive program P
as a pair 〈M,LP \M〉. We know, that this is not a standard way to represent
the p-stable semantics, however this will be useful to present the contribution of
this paper.

8

Ivan
149

The following examples illustrate how to obtain the p-stable models of differ-
ent programs. Our first example shows a disjunctive program with two p-stable
models.

Example 1. Let P be the disjunctive program:{a ∨ b ← ¬c, a ← c, b ←
¬c, c ← ¬b}. Let M1 = {b} and M2 = {a, c}. Both sets model (in classical
logic) the rules of P . From the definition of the RED transformation we find
that RED(P, M1) = {a ∨ b ←, a ← c, b ←, c ← ¬b} and RED(P,M2) =
{a ∨ b ← ¬c, a ← c, b ← ¬c, c ←}. It is clear that RED(P, M1) |= M1 and
RED(P, M2) |= M2. Hence 〈M1, {a, c}〉 and 〈M2, {b}〉 are p-stable models for
P .

The next example shows a program with a single p-stable model, which is
also a classical model.

Example 2. Let P be the normal program: q ← ¬q. Let us take M = {q} then
RED(P, M) is the following program: q ← ¬q. It is clear that M models P in
classical logic and RED(P,M) |= M since (¬q → q) → q is a theorem in classical
logic with the negation ¬, now interpreted as classical negation. Therefore M is
a p-stable model for P .

Our third example shows a program which has several classical models but
has no p-stable models.

Example 3. Let P be the normal program: {a ← ¬b, b ← ¬c, c ← ¬a}. It is
clear that the sets M1 = {a, b}, M2 = {a, c}, M3 = {b, c}, M4 = {a, b, c}
are all models of P in classical logic. However, they are not p-stable models of
P . If we apply definition 2 to M4, we have RED(P, M4) = P and M4 models P
in classical logic, however RED(P, M4) 6|= M4. If we apply definition 2 to M1,
we obtain RED(P,M1) as the following program: {a ← ¬b, b ←, c ← ¬a}
and it is clear that M1 models in classical logic each of the rules of P . However,
the second condition in definition 2 is not satisfied, since RED(P, M1) 6|= a. By
symmetry the same result is obtained for M2 and M3. Hence, the program does
not have p-stable models.

Finally, we present a program which has no stable models and whose p-stable
and classical models are the same.

Example 4. Let P be the normal program: {a ← ¬b, a ← b, b ← a}. We can
verify that M = {a, b}models the rules of P in classical logic. From the definition
of the RED transformation, we find that RED(P, M) = P . Now, from the first
and third rule, it follows that (¬b → b) where the negation ¬ is now interpreted
as classical negation. Since (¬b → b) → b is a theorem in classical logic, it follows
that P |= M . Therefore, M is a p-stable model of P .

3.4 The X-stable semantics

Now we review a characterization of the p-stable semantics for disjunctive pro-
grams in terms of the G′3 logic. First we present some useful definitions.

9

Ivan
150

Given a program P and a set of atoms M ⊆ LP , we call the construct
P ∪¬M c a weak completion of the program P (with respect to the set of atoms
M), where the superscript c, denotes set theoretical complement operator with
respect to LP .

Definition 3. Let P be any theory, X be any logic and M be a set of atoms.
M is a X-stable model of P if the next two conditions hold: `X P ∪ ¬M c → M
and M is a classical model of P .

The expression appearing in the first condition of this definition is interpreted
as the formula where the antecedent is the conjunction of all rules in P and all
literals in ¬M c, and the consequent is the conjunction of all the atoms in M .
We will keep using this interpretation in what follows.

Of particular interest to us is the G′3-stable semantics, which is the result of
using the logic G′3 in the previous definition. For more details see [5].

Example 5. Consider the following logic program: P = {b ← ¬a, a ← ¬b, p ←
¬a, p ← ¬p}. It is easy to verify that this program has two G′3-stable models,
which are {a, p} and {b, p}.

Theorem 1 gives a characterization of the p-stable semantics for disjunctive
programs in terms of the G′3 logic. This result was first proven for normal pro-
grams in [18]; more recently it has been extended to disjunctive programs in
[15].

Theorem 1. [15] Let P be a disjunctive program and M be a set of atoms. M
is a p-stable model of P iff M is a G′3-stable model of P .

3.5 Programs with variables

As can be seen, p-stable models are defined for propositional logic programs only.
However this definition can be extended to predicate programs, which allows the
use of predicate symbols in the language, but without function symbols to ensure
the ground instance of the program to be finite. So a term can only be either
a variable or a constant symbol. The ground instance of a predicate program
P , Ground(P), is defined in Lifschitz [12] as the program containing all ground
instances of clauses in P . Then M is defined as a p-stable model of a predicate
program P if it is a p-stable model for Ground(P).

The following section review the WFS semantics in order to show that the p-
stable semantics holds the important property of extending the WFS semantics.
Since the definition of WFS for normal programs is unique and has been accepted
by the research community, as opposed to the case of disjunctive programs, from
now on we deal exclusively with normal propositional logic programs.

4 WFS and WFS+ semantics

In this section we review how the well founded semantics (WFS) can be induced
by a powerful method called a Confluent LP-System CS [9]. This method does

10

Ivan
151

not only characterize well-known semantics for logic programs but can be used
to define new semantics. Roughly speaking, a semantics for a class of logic pro-
grams determines the set of derivable literals for each program P . The method
of determining such a semantics is to rewrite the program P according to cer-
tain rewriting rules until we arrive at a normalform of the original program from
which we can immediately read off the derivable literals. Suitable sets for rewrit-
ing rules correspond to different normalforms and thus to different semantics.

The theory of Confluent LP-Systems CS [9] combines methods from rewrit-
ing systems with logic programming technology to define a powerful framework
for investigating the semantics of logic programs. The starting point of this the-
ory is to determine a set of rewriting rules that is confluent and that computes
the semantics in a canonical way. These rules transform programs into simpler
programs. Confluence and termination guarantee that every program has asso-
ciated with it a normalform. This normalform then induces a semantics and a
simple and efficient method to answer queries with respect to this semantics.

It is important to note that Confluent LP-Systems CS correspond to a general
theory, i.e., the concept is not attached to any particular semantics. [9] shows
how most of the classical semantics such as Fitting’s 3-valued version of Clark’s
completion, the wellfounded semantics WFS and Schlipf’s extension WFS+ can
be defined as a Confluent LP-System in a natural way.

The following definition plays an important role to define the semantics of a
normal program based on the notion of a rewriting system [9].

Definition 4. [9] For any normal program P we define SEMmin(P) = 〈P true,
P false〉 where P true := {p | p ← ∈ P}, P false := {p | p ∈ LP \HEAD(P)}.

Now we define a rewriting system, normalform, and some properties of re-
writing systems.

Definition 5. [9] An abstract rewriting system is a pair 〈S,→〉 where → is a
binary relation on a given set S. Let →∗ be the reflexive, and transitive closure
of →. When x →∗ y we say that x reduces to y. An irreducible element is said
to be in normalform. We say that a rewriting system is
noetherian: If there is no infinite chain x1 → x2 → . . . → xi → xi+1 → . . .,
where for all i the elements xi and xi+1 are different,
confluent: If whenever u →∗ x and u →∗ y then there is a z such that x →∗ z
and y →∗ z.

In a noetherian and confluent rewritten system, every element x reduces to
a unique normalform that we denote by norm(x) [9].

The main concept on which the notion of a Confluent LP-Systems CS is
based, is the concept of a transformation rule.

Definition 6. [9] A transformation rule is a binary relation on ProgL. Let a
program P ∈ ProgL be given. We define the following transformation rules.
RED+: This transformation can be applied to P , if there is an atom a which
does not occurs in HEAD(P). RED+ transforms P into the program where all

11

Ivan
152

occurrences of ¬a are removed.
RED−: This transformation can be applied to P , if there is a rule a ← ∈ P .
RED− transforms P into the program where all clauses that contain ¬a in their
bodies are deleted.
SUB (Subsumption): This transformation can be applied to P , if P contains
two clauses a ← body1, a ← body2 where body1 ⊆ body2. SUB transforms P
into the program where the clause a ← body2 has been removed.
Success: Suppose that P includes a fact a ← and a clause q ← body such that
a ∈ body. Then we replace the clause q ← body by q ← body \ {a}.
Failure: Suppose that P contains a clause q ← body such that a ∈ body and
a 6∈ HEAD(P). Then we erase the given clause.
LC (Logical consequence): Suppose P |= a for an atom a. Then we can add the
rule a ← to P .
Loop: We say that P2 results from P1 by Loop w.r.t. A if, by definition, there
is a set A of atoms such that

1. for each rule a ← body ∈ P1, if a ∈ A, then body ∩A = ∅,
2. P2 := {a ← body ∈ P1 | body ∩A = ∅},
3. P1 6= P2.

Although these transformation rules are not really functions on ProgL (e.g.
RED− is only determined if an occurrence of a certain rule is distinguished),
they induce a set of operators on ProgL [9]. An operator, denoted as op, is a
function over the set of programs that transforms a program P into a program
P op as follows. If C1, C2 are clauses, g is a literal and f is an atom, then op can
be of type

Red+, then P op is the reduction of P with respect to C1 and g. We write
〈RED+, C1, g〉 [9].

We could define in a similar way the operators for the other transformations.

Example 6. [9] If P is {c ← ¬d} and op1 is 〈RED+,¬d ←, c ← ¬d〉 then P op1

is {c ←}. If op2 is 〈RED+, c ← ¬d,¬c〉 then P op2 = P .

Next, we give the definition of Confluent LP-System CS.

Definition 7. [9] A Confluent LP-System CS over the signature L is a pair
〈{opi | i = 1, . . . , n},→〉 that satisfies the following conditions:
1. {opi | i = 1, . . . , n} is a finite set of transformation rules on ProgL. By abuse
of language we often view them as (computable) operators as we explained before.
2. 〈ProgL,→〉, where → is the union of all the transformation rules in CS, is a
noetherian and confluent rewriting system.
3. If P → P1 then SEMmin(P) ≤k SEMmin(P1).

We denote the uniquely determined normalform of a program P with respect
to the Confluent LP-System CS by normCS(P) [9].

Every Confluent LP-System CS induces a semantics SEMCS as follows [9]:
SEMCS(P) := SEMmin(normCS(P)).

Now, we present a Confluent LP-System CS1 used to compute the WFS
semantics in quadratic time and introduced in [3].

12

Ivan
153

Definition 8. [3] Let CS1 be the Confluent LP-System which contains the fol-
lowing transformation rules: RED+, RED−, Success, Failure, and Loop.

The Confluent LP-System CS1 induces the WFS semantics.

Theorem 2. [9] The WFS semantics is the semantics induced by the Confluent
LP-System CS1.

The WFS+ semantics is an extension of WFS introduced in [8]. We present
a Confluent LP-System CS2 used to compute the WFS+ semantics given in [3].

Definition 9. [3] Let CS2 be the Confluent LP-System which contains the fol-
lowing transformation rules: RED+, RED−, SUB, TAUT, LC, Success,
Failure and Loop.

The Confluent LP-System CS2 induces the WFS+ semantics.

Theorem 3. The WFS+ semantics is the semantics induced by the confluent
LP-system CS2.

Example 7. Let us obtain the WFS+ semantics of a normal program. Let us
consider the program P : {a ← b, a ← ¬b, b ← a}. Applying LC we add the
rule a ← to P and we obtain {a ←, a ← b, a ← ¬b, b ← a}. Since the last
program includes the fact a ← and the rule b ← a, we can apply Success and
obtain: {a ←, a ← b, a ← ¬b, b ←}. Applying Success again we obtain:
P = {a ←, a ← ¬b, b ←}. Finally, we can delete a ← ¬b applying RED−:
P = {a ←, b ←}. Then the normCS2(P) = {a ←, b ←}. Thus the WFS+

semantics of P is SEMCS2(P) = SEMmin(normCS2(P)) = 〈{a, b}, ∅〉.

5 WFS and p-stable semantics

Here, we show that the p-stable semantics extends the WFS+ and specially the
WFS semantics. These results are based on the fact that the p-stable semantics
for disjunctive and in particular for normal programs is invariant under each of
the transformations that define the Confluent LP-Systems CS1 and CS2 [5].

The following theorem indicates that the p-stable semantics is consistent with
the WFS+ semantics.

Theorem 4. Let P be a normal program. Let 〈T, F 〉 be the model of P in the
WFS+ semantics. If 〈M,LP \ M〉 is a p-stable model of P then 〈T, F 〉 ≤k

〈M,LP \M〉.
Proof. Let P → P1 → . . . → Pn be the chain of reductions in the Confluent
LP-System CS2 that leads to the normalform Pn = normCS2(P). Then we have
SEMmin(P) ≤k SEMmin(P1) ≤k . . . ≤k SEMmin(Pn) = WFS+(P).

Since the p-stable semantics is invariant under any of the transformations
that define the Confluent LP-System CS2, then 〈M,LP \M〉 is a p-stable model
of each of the programs P, P1, . . . , Pn.

For any fact a ← ∈ P , it follows that a ∈ M according to remark 1, hence
T ⊆ M . By the same remark 1, M ⊂ HEAD(Pn), therefore LP \HEAD(Pn) ⊂
LP \M . Thus we have 〈T, F 〉 ≤k 〈M,LP \M〉. ut

13

Ivan
154

Since the p-stable semantics is an extension of WFS+ and WFS+ is an ex-
tension of WFS, a corollary of theorem 4 indicates that the p-stable semantics
is also an extension of WFS semantics.

Corollary 1. Let P be a normal program. Let 〈T, F 〉 be the model of P in
the WFS semantics. If 〈M,LP \ M〉 is a p-stable model of P then 〈T, F 〉 ≤k

〈M,LP \M〉.
Proof. All transformations that define the WFS semantics are contained in those
that define the WFS+ semantics. Let P → P1 → . . . → Ps be a chain of re-
ductions that leads to the normalform Ps = normCS1(P). This chain can be
extended to P → P1 → . . . → Ps . . . → Pn so that Pn = normCS2(P), where
n ≥ s.
Then we have SEMmin(Ps) ≤k SEMmin(Pn), i.e., SEMCS1(P) ≤ SEMCS2(P).
Then the result follows from Theorem 4. ut

6 Conclusions

We showed that the p-stable semantics extends the well known WFS semantics.
This result is based on the fact that WFS can be induced in a natural way by
a confluent LP-system, which is based on certain transformations rules; and on
the fact that the p-stable semantics for normal programs is invariant under each
of these transformations.

References

1. A. Avron. Natural 3-valued logic characterization and proof theory. J. Symb.
Logic, 56(1):276–294, 1991.

2. T. J. M. Bench-Capon and P. E. Dunne. Argumentation in artificial intelligence.
Artificial Intelligence, 171(10-15):619–641, 2007.

3. S. Brass, J. Dix, B. Freitag, and U. Zukowski. Transformation-based bottom-up
computation of the well-founded model. Theory Pract. Log. Program., 1(5):497–
538, 2001.

4. J. Carballido, J. Nieves, and M. Osorio. Inferring preferred extensions by pstable
semantics. Revista Iberomericana de Inteligencia Artificial, 13(41):38–53, 2009.

5. J. Carballido, M. Osorio, and J. Arrazola. Equivalence for the G’3-stable models
semantics. Submmitted to Journal of Applied Logic, 2009.

6. W. A. Carnielli and J. Marcos. A taxonomy of C-Systems. In Paraconsistency:
The Logical Way to the Inconsistent, Proceedings of the Second World Congress on
Paraconsistency (WCP 2000), number 228 in Lecture Notes in Pure and Applied
Mathematics, pages 1–94. Marcel Dekker, Inc., 2002.

7. N. da Costa. On the theory of inconsistent formal systems. Notre Dame Journal
of Formal Logic, 15(4):497–510, 1974.

8. J. Dix. A framework for representing and characterizing semantics of logic pro-
grams. In KR, pages 591–602, 1992.

9. J. Dix, M. Osorio, and C. Zepeda. A General Theory of Confluent Rewriting
Systems for Logic Programming and its applications. Annals of Pure and Applied
Logic, 108(1–3):153–188, 2001.

14

Ivan
155

10. P. M. Dung. On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence, 77(2):321–358, 1995.

11. M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming.
In R. Kowalski and K. Bowen, editors, 5th Conference on Logic Programming,
pages 1070–1080. MIT Press, 1988.

12. V. Lifschitz. Foundations of logic programming. in principles of knowledge repre-
sentation, pages 69-127. CSLI publications, 1996.

13. J. W. Lloyd. Foundations of Logic Programming. Springer, Berlin, second edition,
1987.

14. M. Osorio and J. L. Carballido. Brief study of G’3 logic. To appear in Journal of
Applied Non-Classical Logic, 18(4):79–103, 2009.

15. M. Osorio, J.Arrazola, and J. L. Carballido. Logical weak completions of para-
consistent logics. Journal of Logic and Computation, Published on line on May 9,
2008.

16. M. Osorio and J. A. Navarro. Modal logic S52 and FOUR (abstract). In 2003
Annual Meeting of the Association for Symbolic Logic, Chicago, June 2003.

17. M. Osorio, J. A. Navarro, J. Arrazola, and V. Borja. Ground nonmonotonic modal
logic S5: New results. Journal of Logic and Computation, 15(5):787–813, 2005.

18. M. Osorio, J. A. Navarro, J. Arrazola, and V. Borja. Logics with common weak
completions. Journal of Logic and Computation, 16(6):867–890, 2006.

19. M. Osorio and J. C. Nieves. Pstable semantics for possibilistic logic programs. In
MICAI 2007: Advances in Artificial Intelligence, 6th Mexican International Con-
ference on Artificial Intelligence, number 4827 in LNAI, pages 294–304. Springer-
Verlag, 2007.

20. M. Osorio and C. Zepeda. Update sequences based on minimal generalized pstable
models. In MICAI, pages 283–293, 2007.

21. M. Osorio and C. Zepeda. Pstable theories and preferences. In Electronic Prcee-
dings of the 18th International Conference on Electronics, Communications, and
Computers (CONIELECOMP 2008), March, 2008.

22. S. Pascucci and A. L. Fernandez. Syntactic transformation rules under p-stable
semantics: theory and implementation. Accepted in Revista Iberomericana de In-
teligencia Artificial, 2008.

23. D. Pearce. Stable Inference as Intuitionistic Validity. Journal of Logic Progra-
mming, 38:79–91, 1999.

24. T. C. Przymusinski. Stable semantics for disjunctive programs. New Generation
Computing, 9(3/4):401–424, 1991.

25. D. van Dalen. Logic and Structure. Springer, Berlin, second edition, 1980.
26. A. van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for

general logic programs. Journal of the ACM, 38:620–650, 1991.
27. P. A. Veloso and W. A. Carnielli. Logics for qualitative reasoning. In Logic,

Epistemology, and the Unity of Science.
28. C. Zepeda and J. L. Carballido. Computing of p-stable models based on semi-

negative normal programs with constraints. In Proceedings of the Ninth Mexican
International Conference on Computer Science (ENC 2008), pages 203–210, Baja
California, México, October,2008.

15

Ivan
156

