
Structured Motifs Recognition in DNA sequences

Yuridia P. Mejı́a1, Ivan Olmos1, Jesus A. Gonzalez2

1 Facultad de Ciencias de la Computación,
Benemérita Universidad Autónoma de Puebla,
14 sur y Av. San Claudio, Ciudad Universitaria,

Puebla, México
{yuripmt,ivanoprkl}@gmail.com

2 Instituto Nacional de Astrofı́sica, Óptica y Electrónica,
Luis Enrique Erro No. 1, Sta. Marı́a Tonantzintla, Puebla, México

jagonzalez@inaoep.mx

Abstract. In this paper is presented a methodology for structured motifs
recognition (SMR) in DNA sequences. The SMR problem consists of finding
all instances of a triple-pattern PL − PC − PR in a DNA sequence, where PL,
PC and PR are based on the IUPAC alphabet, and PL and PR are both separated
from PC by a distance no greater than ”n” characters, which is provided as
input. In this problem an inexact association between PL, PC , PR and the DNA
sequence is allowed, which is limited by an error based on the number of
insertions, deletions, and substitutions operations. In this paper we propose a
methodology for finding SMR patterns based in two stages: first, an automaton
is used to search all PC instances (where only substitutions are only allowed);
second, a dynamic programming technique is proposed to find the PL and PR

patterns (where substitutions, insertions and deletions, are allowed) based on the
Levenshtein algorithm. This methodology is useful to biologists in real DNA
patterns recognition tasks, where it is necessary to find DNA regions with a
biological meaning.

1 Introduction

The DNA motif search problem consists of finding a pattern P (the motif to search
for) from a text T (the DNA database created from the nucleotides alphabet: ”A” for
adenine, ”C” for cytosine, ”G” for guanine, and ”T” for thymine) where we output the
positions in T where P appears, the instances of P in T . In this problem, P is formed
from an extended alphabet defined under the IUPAC (International Union of Pure and
Applied Chemistry) rule where a character in this alphabet may represent more than
one nucleotide, this means that P may represent a set of patterns to search for in T .

In Biology, the motif search problem is very important, because it allows us to
search or discover biological segments from an organism that is being analyzed. In
general, such motifs to search for are restricted to single motifs. However, there exist
biological problems where it is necessary to find motifs that are formed by two or more
single motifs (structured motifs, or SM for short), which are separated by a distance
defined by the biologist. In this work, we consider that a SM is formed by two or three
single motifs, represented by PL − PC or PL − PC − PR respectively. In the biological

Ivan
172

field, PC is called a ”central pattern or motif”, and PL, and PR are called satellites,
mini-satellites or micro-satellites, depending of their length. In both cases, and based on
biological restrictions, the SM recognition problem always start search of the PC motif,
which has an important meaning for the organism that is being analyzed. Because of its
importance, at the moment of searching PC in a DNA database, it is only possible to
allow minimal inexact associations, limited by a threshold in the number of substitutions
of characters considering the IUPAC alphabet. The number of such substitutions (the
threshold) is defined by the biologist. On the other hand, at the moment of searching a
satellite, more flexibility is allowed. This means that a satellite could be found after a
number of insertions, substitutions, and deletions in the DNA database has been applied
(considering a larger threshold).

The problem addressed in this paper consists of finding motifs with the structure
PL − PC − PR, where PL is located at the left of PC and PR at the right of PC , and
both of them are located at a distance (#bases) no longer than d1 and d2 respectively,
which are provided as input parameters. As a solution to this problem, we propose a two
phases methodology: at the beginning we build an automaton that searches all instances
of PC in a DNA database, reporting their positions; after that, we propose a dynamic
programming strategy based on the Levenshtein algorithm, which search possible PL

and PR satellites in the DNA database restricted to a distance d1 and d2 respectively.
The paper has the following structure: in section 2 we introduce important notation

used in this work. In section 3 we present the problem to be addressed. Our proposal for
finding the structured motifs is described in section 4. Finally, conclusions and future
work is presented in section 5.

2 Definitions and notation

In this section, we introduce the notation on strings, sequences, and automata, that we
use along this work.

An alphabet, denoted by Σ is a finite nonempty set of letters. A string on alphabet
Σ is a finite subset of elements on Σ, one letter after another. As an example, if
Σ = {A,C,G,T } then, examples of strings on this alphabet are AAC,ACC, and AAG.
We denote by ε the zero letter sequence, called the empty string. The length of a string
x is defined as the number of letters on x, denoted by |x|. With x[i], i = 1, . . . , |x|, we
denote the letter at position i on x. A substring γ of a string α is a string where: |γ| ≤ |α|,
and γ[i] = α[i + k], i = 1, . . . , |γ| and 0 ≤ k ≤ |α| − |γ|.

The concatenation of two strings x and y is the string composed of the letters of x
followed by the letters of y, denoted by xy. A string α is a prefix of the string x, denoted
by α @ x, if x = αy. On the other hand, β is a suffix of x, denoted by β A x, if x = yβ.
The empty string ε is both a prefix and a suffix of every string (not empty).

In this work we denote a finite automaton M as a 5-tuple (Q, q0, A, Σ, δ) where: Q is
a finite set of states, q0 ∈ Q is the start state, A ⊆ Q is a distinguished set of accepting
states, Σ is a finite input alphabet, and δ : Q x Σ → Q is the transition function of M.

Let P be a pattern (string) to search for. In biochemistry, P is a string called a motif,
wherein all of its letters are defined by the union of two alphabets: a main alphabet
ΣB = {A,C,G,T } (every letter represents a nuceotide as described before), and the

Ivan
173

IUPAC alphabet, (denoted as the extended alphabet in this work) used to represent
ambiguities in the pattern. The IUPAC established an ambiguity alphabet, represented
by ΣE = {R,Y,K,M, S ,W, B,D,H,V,N}, where R = {G, A}, Y = {T,C}, K = {G,T },
M = {A,C}, S = {G,C}, W = {A,T }, B = {G,T,C}, D = {G, A,T }, H = {A,C,T },
V = {G,C, A}, and N = {A,G,C,T }.

Let X be a string, where X = AWB, A and B are substring of X separated by
the string W. The distance between two strings A and B is denoted by d(A,B), where
d(A,B) = |W |.

A match between two strings A and B is a process where each character of A is
associated with a character of B. In this paper, we define three different associations
(matchings) between two strings: exact matching, exact set matching, and inexact
matching (for the sake of simplicity, consider the strings X,Y , and Z, where X and
Y are defined in ΣB, and Z is defined in ΣB ⋃

ΣE):

1. Exact matching between X and Y: Process where each character of X is equal to
its corresponding character on Y . This match is also known as ”equality between
strings”, denoted by X = Y . Formally, X = Y if for each i = 1, 2, ..., m, X[i] = Y[i]
and |X| = |Y | = m. For example, if X = ACG and Y = ACG, then X = Y .

2. Exact set matching between X and Z: A exact set matching between X and Z is
established if it is possible to derive a string S from Z, where X = S . The string
S is derived through substitutions of characters of ΣE in Z to characters in ΣB.
Formally, an exact set matching between X and Z is established, denoted by X ∼
Z, if for each i = 1, 2...m : X[i] = Z[i] if Z[i] ∈ ΣB or X[i] ∈ Z[i] if Z[i] ∈ ΣE .
For example, if X = ACG and Z = AMG, where M = {A,C}, then by replacing
characters ΣE in Z we generate two strings AAG and ACG. Then, it is possible to
generate a string S = ACG, where X = S , then X ∼ Z.

3. Inexact matching between X and Y: An inexact matching between X and Y (denoted
by X ≈ Y) exists if it is possible to generate a string X′ from X through substitutions,
insertions, deletions (or combinations of these operations), such that X′ = Y . These
operations are explained as follows:

– A substitution in X = αγβ is the operation that exchanges a character γ by
another character γ′ in ΣB, deriving a new string X′ = αγ′β. This operation is
used if we need to associate two strings X and Y in a exact match, where |X| =
|Y |, but some characters are different. If γ ∈ ΣB, then γ is replaced by a γ′ ∈ ΣB

such that γ , γ′. On the other hand, if γ ∈ ΣE , then γ is replaced by a γ′ ∈ ΣB -
γ. For example, if X = TGTCA, such that α = TG, γ = T and β = CA, and Y =

TGGCA, then we need to generate a string X′ = TGGCA, where α = TG, γ′ =

G and β = CA, such that X′ = Y .
– An insertion in X = αβ is the operation where we add a character γ to X,

resulting in a string X′ = αγβ. This operation is used if we need an exact
matching between X and Y , where |X| < |Y |. For example, if X = T AG, Y =

TGAG (|X| < |Y |), then we apply an insertion in X. If X = αβ, where α = T and
β = AG, then we add γ = G, generating X′ = TGAG such that X′ = Y .

– A deletion in X = αγβ, is the operation that removes a character γ from X,
such that we generate a new string X′ = αβ. This operation is used if we want
an exact matching between X and Y such that |X| > |Y |. For example, if X =

Ivan
174

TCAAG and Y = TCAG (|X| > |Y |), it is necessary to remove a character from
X. If X = αγβ, α = TC, γ = A and β = AG, then it is possible to remove γ from
X, generating a new string X′, such that X′ = Y .

It is usual that the total number of insertions / deletions / substitutions in the inexact
matching process is limited to a percentage (permissible error) defined by the user. In
this work, we define the error of an inexact matching between two strings X and Y ,
denoted by σ(X,Y), as follows: σ(X,Y) = (#insY + #subY + #delY)/|X|, where Y is a string
derived from X through insertions (#insY), substitutions (#subY) and deletions (#delY).

Finally, we introduce the concept of a structured motif. This term is introduced
in this work because it is based on the composition of simple motifs. Formally, a
structured motif is a string X = PLWPCZPR, where |W | = d1, |Z| = d2 (this means
that PL and PR are located at a distance from PC no longer than d1 and d2 respectively),
PL is the left satellite, PC is the central pattern, PR is the right satellite, and PL, PC and,
PR are defined in ΣB ⋃

ΣE .
As an example, consider the string X = A G T G A C G A C T C A, where PC =

ACG, PL = TG, PR = TC and d1 = 3 and d2 = 4. Then, in X we find a PC in position 5
- 7, a PL at position 3 (with d1 = 0) and PR at position 10 (with d2 = 2).

In Section 3, we introduce a detailed description of our problem.

3 Problem Description

In this section we describe in detail the input and output of the SMR problem that is
considered in this work.

First, we describe the input of the problem. Let T be a DNA database, PL, PC ,
and PR three motifs to search for, where PC is a motif called ”central pattern”, PL

and PR called satellites (left and right respectively), two distances d1 (the distance
between PL and PC) and d2 (the distance between PC and PR), and a percentage error
σ (#mismatches allow in a matching process between a substring of T and a satellite).
Based on these input parameters, the output of the SMR problem consists of finding all
substrings S of T , such that:

1. There exists a substring S of T such that S ∼ PC , and
2. There exists a left substring S ′ of T at a distance d1 of S such that S ′ ≈ PI , and
3. There exists a right substring S ′′ of T at a distance d2 of S such that S ′′ ≈ PD, and
4. S ′ and S ′′ must both be generated within an error σ, ie, σ(PL,S ′) ≤ σ and

σ(PR,S ′′) ≤ σ.

It is important to mention that this problem has some variations based on the input
parameters. These variants are described bellow:

– If the input of the SMR problem is: T , PL, PC , d1 and σ, then we need to find all
instances S and S ′ from T such that S ∼ PC , S ′ ≈ PI , d(S , S ′) ≤ d1 and σ(PL,S ′) ≤ σ.
This problem is called PL − PC .

– If the input of the SMR problem is: T , PC , PR, d2 and σ, then we need to find all
instances S and S ′ from T such that S ∼ PC , S ′ ≈ PR, d(S , S ′) ≤ d1 andσ(PR,S ′) ≤ σ.
This problem is called PC − PR.

Ivan
175

– If the input of the SMR problem is: T , PL, PC , PR, d1, d2 and σ, then we need
to find all instances S , S ′ and S ′′ from T such that S ∼ PC , S ′ ≈ PL, S ′′ ≈ PR,
d(S , S ′) ≤ d1, d(S , S ′′) ≤ d2, σ(PL,S ′) ≤ σ, and σ(PR,S ′′) ≤ σ. This problem is called
PL − PC − PR

For the sake of simplicity, in this paper we describe the solution of the PL - PC

problem. Note that in order tho solve the other two versions of the problem, we only
need to change the orientation of the distances, or combine the results of PL - PC and
PC - PR. In the next section we introduce a proposal to solve the PL - PC problem.

4 Proposal

With the aim to solve the PL - PC problem, we propose a method divided in two phases:

– We first implement a searching phase, where all substrings S of T , S ∼ PC are
located. As result of this phase, we obtain a set C = {S : S is a substring of T , and
S ∼ PC}. To do this, we propose an automaton that searches for all instances of PC

in T . At the end of this phase, all results are stored in a matrix, including the end
position of each pattern.

– In a second phase, all S ∈ C are processed, searching if there exists a substring S ′

of T (satellite), such that S ′ ≈ PL and d(S ′, S) ≤ d1. Since insertions, deletions, and
substitution operations are needed in this phase, we propose a technique based on
a dynamic programming strategy. As output, this phase reports all central patterns
with their left-satellites.

We proceed to explain in detail the way in which each phase is implemented.

4.1 Searching the Central Patterns

As we mentioned above, we implement an automaton to search for all the instances of
PC in T . This automaton, called MFA [5] is based on the idea of storing in a temporal
memory each pattern that has previously been recognized during the searching phase
[2]. In other words, this automaton implements a strategy that stores knowledge about
how the pattern matches overlap with itself, avoiding the computation of the prefix that
matches with the last largest suffix. As result, in the searching phase, each character in
T is examined exactly once (linear time with respect to |T |). In our explanation and for
the sake of simplicity, consider that PC = AMS , PL = GK and a distance d1 = 4.

The MFA automaton must be constructed from the pattern PC in a preprocessing
step before it can be used to search PC in T . This preprocessing phase is divided in
three stages: first, we perform a phase called expansion of PC , where all characters
from PC in ΣE are substituted by characters in ΣB (based on the IUPAC nomenclature);
then, in a second step we build a matrix that stores the states of the MFA automaton;
finally, in a third phase we generate the transition matrix of the MFA automaton.

The expansion of PC is performed by a substitution process, where each character of
PC in ΣE is ”expanded” with each valid character in ΣB, restricted to the combinations
derived from the IUPAC specification. As result, we generate a set called setP, where

Ivan
176

we store each combination of the pattern created with the substitution of characters. As
an example, if PC = AMS , where M = {A,C}, S = {C,G}, then M and S are replaced
by characters in ΣB, from right to left. As final result, seqP = {AAC, ACC, AAG, ACG}.

Based on seqP, the second phase consists on building a matrix called matQ, which
stores all states of the MFA automaton. With the aim to identify with precision all the
final states, this matrix is filled sequentially, from top to bottom (by rows), and from
left to right (by columns), where the number of columns is equal to |PC | (each column
corresponds to a character). The values assigned to the matrix start from 1, and with unit
increments. Each column is assigned a number of values that is equal to the product of
each character cardinality associated to the previous columns, including the current
column. The last column of this matrix stores all the final automaton states. Resuming
to our example, matQ for PC = AMS is filled as shown in Fig. 1.

Fig. 1. Filling matQ

As final step of the preprocessing phase, we generate the transition matrix δ of the
MFA automaton. This matrix is filled row by row, its values depend of the largest suffix
that is prefix of some element of seqP (for further reference, see [5]).

For example, consider vertex 2 of Fig. 2 with label ”AA”, which is obtained by
concatenating the letters in the path from the root to this vertex. From AA, we derive
a new expansion by adding at the end each character in ΣB, obtaining the set of strings
AAA, AAC, AAT, and AAG. We then test these strings, searching their largest suffix
that is a prefix for some element in seqP. In this example, AAC and AAG satisfy this
condition, since they are suffixes of the first and third element of seqP respectively.

Fig. 2. Generation of prefixes to fill δ

As next step, we compute states that are reached from vertex 2 through transitions
with C and G. Each result is stored in δ[i, j], where i is the ith element of seqP associated

Ivan
177

to the prefix, and j is the jth element of ΣB (used in the respective transition). Resuming
to our example, from vertex 2 with transition throughout ”C” (third element of ΣB),
we obtain the string AAC, which is suffix of the first element of seqP. Therefore,
δ[2, 2] = matQ[k, l], where k is the kth element of seqP associated to the prefix, and
l is the cardinality of this prefix. In this example, k = 3 (AAC is a sufix of the first
element of seqP), and l = 3 (|AAC| = 3). As result of this, from vertex 2 with label AA,
there exists a transition with C towards vertex 4. This process is used to compute each
transition for each state of the automaton.

Before we continue and for the sake of simplicity in our explanation, we enumerate
in our example the rows of matQ starting from 1, and the rows of δ starting from 0.

At the end of the preprocessing phase, the MFA automaton obtained from our
example is shown in Fig. 3.

Fig. 3. Automaton created by the algorithm

After that we build δ, the next step consists of search of each pattern from setP in
T . However, this phase is simple because δ is computed in linear time T , character by
character. Consider that our results are stored in a matrix called PCS npc,2, where npc is
the total number of patterns located in T . For simplicity, consider that the first column
of PCS stores each pattern, and the second column the position of the last character of
the pattern in T .

As an example, if T = ATGGACAACC and δ is the automaton shown in Fig. 3, we
obtain the output illustrated in Fig 4. In this example, the circles are used to mark the
final states, which represent patterns found in the searching phase. In this example, the
found patterns are AAC and ACC. These results are stored in the PCS matrix illustrated
in Fig. 5.

Fig. 4. Results of the localization of central pattern

Ivan
178

Fig. 5. PCS Matrix

4.2 Searching the PL pattern

The next step in our methodology consists of a process where based on a string S in
PCS , we search for substrings S ′ of T where S ′ ≈ PL, and d(S ′, S) ≤ d1.

Since PL, as the central patterns, may contain characters in ΣE , we first replace these
characters by characters in ΣB (in this phase we could use the same substitution process
explained before). Let � be a set that stores each pattern generated from S .

Let PL = GK be the pattern to search for. After we replace each extended character
from PL, our output is � = {GG,GT }. We then search for each element of this set in a
segment of T , limited by the position of the central pattern and a left distance no larger
than d1. Resuming to our example where T = ATGGACAACC, PC = AMS and d1 = 4,
we have two possible central patterns, AAC and ACC. If we first process AAC as PC

and GG as PL, then we need to find all possible alignments as we show in Fig. 6.

Fig. 6. Searching for satellites

As we mentioned in section 4, it is possible to use insertions, deletions, and
substitutions in the searching phase of PL. The total number of these operations is
limited by σ, which is the error allowed by the user (this value is defined as a percentage
with respect to the dimension of PL).

Since this problem is related to the string alignment problem [2], we propose a
solution based on a dynamic programming strategy with the Levenshtein distance [1],
which determines the total number of insertions, deletions and substitutions that we
need to transform a string (original pattern) into other string (target pattern).

As we see in Fig. 6, the first step consists of defining a start and end position where
we will search for PL in T . This gap is called a search window, and there is a window
search per each pattern in PCS . The limits of a search window are computed from the
initial position of each PC in PCS , where: Posstart = Posend − |PC | + 1 (Posend value is

Ivan
179

retrieved from PCS). Based on our example, where PCS includes the central patterns
AAC and ACC, we obtain the following initial positions:

– AAC: Posstart = Posend − |AAC| + 1 = 9 − 3 + 1 = 7
– ACC: Posstart = Posend − |AAC| + 1 = 10 − 3 + 1 = 8

Based on Posstart, we compute the initial and final positions of each search window
of each PL in �, where: Wini = Posstart − d1 − |PL|, and Wend = Posstart − 1. In our
example, where PL = GK, � = {GG,GT } and d1 = 4 we compute these positions per
each PC :

– AAC: Wini = Posstart − d1 − |GK| = 7 − 4 − 2 = 1, Wend = Posend − 1 = 7 − 1 = 6
– ACC: Wini = Posstart − d1 − |GK| = 8 − 4 − 2 = 2, Wend = Posend − 1 = 8 − 1 = 7

As an example, Fig. 7 shows the central pattern PC = AAC and its corresponding
window search, where we need to find if there exists an alignment with each pattern in
�.

Fig. 7. Initial and final positions of the window

Note that if we do not implement an intelligent strategy to search for possible
alignments, we need to test a character more than once if there exist intersections
between two or more search windows. In order to avoid this computation, we compute
the intersection between two search windows. This value is stored in a variable called
Mem, where

Mem =

{
W previous

end −Wcurrent
start if W previous

end > Wcurrent
start

0 otherwise

W previous
end is the end position of the previous search window and Wcurrent

start is the start
position of the current search window. For our example of Fig. 7, we compute Mem per
each central pattern as follows:

– AAC: W previous
end −Wcurrent

start = 0 − 1, then Mem = 1
– ACC: W previous

end −Wcurrent
start = 6 − 2, then Mem = 4

The next step consists of building a matrix that stores the total number of insertions,
deletions, and substitutions which are needed to align PL with a segment of characters
into the current search window. This matrix, denoted by D(m+1)×(n+1), has m + 1 rows,
where m = |S ′| (S ′ is an element of �), and n + 1 is the total number of columns (where
n is the cardinality of the search window associated to the current central pattern). This
matrix is filled with the Levenshtein algorithm [1]:

Ivan
180

– D[0, j] = 0, where 0 ≤ j ≤ n
– D[i, 0] = i, where 0 ≤ i ≤ m
–

D[i, j] =

{
D[i − 1, j − 1] if �k,i = T [j]

D[i − 1, j − 1] + 1 otherwise

where �k,i is the ith character of the kth element of �, and T [j] is the jth character of
the search window that is currently being processed. These rules are used to fill each D
for each element in �. When we changed of search window, we compute Mem to know
if there exist columns in D that are a copy of the matrix of the previous search window
(these columns are a copy starting from the second column of the current matrix D).

Resuming to our example, consider the case of ACC with GG as PL with Mem = 4.
Therefore, the current matrix D is filled as follows: the first column is computed based
on the Levenshtein algorithm; the next four columns are copied from the matrix of AAC
with GG as PL; the last column is also filled based on the Levenshtein algorithm. This
example is shown in Fig. 8.

Fig. 8. Example where matrix D is generated for PC = AMS and PL = GK

Finally, these matrices are used to find possible alignments based on the error σ.
The procedure is simple: we select all D[|PL|, j], where D[|PL|, j] ≤ σ, and j is the final
position of a valid left pattern of the corresponding search window. As an example, if
we consider that σ = 50%, then we need to find all positions where D[|PL|, j] ≤ 1,
because |PL| = 2. In our example of Fig. 8, there exist three valid results for AAC and
GG as left pattern: D1[2, 2] = 1, D1[2, 3] = 0, D1[2, 4] = 1; and three valid results for
ACC and GG as left pattern: D4[2, 1] = 1, D4[2, 2] = 0, and D4[2, 3] = 1. With this
information, we retrieve the left patterns based on T = ATGGACAACC:

– Since the search window for PC = AAC and GG as left pattern is ATGGAC, then
our left patterns are located at the end positions: 2 (TG is transformed in to GG
with one substitution), 3 (corresponding for the pattern GG), 4 (GA, is transformed
to GG with one substitution)

– Since the search window for PC = ACC and GG as left pattern is TGGACA, then
all patterns for this search window are the same as the previous window (they are
not computed again).

As we can see in this example, our proposal has the following advantages: we can
find the central patterns very fast because we avoid computing any character in T twice.
With a dynamic programming strategy based on the Levenshtein algorithm, it is possible
to improve the runtime taken to find the left patterns, we avoid computing common

Ivan
181

regions twice. However, it is important to see that this approach needs to generate a
matrix per each possible left pattern.

5 Conclusions and Future Work

This paper presents a proposal for solving the structure motive recognition in a DNA
sequence. Our approach is divided in two phases: first, we locate all central patterns
with an automation, that performs this task very fast; second, we implement a dynamic
programming strategy and the Levenshtein algorithm with the aim to find satellites that
are located at a distance no larger than d. Actually, we implemented and tested the
automaton and found that its performance is very fast, allowing us to work with large
DNA databases.

We are currently implementing the dynamic programming strategy with the
Levenshtein algorithm proposed in this work. After testing this phase, we will develop
a tool that can be used by biologists that need to find structured patterns.

References

1. Bofivoj, Melichar. Approximate string matching by finite automata. In Conf. on Analysis of
Images and Patterns, number 970 in LNCS. Pages 342–349. 1995.

2. Cormen, Thomas H. Introduction to Algorithms. 2nd Edition. The MIT Press and McGraw-
Hill. Pages 805-811, 2001.

3. Maxime Crochemore and Marie-France Sagot, Motifs in Sequences: Localization and
Extraction. Pages 26-31, 2000

4. Navarro, Gonzalo. A Guide Tour to Approximate String Matching. ACM Computing Surveys.
vol. 33, Issue 1. Pages. 31-88, 2001.

5. Perez, Gerardo et al. An Automaton for Motifs Recognition in DNA Sequences. To appear in
MICAI 2009, Springer - Verlag.

Ivan
182

