
Computing the Stratified Minimal Models Semantic

Mauricio Osorio1, Angel Marin-George2, and Juan Carlos Nieves3

1 Universidad de las Américas - Puebla
CENTIA, Sta. Catarina Mártir, Cholula, Puebla, 72820 México

osoriomauri@googlemail.com
2 Benemérita Universidad Atónoma de Puebla

Facultad de Ciencias de la Computación,
Puebla, Puebla, México

misterilei@hotmail.com
3 Universitat Politècnica de Catalunya

Software Department (LSI)
c/Jordi Girona 1-3, E08034, Barcelona, Spain

jcnieves@lsi.upc.edu

Abstract. It is well-known, in the area of argumentation theory, that there is a
direct relationship between extension-based argumentation semantics and logic
programming semantics with negation as failure. One of the main implication
of this relationship is that one can explore the implementation of argumentation
engines by considering logic programming solvers. Recently, it was proved that
the argumentation semantics CF2 can be characterized by the stratified minimal
model semantics (MMr). The stratified minimal model semantics is also a re-
cently introduced logic programming semantics which is based on a recursive
construction and minimal models.
In this paper, we introduce a solver based on MINISAT algorithm for inferring
the logic programming semantics MM∗. As one of the applications of the MMr

solver, we will argue that this solver is a suitable tool for computing the argumen-
tation semantics CF2.
Keywords: Non-monotonic reasoning, extension-based argumentation semantics
and logic programming.

1 Introduction

Argumentation theory has become an increasingly important and exciting research topic
in Artificial Intelligence (AI), with research activities ranging from developing theoret-
ical models, prototype implementations, and application studies [3]. The main purpose
of argumentation theory is to study the fundamental mechanism, humans use in argu-
mentation, and to explore ways to implement this mechanism on computers.

Argumentation is also a formal discipline within Artificial Intelligence (AI) where
the aim is to make a computer assist in or perform the act of argumentation. In fact,
during the last years, argumentation has been gaining increasing importance in Multi-
Agent Systems (MAS), mainly as a vehicle for facilitating rational interaction (i.e.
interaction which involves the giving and receiving of reasons). A single agent may also
use argumentation techniques to perform its individual reasoning because it needs to
make decisions under complex preferences policies, in a highly dynamic environment.

Ivan
157

Dung’s approach, presented in [7], is a unifying framework which has played an in-
fluential role on argumentation research and AI. This approach is mainly orientated to
manage the interaction of arguments. The interaction of the arguments is supported by
four extension-based argumentation semantics: stable semantics, preferred semantics,
grounded semantics, and complete semantics. The central notion of these semantics
is the acceptability of the arguments. It is worth mentioning that although these ar-
gumentation semantics represents different pattern of selection of arguments, all these
argumentation semantics are based on the concept of admissible set.

An important point to remark w.r.t. the argumentation semantics based on admissi-
ble sets is that these semantics exhibit a variety of problems which have been illustrated
in the literature [17, 2, 3]. For instance, let AF be the argumentation framework which
appears in Figure 1. We can see that there are five arguments: a, b, c, c and e. The arrows
in the figure represent conflict between arguments. For example, we can see that the ar-
gument e is attacked by the argument d, the argument d is attacked by the arguments a,
b and c. Some authors, as Prakken and Vreeswijk [17], Baroni et al[2], suggest that the
argument e can be considered as an acceptable argument since it is attacked by the ar-
gument d which is attacked by three arguments: a, b, c. Observe that the arguments a, b
and c form a cyclic of attacks. However, none of the argumentation semantics suggested
by Dung is able to infer the argument e as acceptable.

We can recognize two major branches for improving Dung’s approach. On the one
hand, we can take advantage of graph theory; on the other hand, we can take advantage
of logic programming with negation as failure.

With respect to graph theory, the approach suggested by Baroni et al, in [2] is maybe
the most general solution defined until now for improving Dung’s approach. This ap-
proach is based on a solid concept in graph theory which is a strongly connected com-
ponent (SCC). Based on this concept, Baroni et al, describe a recursive approach for
generating new argumentation semantics. For instance, the argumentation semantics
CF2 suggested in [2] is able to infer the argument e as an acceptable argument from the
argumentation framework of Figure 1.

Fig. 1. Graph representation of the following argumentation framework:
〈{a, b, c, d, e}, {(a, c), (c, b), (b, a), (a, d), (c, d), (b, d), (d, e)}〉.

Since Dung’s approach was introduced in [7], it was viewed as a special form of
logic programming with negation as failure. For instance, in [7] it was proved that
the grounded semantics can be characterized by the well-founded semantics [9], and
the stable argumentation semantics can be characterized by the stable model semantics
[10]. Also in [4], it was proved that the preferred semantics can be characterized by
the p-stable semantics [16]. In fact, the preferred semantics can be also characterized
by the minimal models and the stable models of a logic program [13]. By regarding an

Ivan
158

argumentation framework in terms of logic programs, it has been shown that one can
construct intermediate argumentation semantics between the grounded and preferred
semantics [11]. Also it is possible to define extensions of the preferred semantics [14].

Recently, it was proved that the argumentation semantics CF2 can be characterized
by the stratified minimal model semantics (MMr) [15]. MMr in is an interesting logic
programming semantic which satisfies some relevant properties as it is always defined
and satisfies that property of relevance. The construction of MMr is based on a recur-
sive function and minimal models. These features allow the construction of a MMr’s
solver based on algorithms of general purpose as UNSAT algorithms.

In this paper, we introduce a solver of MMr. This solver is based on the MINISAT
solver [8] and standard graph’s algorithms. We will see that this solver presents quite
efficient running time executions that suggest that the actual version of our MMr’s
solver is an efficient implementation.

As we have pointed out, MMr is a logic programming semantics which is able to
characterize the argumentation semantics CF2. Hence, we argue that our MMr’s solver
is a quite efficient implementation of CF2. Therefore, one can consider the MMr’s
solver for building rational agents whose rational process could be based on CF2 and
MMr. It is worth mentioning, that to the best of our knowledge there is not an open
implementation of CF2.

The rest of the paper is divided as follows: In §2, we present introduce some basic
concepts w.r.t. logic programming and argumentation theory. In §3, the stratified argu-
mentation semantics is introduced. In §4, we present how by considering the stratified
minimal model semantics one can perform argumentation reasoning. In particular, we
show that MMr is able to characterize CF2. In §5, we describe a little in detail the
implementation of the MMr’s solver. In §6, we presents our conclusions. In Appendix
A, we present the general algorithms that where implemented in the MMr’s solver.

2 Background

In this section, we define the syntax of the logic programs that we will use in this paper
and some basic concepts of logic programming semantics and argumentation semantics.

2.1 Syntax and some operations

A signature L is a finite set of elements that we call atoms. A literal is either an atom a,
called positive literal; or the negation of an atom ¬a, called negative literal. Given a set
of atoms {a1, ..., an}, we write ¬{a1, ..., an} to denote the set of atoms {¬a1, ...,¬an}.
A normal clause, C, is a clause of the form

a ← b1 ∧ . . . ∧ bn ∧ ¬bn+1 ∧ . . . ∧ ¬bn+m

where a and each of the bi are atoms for 1 ≤ i ≤ n + m. In a slight abuse of notation
we will denote such a clause by the formula a ← B+∪¬B− where the set {b1, . . . , bn}
will be denoted by B+, and the set {bn+1, . . . , bn+m}will be denoted by B−. We define
a normal program P , as a finite set of normal clauses. If the body of a normal clause is
empty, then the clause is known as a fact and can be denoted just by: a ←.

Ivan
159

We write LP , to denote the set of atoms that appear in the clauses of P . We denote
by HEAD(P) the set {a|a ← B+, ¬B− ∈ P}.

A program P induces a notion of dependency between atoms from LP . We say
that a depends immediately on b, if and only if, b appears in the body of a clause in
P , such that a appears in its head. The two place relation depends on is the transitive
closure of depends immediately on. The set of dependencies of an atom x, denoted
by dependencies-of (x), corresponds to the set {a | x depends on a}. We define an
equivalence relation ≡ between atoms of LP as follows: a ≡ b if and only if a = b
or (a depends on b and b depends on a). We write [a] to denote the equivalent class
induced by the atom a.

Example 1. Let us consider the following normal program,
S = {e ← e, c ← c, a ← ¬b ∧ c, b ← ¬a ∧ ¬e, d ← b}.

The dependency relations between the atoms of LS are as follows:
dependencies-of (a) = {a, b, c, e}; dependencies-of (b) = {a, b, c, e}; dependencies-
of (c) = {c}; dependencies-of (d) = {a, b, c, e}; and dependencies-of (e) = {e}.
We can also see that, [a] = [b] = {a, b}, [d] = {d}, [c] = {c}, and [e] = {e}.

We take <P to denote the strict partial order induced by≡ on its equivalent classes.
Hence, [a] <P [b], if and only if, b depends-on a and [a] is not equal to [b]. By consid-
ering the relation <P , each atom of LP is assigned an order as follows:

– An atom a is of order 0, if [a] is minimal in <P .
– An atom a is of order n + 1, if n is the maximal order of the atoms on which a

depends.

We say that a program P is of order n, if n is the maximum order of its atoms. We
can also break a program P of order n into the disjoint union of programs Pi with
0 ≤ i ≤ n, such that Pi is the set of rules for which the head of each clause is of order
i (w.r.t. P). We say that P0, . . . , Pn are the relevant modules of P .

Example 2. By considering the equivalent classes of the program S in Example 1, the
following relations hold: {c, e} <S {a, b} <S {d}. We also can see that: a is of order
1, d is of order 2, b is of order 1, e is of order 0, and c is of order 0. This means that S
is a program of order 2.

The following table illustrates how the program S can be broken into the disjoint
union of the following relevant modules S0, S1, S2:

S S0 S1 S2

e ← e. e ← e.
c ← c. c ← c.
a ← ¬b ∧ c. a ← ¬b ∧ c.
b ← ¬a ∧ ¬e. b ← ¬a ∧ ¬e.
d ← b. d ← b.

Now we introduce a single reduction for any normal program. The idea of this
reduction is to remove from a normal program any atom which has already fixed to some
true value. In fact, this reduction is based on a pair of sets of atoms 〈T ; F 〉 such that

Ivan
160

the set T contains the atoms which can be considered as true and the set F contains the
atoms which can be considered as false. Formally, this reduction is defined as follows:

Let A = 〈T ; F 〉 be a pair of sets of atoms. The reduction RWFS(P, A) is obtained
by 2 steps:

1. Let R(P, A) the program obtained in the following steps:
(a) We replace every atom x that occurs in the bodies of P by 1 if x ∈ T , and we

replace every atom x that occurs in the bodies of P by 0 if x ∈ F ;
(b) we replace every occurrence of ¬1 by 0 and ¬ 0 by 1;
(c) every clause with a 0 in its body is removed;
(d) finally we remove every occurrence of 1 in the body of the clauses.

2. RWFS(P, A) = normCS(R(P,A)) such that CS is a rewriting system formed
by the transformation rules: RED+, RED−, Success, Failure and Loop (the
definition of these transformation rules can be founded in [6]) and normCS(P)
denotes the uniquely determined normal form of a program P with respect to the
system CS.

We want to point out that this reduction does not coincide with the Gelfond-Lifschitz
reduction [10].

Example 3. Let us consider the normal program S of Example 1. Let P be the normal
program S \ S0, and let A be the pair of sets of atoms 〈{c}; {e}〉. This means that we
obtain the following programs:

P : R(P, A):
a ← ¬b ∧ c. a ← ¬b.
b ← ¬a ∧ ¬e. b ← ¬a.
d ← b. d ← b.

2.2 Semantics

From now on, we assume that the reader is familiar with the single notion of mini-
mal model. In order to illustrate this basic notion, let P be the normal program {a ←
¬b, b ← ¬a, a ← ¬c, c ← ¬a}. As we can see, P has five models: {a}, {b, c},
{a, c}, {a, b}, {a, b, c}; however, P has just two minimal models: {b, c}, {a}. We will
denote by MM(P) the set of all the minimal models of a given logic program P . Usu-
ally MM is called minimal model semantics.

A semantics SEM is a mapping from the class of all programs into the powerset
of the set of (2-valued) models. SEM assigns to every program P a (possible empty)
set of (2-valued) models of P . If SEM(P) = ∅, then we informally say that SEM is
undefined for P .

Given a set of interpretations Q and a signature L, we define Q restricted to L as
{M ∩ L | M ∈ Q}. For instance, let Q be {{a, c}, {c, d}} and L be {c, d, e}, hence Q
restricted to L is {{c}, {c, d}}.

Let P be a program and P0, . . . , Pn its relevant modules. We say that a semantics
S satisfies the property of relevance if for every i, 0 ≤ i ≤ n, S(P0 ∪ · · · ∪Pi) = S(P)
restricted to LP0∪···∪Pi .

Ivan
161

2.3 Argumentation basics

Now, we present some basic concepts with respect to extended-based argumentation
semantics. The first concept that we consider is the one of argumentation framework.
An argumentation framework captures the relationships between the arguments.

Definition 1. [7] An argumentation framework is a pair AF = 〈AR, attacks〉, where
AR is a finite set of arguments, and attacks is a binary relation on AR, i.e. attacks
⊆ AR × AR. We write AFAR to denote the set of all the argumentation frameworks
defined over AR.

We say that a attacks b (or b is attacked by a) if (a, b) ∈ attacks holds. Usually an
extension-based argumentation semantics SArg is applied to an argumentation frame-
work AF in order to infer sets of acceptable arguments from AF . An extension-based
argumentation semantics SArg is a function fromAFAR to 2AR. SArg can be regarded
as a pattern of selection of sets of arguments from a given argumentation framework
AF .

Given an argumentation framework AF = 〈AR, attacks〉, we will say that an ar-
gument a ∈ AR is acceptable, if a ∈ E such that E ∈ SArg(AF).

3 Stratified Minimal Model Semantics

In this section, we introduce the stratified minimal model semantics. This semantics has
some interesting properties as: it satisfies the property of relevance, and it agrees with
the stable model semantics for the well-known class of stratified logic programs (the
proof of this property can be found in [11, 12]).

In order to define the stratified minimal model semantics MMr, we define the op-
erator ∗ and the function freeTaut as follows:

– Given Q and L both sets of interpretations, we define Q ∗L := {M1 ∪M2 | M1 ∈
Q,M2 ∈ L}.

– Given a logic program P , freeTaut denotes a function which removes from P any
tautology.

The idea of the function freeTaut is to remove any clause which is equivalent to a
tautology in classical logic.

Definition 2. Given a normal logic program P , we define the sstratified minimal model
semantics MMr as follows: MMr(P) = MMr

c (freeTaut(P) ∪ {x ← x | x ∈
LP \HEAD(P)} such that MMr

c (P) is defined as follows:

1. if P is of order 0, MMr
c (P) = MM(P).

2. if P is of order n > 0, MMr
c (P) =

⋃
M∈MM(P0)

{M} ∗ MMr
c (RWFS(Q,A))

where Q = P \ P0 and A = 〈M ;LP0 \M〉.

We call a model in MMr(P) a stratified minimal model of P .

Ivan
162

Observe that the definition of the stratified minimal model semantics is based on a
recursive construction where the base case is the application of MM . It is not difficult
to see that if one changes MM by any other logic programming semantics S, as the
stable model semantics, one is able to construct a relevant version of the given logic
programming semantics (see [11, 12] for details).

In order to introduce an important theorem of this paper, let us introduce some
concepts. We say that a normal program P is basic if every atom x that belongs to
LP , then x occurs as a fact in P . We say that a logic programming semantics SEM
is defined for basic programs, if for every basic normal program P then SEM(P) is
defined.

4 Stratified Argumentation Semantics

In this section, we show that by considering the stratified minimal model semantics, one
can perform argumentation reasoning based on extension-based argumentation seman-
tics style.

As the stratified minimal model semantics is a semantics for logic programs, we
require a function mapping able to construct a logic program from an argumentation
framework. Hence, let us introduce a simple mapping to regard an argumentation frame-
work as a normal logic program. In this mapping, we use the predicates d(x), a(x). The
intended meaning of d(x) is: “the argument x is defeated” (this means that the argument
x is attacked by an acceptable argument), and the intended meaning of a(X) is that the
argument X is accepted.

Definition 3. Let AF = 〈AR, attacks〉 be an argumentation framework, P 1
AF =

{d(a) ← ¬d(b1), . . . , d(a) ← ¬d(bn) | a ∈ AR and {b1, . . . , bn} = {bi ∈
AR | (bi, a) ∈ attacks}}; and P 2

AF =
⋃

a∈AR{a(a) ← ¬d(a)}. We define: PAF =
P 1

AF ∪ P 2
AF .

The intended meaning of the clauses of the form d(a) ← ¬d(bi), 1 ≤ i ≤ n, is
that an argument a will be defeated when anyone of its adversaries bi is not defeated.
Observe that, essentially, P 1

AF is capturing the basic principle of conflict-freeness (this
means that any set of acceptable argument will not contain two arguments which attack
each other). The idea P 2

AF is just to infer that any argument a that is not defeated is
accepted.

Example 4. Let AF be the argumentation framework of Figure 1. We can see that
PAF = P 1

AF ∪ P 2
AF is:

P 1
AF : P 2

AF :
d(a) ← ¬d(b). a(a) ← ¬d(a).
d(b) ← ¬d(c). a(b) ← ¬d(b).
d(c) ← ¬d(a). a(c) ← ¬d(c).
d(d) ← ¬d(a). a(d) ← ¬d(d).
d(d) ← ¬d(b). a(e) ← ¬d(e).
d(d) ← ¬d(c).
d(e) ← ¬d(d).

Ivan
163

Two relevant properties of the mapping PAF are that the stable models of PAF

characterize the stable argumentation semantics and the well founded model of PAF

characterizes the grounded semantics [11].
Once we have defined a mapping from an argumentation framework into logic pro-

grams, we are going to define a candidate argumentation semantics which is induced by
the stratified minimal model semantics.

Definition 4. Given an argumentation framework A, we define a stratified extension of
AF as follows: Am is a stratified extension of AF if exists a stratified minimal model
M of PAF such that Am = {x|a(x) ∈ M}. We write MMr

Arg(AF) to denote the
set of stratified extensions of AF . This set of stratified extensions is called stratified
argumentation semantics.

In order to illustrate the stratified argumentation semantics, we are going to presents
an example.

Example 5. Let AF be the argumentation framework of Figure 1 and PAF be the nor-
mal program defined in Example 4. In order to infer the stratified argumentation se-
mantics, we infer the stratified minimal models of PAF . As we can see PAF has three
stratified minimal models : {d(a), d(b), d(d), a(c), a(e)}{d(b), d(c), d(d),
a(a), a(e)}{d(a), d(c), d(d), a(b), a(e)}, this means that AF has three stratified ex-
tensions which are: {c, e}, {a, e} and {b, e}. Observe that the stratified argumentation
semantics coincides with the argumentation semantics CF2.

In [15], it was proved that the stratified argumentation semantics and the argumen-
tation semantics CF2 coincide.

Theorem 1. [15] Given an argumentation framework AF = 〈AR, Attacks〉, and E ∈
AR, E ∈ MMr

Arg(AF) if and only if E ∈ CF2(AF).

5 Implementation of the Stratified Minimal Model Semantics

In this section we describe our implementation of a MMr solver4. The implementation
was made in C++ and despite the use of an external SAT-solver(MINISAT) to find the
minimal models, which implies the duplication of the data, we got a good performance.

We started implementing a specific-CF2 prototype solver which was a little faster
than the current version of MMr solver (when inputting CF2 programs of course).

The difference between a CF2 solver and a MMr solver is that with a CF2 solver
we only have rules r with |B(r)| = 1, for a MMr solver we also may have rules r with
|B(r)| > 1.

To explain our MMr solver we first give the theoretical justification and then the
implemented algorithms.

4 This implementation was made as part of a project that also includes the implementation of
a p-stable solver. The p-stablesemantics is a logic programming semantics based on Para-
consistent Logic [16]

Ivan
164

5.1 Theoretical Justification

From the definition 2 we can design an algorithm that computes the MMr semantics.
To compute a stratified minimal model of P using the definition 2, first the input pro-
gram P is split into its relevant modules P0, ..., Pn, then compute a minimal model M
of P0 and then compute a stratified minimal model of RWFS(Q,A) where Q = P \P0

and A = 〈M ;LP0 \ M〉, which involves the computation of the relevant modules of
RWFS(Q,A). As we will see next, it is possible to take advantage of the relevant mod-
ules already computed P0, ..., Pn to find the relevant modules of RWFS(Q, A), and
thus optimizing the implementation.
From the definition 2 given in the previous sections, and from the fact that MMr has
the property of relevance, we can formulate the following definition for MMr

Definition 5. Let P be a normal program, then

MMr(P) = MMr
c (freeTaut(P) ∪ {x ← x : x ∈ LP \H(P)})

Where the recursive definition of MMr
c is

– If P is of order 0, MMr
c (P) = MM(P).

– If P is of order n > 0, then

MMr
c (P) =

⋃

M∈MMr
c (P0∪...∪Pi)

{M} ∗MMr
c (RWFS(Q, A))

where i ∈ {0, ..., n}, Q = P \ (P0 ∪ ... ∪ Pi) y A = 〈M,LP0∪...∪Pi \M〉.
If we take i = n− 1 we get

MMr
c (P) =

⋃

M∈MMr
c (P\Pn)

{M} ∗MMr
c (RWFS(Pn, 〈M,LP\Pn

\M〉))

To apply the reductions it is not necessary to consider the atoms which are not in
LPn , so this equation becomes

MMr
c (P) =

⋃

M∈MMr
c (P\Pn)

{M}∗MMr
c (RWFS(Pn, 〈M∩LPn , (LP\Pn

\M)∩LPn〉))

When translating this last equation into an iterative form, we get an iterative defini-
tion for MMr

c (P)

Definition 6. Let P be a normal program of order n, we define MMr
c,i as follows

MMr
c,0 = MM(P0)

MMr
c,1 =

⋃

M∈MMr
c,0

{M} ∗MMr
c (RWFS(P1, 〈M ∩ LP1 , (LP0 \M) ∩ LP1〉))

MMr
c,2 =

⋃

M∈MMr
c,1

{M} ∗MMr
c (RWFS(P2, 〈M ∩ LP2 , (LP0∪P1 \M) ∩ LP2〉))

Ivan
165

. . .

MMr
c,n =

⋃

M∈MMr
c,n−1

{M}∗MMr
c (RWFS(Pn, 〈M∩LPn

, (LP0∪,...,∪Pn−1\M)∩LPn
〉))

MMr
c (P) = MMr

c,n

This definition gives the procedure we use to compute MMr
c .

5.2 Implementation

Given a normal program PT , the computation of MMr(PT) can be outlined as follows:

1. Compute P = freeTaut(PT) ∪ {x ← x : x ∈ LPT
\H(P)}.

2. Compute the relevant modules of P .
(a) Construct the graph of dependencies G of P .
(b) Find the strongly connected components of G.
(c) Compute the relevant modules P0, ..., Pn of P according to the strongly con-

nected components of G.
3. Use the procedure given by the definition 6 to compute MMr

c (P). For i = 0 to n
we have to do the following
(a) Compute the reduction

RED = RWFS(Pi, 〈M ∩ LPi , (LP0∪,...,∪Pi−1 \M) ∩ LPi〉)

When i = 0, RED = P0.
(b) Compute the relevant modules of RED.
(c) Compute minimal models of RED when RED is of order 0.
(d) Recursively compute MMr

c (RED).

To remove the tautologies from P we use a simple algorithm that takes each rule
and removes those that are tautologies. To compute the relevant modules of P ′ we base
on the well known Kosaraju’s algorithm [5] to find the strongly connected components
of the graph of dependencies G of P ′. A strongly connected C component of G is a
maximum set of atoms such that each pair of atoms in C is mutually dependent. This
algorithm gives a set C0, ..., Cn of strongly connected components of G such that for
any pair of components Ci, Cj such that i > j, none of the atoms in Cj depends on an
atom in Ci. We take advantage of this sequence of strongly connected components to
compute the relevant modules of P . See the algorithm create modules(Module P).

The algorithm three in one(Module Pi) computes

RED = RWFS(Pi, 〈M ∩ LPi , (LP0∪,...,∪Pi−1 \M) ∩ LPi〉)

As we have said, in order to apply the reductions, we have to replace some atoms by 0 or
1. We associate a variable state(a) to each atom a, it indicates the value that ”replaces”
a:

– state(a) = one if a is to be replaced by 1.

Ivan
166

– state(a) = zero if a is to be replaced by 0.
– state(a) = none if a is not to be replaced.

For optimization purpose, the algorithm three in one(Module Pi) implements an
heuristic that may save some computation in some cases. While computing RED, a
rule r may be removed such that the order of the atom H(r) is the same than the order
of an atom a ∈ B(r). When this happens, the dependence relation between H(r) and
a may be removed, it may cause the graph of dependencies of RED to have more than
one strongly connected components, and it may cause the order of RED be bigger than
0. When one of those rules is removed, we can not assure that RED is of order bigger
that 0, but when none of these rules is remove, we can prove that RED is of order
0. The algorithm three in one(Module Pi) returns true if one of the rules that may
affect the dependency relations was removed, and false if none of those rules were
removed. After computing RED, the algorithm three in one(Module Pi) constructs
the graph of dependencies of RED.

The function stratify(Pi) computes the relevant modules of Pi using the algo-
rithms three in one(Pi) and create modules(Pi). Then returns true if and only if
the resulting program is of order bigger than zero.

To compute the minimal models of a program P , we use the algorithm next minimal(P)
which is based on MINISAT [8], each time next minimal(P) is called, it tries to com-
pute a minimal model of P different than the already computed, if another minimal
model of P was found, returns true, otherwise discards the SAT solver and returns
false.

Before explaining the main algorithms that we use to compute MMr
c (P), we ex-

plain some notation used. We associate a sequence (a list) of relevant modules submodules(P)
to P . Let P0, ..., Pn be the relevant modules of P . If n > 0, submodules(P) is the se-
quence of relevant modules P0, ..., Pn. If n = 0, submodules(P) has no elements.
We define the following operations over the elements of submodules(P): next(Pi) =
Pi+1 if 0 ≤ i < n, back(Pi) = Pi+1 if 0 ≤ i < n, and next(Pn) = back(P0) = null.

To compute MMr
c (P ′), we use two algorithms, the algorithm first EMM(P)

computes one model of MMr
c (P ′). After calling first EMM(P) we use the back-

tracking algorithm next EMM(P) to compute more stratified minimal models. Let
submodules(P ′) be the list of relevant modules to which P belongs. When
next EMM(back(P)) returns false, it means that P ′ has no more stratified mini-
mal models, in this case next EMM(P) also return false. If next EMM(back(P))
returns false, the algorithm reset module(P) (not presented in this paper) is used
to reset P and leave it as it was when initialized by creates modules(P ′). After the
backtracking we start again by calling to first EMM(P).

Finally the algorithm all EMM(PMM) shows how to put first EMM(...) and
next EMM(...) together to compute MMr(PMM).

In table 1, it is shown the time it took to the solver to find the stratified minimal
models of some randomly generated programs of 500000 rules, the first column shows
the number of atoms(divided by 104), in the second, the average cardinality of B+(r)∪
B−(r), then the initial number or modules, the time to find the first model, and the time
between the subsequent models. The performance tests were executed in a Linux PC,
with Pentium IV processor, 2.8Ghz and 512Mb RAM.

Ivan
167

Table 1. Performance of the MMr solver

Na/104 size/nrules n t tnext

7 2 1 8.35 .3
15 2 339 9.5 .45
23 2 7046 8.72 .192
10 3 1 11.45 .41
16 3 26 11.50 .44
23 3 5314 10.20 .11
15 4 2 13.93 .44
20 4 650 12.81 .32
23 4 238 10.97 .001
7 5 1 15.5 .34

12 5 1 16.7 .39
17 5 3 16.02 .43

In table 1, it is shown the time it took to the solver to find the stratified minimal
models of some randomly generated programs of 500000 rules, the first column shows
the number of atoms(divided by 104), in the second, the average cardinality of B+(r)∪
B−(r), then the initial number or modules, the time to find the first model, and the time
between the subsequent models.

The interested reader can download our actual version of the MMr solver from:
http://www.lsi.upc.edu/∼jcnieves/software/MMr.tar
Also, one can find in http://www.lsi.upc.edu/∼jcnieves/software//MMr-examples.tar
some illustrative examples.

6 Conclusions

Since extension-based argumentation reasoning was introduced, it was shown that one
can perform practical argumentation reasoning by considering logic programming tools
[7]. One of the main issue in argumentation community is the definition of argumen-
tation tools able to perform reasoning by considering well-accepted argumentation se-
mantics. One of the possible reasoning of the lack of real practical argumentation sys-
tems is that the well accepted argumentation semantics as the preferred semantics and
CF2 are hard computable.

In this paper, we have introduced a solver for the stratified minimal model seman-
tics. We have shown that the stratified minimal model semantics is practical enough
for performing argumentation reasoning based on extension-based argumentation style.
An interesting property of the stratified minimal model semantics is it can characterize
a argumentation semantics called CF2. CF2 is an promising argumentation semantics
able to overcome some of unexpected behaviors of argumentation semantics based on
admissible sets [2, 1].

As we seen in Table 1, the current version of our stratified minimal models se-
mantics’ solver is quite efficient. Hence, we argue that our actual prototype can be

Ivan
168

considered as a candidate tool for building argumentation systems which could perform
reasoning based on MMr and of course CF2. It is worth mentioning, that to the best of
our knowledge there is not an open implementation of CF2.

Acknowledgement

This research has been partially supported by the EC founded project ALIVE (FP7-
IST-215890). The views expressed in this paper are not necessarily those of the ALIVE
consortium.

References

1. P. Baroni and M. Giacomin. On principle-based evaluation of extension-based argumentation
semantics. Artificial Intelligence., 171(10-15):675–700, 2007.

2. P. Baroni, M. Giacomin, and G. Guida. SCC-recursiveness: a general schema for argumen-
tation semantics. Artificial Intelligence, 168:162–210, October 2005.

3. T. J. M. Bench-Capon and P. E. Dunne. Argumentation in artificial intelligence. Artificial
Intelligence, 171(10-15):619–641, 2007.

4. J. L. Carballido, J. C. Nieves, and M. Osorio. Inferring Preferred Extensions by Pstable
Semantics. Iberoamerican Journal of Artificial Intelligence (Inteligencia Artificial) ISSN:
1137-3601, 13(41):38–53, 2009 (doi: 10.4114/ia.v13i41.1029).

5. T. H. Cormen, C. E. Leiserson, R. L. Riverst, and C. Stein. Introduction to Algorithms. MIT
Press, second edition, 2001.

6. J. Dix, M. Osorio, and C. Zepeda. A General Theory of Confluent Rewriting Systems for
Logic Programming and its applications. Annals of Pure and Applied Logic, 108(1–3):153–
188, 2001.

7. P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence, 77(2):321–358,
1995.

8. N. Een and N. Sorensson. An Extensible SAT-Solver. In SAT-2003, 2003.
9. A. V. Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general logic

programs. Journal of the ACM, 38(3):620–650, 1991.
10. M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming. In

R. Kowalski and K. Bowen, editors, 5th Conference on Logic Programming, pages 1070–
1080. MIT Press, 1988.

11. J. C. Nieves. Modeling arguments and uncertain information — A non-monotonic reasoning
approach. PhD thesis, Software Department (LSI), Technical University of Catalonia, 2008.

12. J. C. Nieves and M. Osorio. A General Schema For Generating Argumentation Semantics
From Logic Programming Semantics. Research Report LSI-08-32-R, Technical University
of Catalonia, Software Department (LSI), http://www.lsi.upc.edu/dept/techreps/buscar.php,
2008.

13. J. C. Nieves, M. Osorio, and U. Cortés. Preferred Extensions as Stable Models. Theory and
Practice of Logic Programming, 8(4):527–543, July 2008.

14. J. C. Nieves, M. Osorio, U. Cortés, I. Olmos, and J. A. Gonzalez. Defining new
argumentation-based semantics by minimal models. In Seventh Mexican International Con-
ference on Computer Science (ENC 2006), pages 210–220. IEEE Computer Science Press,
September 2006.

Ivan
169

15. J. C. Nieves, M. Osorio, and C. Zepeda. Expressing Extension-Based Semantics based on
Stratified Minimal Models. In H. Ono, M. Kanazawa, and R. de Queiroz, editors, Proceed-
ings of WoLLIC 2009, Tokyo, Japan, volume 5514 of FoLLI-LNAI subseries, pages 305–319.
Springer Verlag, 2009.

16. M. Osorio, J. A. Navarro, J. R. Arrazola, and V. Borja. Logics with Common Weak Com-
pletions. Journal of Logic and Computation, 16(6):867–890, 2006.

17. H. Prakken and G. A. W. Vreeswijk. Logics for defeasible argumentation. In D. Gabbay and
F. Günthner, editors, Handbook of Philosophical Logic, volume 4, pages 219–318. Kluwer
Academic Publishers, Dordrecht/Boston/London, second edition, 2002.

Appendix A: Algorithms

In this appendix, we make a detailed presentation of the functions that are relevant in
the implementation of the MMr solver.

Algorithm 1 function next minimal(Module P)

Require: Module P

{P.S is the MINISAT solver associated to P}
if P.S = null then

create a new solver P.S with the rules in P

end if

if P.S.solve() {A new minimal model is computed} then

for all a ∈ LP that are in the new model generated P.S.model do

set state(a) = one

end for

for all a ∈ LP that are not in P.S.model do

set state(a) = zero

end for

add to P.S a clause with the atoms in the minimal model generated but negated

return true

else

set P.S = null

return false

end if

Algorithm 2 function create modules(Module P, Graph G))

Require: Module P

array of integer B[n]
Obtain the sequence C = C0, ..., Cn of relevant modules of G using the Kosaraju’s algorithm

for all a ∈ LP , set ord(a) = −1
{we write C[i] to refer to the i-th strongly connected component of the sequence C, |C[i]| as

the number of element of C, ord(a) is the order of the atom a}
initialize the elements of B to −1
for i = 0 to n do

for all a ∈ C[i], initialize ord(a) = B[i] + 1
for all a ∈ C[i] do

for all b that depends immediately on a (the edge (a, b) is in G) do

set B[k] = B[i] + 1, k is such that b ∈ C[k]
end for

end for

end for

Let m = max{ord(a) : a ∈ LP } {m is the order of P}
Create m sets of rules P0, ..., Pm {these will be the relevant modules of P}
for all a ∈ LP do

add the rules whose head is a to Pord(a)

end for

Algorithm 1 function next minimal(Module P)

Require: Module P

{P.S is the MINISAT solver associated to P}
if P.S = null then

create a new solver P.S with the rules in P

end if

if P.S.solve() {A new minimal model is computed} then

for all a ∈ LP that are in the new model generated P.S.model do

set state(a) = one

end for

for all a ∈ LP that are not in P.S.model do

set state(a) = zero

end for

add to P.S a clause with the atoms in the minimal model generated but negated

return true

else

set P.S = null

return false

end if

Algorithm 2 function create modules(Module P, Graph G))

Require: Module P

array of integer B[n]
Obtain the sequence C = C0, ..., Cn of relevant modules of G using the Kosaraju’s algorithm

for all a ∈ LP , set ord(a) = −1
{we write C[i] to refer to the i-th strongly connected component of the sequence C, |C[i]| as

the number of element of C, ord(a) is the order of the atom a}
initialize the elements of B to −1
for i = 0 to n do

for all a ∈ C[i], initialize ord(a) = B[i] + 1
for all a ∈ C[i] do

for all b that depends immediately on a (the edge (a, b) is in G) do

set B[k] = B[i] + 1, k is such that b ∈ C[k]
end for

end for

end for

Let m = max{ord(a) : a ∈ LP } {m is the order of P}
Create m sets of rules P0, ..., Pm {these will be the relevant modules of P}
for all a ∈ LP do

add the rules whose head is a to Pord(a)

end for

Ivan
170

Algorithm 3 function three in one(Module P)

Require: Module P

Graph G{empty graph}
bool strat affected = false {heuristic variable }
for all A in HEAD(P){Apply the reductions} do

for all r ∈ P such that head(r) = A do

for all a ∈ B(r) do

if state(a) = one then

if a ∈ B+(r) then

remove a from B+(r))
else

remove r from P)
end if

else

if state(a) = zero then

if a ∈ B+(r) then

remove r from P)
else

remove a from B−(r))
end if

end if

end if

end for

if r was removed in the loop above then

if there is an atom b ∈ B(r) with the same order than H(r) then

set strat affected = true

end if

end if

end for

end for

WFS(P){Apply the transformations of the CS system}
if it was removed a rule by the function WFS(P) then

set strat affected = true

end if

create in G a graph of dependencies from the rules remaining in P .

return strat affected

Algorithm 4 function stratify(ModuleP)

Require: Module P

if three in one(P) then

create modules(P, G){G is the graph of dependencies created in three in one}
if |subcomponents(P)| > 1 then

return true

end if

set P = the first element of submodules(P)
subcomponents(P).clear()

end if

return false

Algorithm 3 function three in one(Module P)

Require: Module P

Graph G{empty graph}
bool strat affected = false {heuristic variable }
for all A in HEAD(P){Apply the reductions} do

for all r ∈ P such that head(r) = A do

for all a ∈ B(r) do

if state(a) = one then

if a ∈ B+(r) then

remove a from B+(r))
else

remove r from P)
end if

else

if state(a) = zero then

if a ∈ B+(r) then

remove r from P)
else

remove a from B−(r))
end if

end if

end if

end for

if r was removed in the loop above then

if there is an atom b ∈ B(r) with the same order than H(r) then

set strat affected = true

end if

end if

end for

end for

WFS(P){Apply the transformations of the CS system}
if it was removed a rule by the function WFS(P) then

set strat affected = true

end if

create in G a graph of dependencies from the rules remaining in P .

return strat affected

Algorithm 4 function stratify(ModuleP)

Require: Module P

if three in one(P) then

create modules(P, G){G is the graph of dependencies created in three in one}
if |subcomponents(P)| > 1 then

return true

end if

set P = the first element of submodules(P)
subcomponents(P).clear()

end if

return false

Algorithm 5 function first EMM(Module P)

Require: Module P

if not stratify(P) then

next minimal(P)
else

set Q =the first element of submodules(P)
next minimal(Q)
set Q = next(Q)
while Q 6= null do

first EMM(Q)
set Q = next(Q)

end while

end if

return

Algorithm 6 function next EMM(Module P)

Require: Module P

if |subcomponent(P)| = 0 then

if next minimal(P) then

return true

end if

else

set Q =the last element of subcomponents(P)
if next EMM(Q) then

return true

end if

end if

{backtracks iff back(P) 6= null}
if back(P) = null or not next EMM(back(P)) then

return false

end if

reset module(P)
first EMM(P)
return true

Algorithm 7 function all EMM(Program PMM)

Require: Program PMM

Let M be a empty set of models

from PMM create its graph of dependencies G

create modules(PMM, G)
first EMM(PMM)
add to M the model computed

while next EMM(PMM) do

add to M the model computed

end while

return M

Algorithm 5 function first EMM(Module P)

Require: Module P

if not stratify(P) then

next minimal(P)
else

set Q =the first element of submodules(P)
next minimal(Q)
set Q = next(Q)
while Q 6= null do

first EMM(Q)
set Q = next(Q)

end while

end if

return

Algorithm 6 function next EMM(Module P)

Require: Module P

if |subcomponent(P)| = 0 then

if next minimal(P) then

return true

end if

else

set Q =the last element of subcomponents(P)
if next EMM(Q) then

return true

end if

end if

{backtracks iff back(P) 6= null}
if back(P) = null or not next EMM(back(P)) then

return false

end if

reset module(P)
first EMM(P)
return true

Algorithm 7 function all EMM(Program PMM)

Require: Program PMM

Let M be a empty set of models

from PMM create its graph of dependencies G

create modules(PMM, G)
first EMM(PMM)
add to M the model computed

while next EMM(PMM) do

add to M the model computed

end while

return M

Algorithm 5 function first EMM(Module P)

Require: Module P

if not stratify(P) then

next minimal(P)
else

set Q =the first element of submodules(P)
next minimal(Q)
set Q = next(Q)
while Q 6= null do

first EMM(Q)
set Q = next(Q)

end while

end if

return

Algorithm 6 function next EMM(Module P)

Require: Module P

if |subcomponent(P)| = 0 then

if next minimal(P) then

return true

end if

else

set Q =the last element of subcomponents(P)
if next EMM(Q) then

return true

end if

end if

{backtracks iff back(P) 6= null}
if back(P) = null or not next EMM(back(P)) then

return false

end if

reset module(P)
first EMM(P)
return true

Algorithm 7 function all EMM(Program PMM)

Require: Program PMM

Let M be a empty set of models

from PMM create its graph of dependencies G

create modules(PMM, G)
first EMM(PMM)
add to M the model computed

while next EMM(PMM) do

add to M the model computed

end while

return M

Ivan
171

