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Abstract. We build upon recent work by Lierler that defines an abstract
framework for describing the algorithm underlying many of the existing
answer set solvers (for answer set programs, based upon the Answer Set
Semantics), considering in particular SMODELS and SUP. We define a
particular class of programs and prove that the computation that the
abstract solver performs actually represents a lower bound for deciding
inconsistency of logic programs under the Answer Set Semantics. For
that class of programs, given a program composed of n atoms a solver
adopting this algorithm must perform no less than n steps. We then
argue that this result can be extrapolated to every logic program.

1 Introduction

Answer Set Programming (ASP) is a paradigm of logic programming which has
been gaining credit from both the theoretical and practical point of view. ASP
is based on the answer set semantics of [1], where solutions to a given problem
are represented in terms of selected models (answer sets) of the corresponding
logic program [2, 3]. Rich literature exists on applications of ASP in many areas,
including problem solving, configuration, information integration, security anal-
ysis, agent systems, semantic web, and planning (see among many [4–8] and the
references therein). Efficient inference engines, or ASP Solvers, are available [9]
and can be freely downloaded by potential users.

Recently, Yuliya Lierer has proposed [10] an abstract framework for describ-
ing the algorithm underlying many of the existing answer set solvers, consider-
ing in particular SMODELS and SUP (we can say that [10] describes an “ab-
stract solver”). The abstract solver encompasses the main optimization strategies
adopted by actual solvers, and primarily by SMODELS (described in [11]). In
fact, SMODELS is often taken as reference for comparison among solvers.

The expressive power of ASP, as well as its computational complexity, have
been deeply investigated. The interested reader can refer, for instance, to [12]. In
particular, deciding the existence of an answer set has been proved NP-complete
in [13] and the same for deciding whether an atom is a member of some answer
set (proved in [14]).
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A topic that has received less attention in the literature concerns the least
number of steps that a solver relying upon this algorithm actually performs in
order to establish whether a given program is inconsistent, i.e., a lower bound
for ASP solvers computation3. This is of interest in order to understand whether
the existing strategies work well, or what could be done better. In this paper, we
define a particular class of (inconsistent) programs, OAH-programs, and prove
that for programs in this class the abstract solver must perform no less than n
steps, i.e., its lower-bound complexity is Ω(n). We demonstrate that this class
of program is significant as every non-trivial inconsistent program has an OAH-
program as its “core”, and therefore the result can be extrapolated to every logic
program.

The structure of the paper is as follows: in Section 2 we provide the necessary
background about lower bounds, ASP, some particular class of ASP programs
and finally about the abstract ASP solver. In Section 3 we examine the behavior
of the abstract solver on a particular class of programs that we suitably define
and in Section 4 we argue in favor of the significance of this class and formulate
a general lower-bound result. Finally, in Section 5 we conclude.

2 Background

2.1 Lower Bounds

Once algorithms for solving a specific problem have been found one may wonder
whether it is possible to design a faster algorithm or not, and may wish to
compare the different algorithms not only in terms of the number of steps in the
worst- or average-case, but also concerning the least number of steps that they
perform on a significant class of inputs. Often, a lower bound for the problem
can be given, which in this context is practically intended as the number of steps
that an algorithm has to execute at least in order to solve the problem on an
input belonging to a given (interesting) class4.

As usual, constant factors c is disregarded and problems of size smaller
than some n0 are disregarded as well. Only the order of the lower bound
is considered, as customary in terms of the function class expressing it. Let
f : natural numbers → real numbers. The set Ω(f) is defined as follows:

Ω(f) = {g : natural numbers → real numbers |
there exists c > 0 and n0 natural numbers such that
for all n ≥ n0 : g(n) ≥ c f(n)}

I.e., Ω(f) comprises all functions g such that g(n) is greater or equal to c f(n)
for some constant c and for instance size at least n0. Equivalently, Ω(f) is the
set of all functions that asymptotically grow at least as fast as f , disregarding
constant factors.

3 Victor Marek and Mirek Truszczynski, private communication.
4 The general definition is that of a certain number of steps that every algorithm has

to execute at least in order to solve a problem. As with the upper bounds, the notion
of a step refers to an underlying machine model.
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2.2 ASP in a nutshell

Below, we briefly recall the basics about Answer Set Programming [4, 2, 3]. In
this logical framework, a problem can be encoded —by using a function-free logic
language— as a set of properties and constraints which describe the (candidate)
solutions. More specifically, an ASP-program, or in the following simply a logic
program Π, is a collection of rules of the form

H ← L1, . . . , Lm, not Lm+1, . . . ,not Lm+n.

where H is an atom, m > 0, n > 0, and each Li is an atom. The symbol
not stands for default negation (often also called “negation-as-failure” or sim-
ply “negation”). Various extensions to the basic paradigm exist, but we do not
consider here all of them as they are not essential in the present context. The
left-hand side and the right-hand side of the clause are called head and body,
respectively. As customary, a literal can be either an atom a (positive literal) or
its negation, in this context denoted by not a (negative literal). Then, the head
of a rule is a positive literal and its body is composed of literals. A rule with
empty head is a constraint (the literals in the body of a constraint cannot be all
true, otherwise they would imply falsity). To the aim of better understanding the
discussion below, assume a constraint to be rewritten as a plain rule as follows,
where f is a fresh atom not occurring elsewhere in the program

f ← not f, L1, . . . , Lm, not Lm+1, . . . ,not Lm+n.

By Bodies(Π,H) or simply Bodies(H) if Π is fixed from the context we mean
the (multi-)set of the bodies of all rules with head H.

The semantics of ASP is expressed in terms of answer sets (also called stable
models [1]). Consider first the case of a ground5 ASP-program P which does not
involve negation. In this case, a set of atoms X is said to be an answer set for P
if it is the (unique) least model of P . Such a definition is extended to any ground
program P containing negation by considering the reduct PX of P w.r.t. a set
of atoms X obtained by means of the Gelfond-Lifschitz γ operator introduced
in [1]. First, PX is defined as the set of rules of the form H ← L1, . . . , Lm for
all rules of P such that X does not contain any of the atoms Lm+1, . . . , Lm+n.
Clearly, PX does not involve negation. Let γ(P,X) = J where J is the unique
answer set of PX . The set X is an answer set for P if it is a fixed point of
γ, i.e., if X = J . Equivalently, X is an answer set forP if it is the (unique)
answer set of PX . In order to obtain an answer set in the form of the set of
literals which are true w.r.t. that answer set, the definition can be rephrased
into Γ (P,X) = Cn(PX) where given set R of rules without negation, Cn(R) is
the smallest set of literals constructed from the atoms occurring in R which is
closed under R and it is either consistent or equal to the set of all such literals.

Once a problem is described as an ASP-program P , its solutions (if any) are
represented by the answer sets of P . Unlike other semantics, a logic program

5 As customary, a term (atom, literal, rule, . . . ) is ground if no variable occurs in it.
A ground program is a program that contains no variable.
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may have several answer sets, or may have no answer set, because conclusions
are included in an answer set only if they can be justified. The following program
has no answer set (and it is said to be inconsistent w.r.t. consistent programs,
which admit at least one, possibly empty, answer set): {a← not b. b← not c. c←
not a.}. The reason is that in every minimal model of this program there is a
true atom that depends (in the program) on the negation of another true atom.
Checking for consistency means checking for the existence of answer sets. For a
survey of this and other semantics of logic programs with negation, the reader
may refer to [15].

Let us consider the program P consisting of the three rules

r ← p. p← not q. q ← not p.

Such program has two answer sets: {p, r} and {q}. If we add the rule (actually, a
constraint)← q. to P , then we rule-out the second of these answer sets, because
it violates the new constraint.

This simple example reveals the core of the usual approach followed in formal-
izing/solving a problem with ASP. Intuitively speaking, the programmer adopts
a “generate-and-test” strategy: first (s)he provides a set of rules describing the
collection of (all) potential solutions. Then, the addition of constraints rules-out
all those answer sets that are not desired real solutions.

Given a rule γ in a language L, the grounding of γ w.r.t. L is the set of
all ground rules obtainable from γ through (ground) instantiation using the
constant symbols of L. Usually, given a program P and a rule γ ∈ P , we will
consider the grounding of γ w.r.t. the language underlying P . The grounding of
a set of rules is defined similarly. Given a (not necessarily ground) program P ,
a set of atoms is an answer set for P if it is an answer set for the grounding
of P . In the following, we will always implicitly consider ground programs, i.e.,
equivalently, propositional logic programs.

To find the solutions of an ASP-program, an ASP-solver is used. Several
solvers have became available [9], each of them being characterized by its own
prominent valuable features. As it is well-known, ASP solvers produce the
grounding of the given program as a first step, as they are able to find the
answer sets of ground programs only6.

The expressive power of ASP, as well as, its computational complexity have
been deeply investigated. The interested reader can refer, for instance, to [12]. In
particular, deciding the existence of an answer set has been proved NP-complete
in [13] and the same for deciding whether an atom is a member of some answer set
(proved in [14]). The reader can also see [4, 16], among others, for a presentation
of ASP as a tool for declarative problem-solving.

2.3 Kernel Programs

Below we summarize the features of a special class of logic programs, kernel
programs, introduced in [17] and discussed at length in [18] and [19].

6 Work is under way both theoretically and practically to overcome at least partially
this limitation. However, at present almost all ASP solvers perform the grounding.
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The kernel form is a normal form, in the sense that (as proved in [18])
any logic program under the answer set semantics admits an equivalent kernel
program, i.e., one which has the same answer sets, modulo some projection.
Transforming a program into the corresponding kernel normal form eliminates
on the one hand the literals that are certainly true/false in all the answer set and
on the other hand the literals which are irrelevant for checking the consistency
of the given program. As it is well-known, the former literals can be constructed
from the atoms which are true and false w.r.t. the well-founded semantics of logic
programs [20]. This semantics is three-valued and provides the set of atoms which
are deemed true and false, where the other atoms are assumed to have truth value
undefined. If Π is a logic program, we denote by WFS(Π) = 〈T, F 〉 the well-
founded model of Π. The well-founded model of program Π can be obtained
in the form of the set of literal which are true/false [21] by computing Γ 2(P, ∅)
= Γ (P, Γ (P, ∅)). A program Π is said WFS-irreducible whenever WFS(Π) =
〈∅, ∅〉. That is, in WFS-irreducible programs all the atoms are undefined under
the well-founded semantics. As discussed in [22], these are exactly the atoms
that are relevant for deciding whether answer sets exist, and for finding them.
Below is the definition of programs in kernel form.

Definition 1. A logic program Π is in kernel normal form (or, equivalently, Π
is a kernel program) if and only if the following conditions hold.

1. Π is WFS-irreducible;
2. every rule has its body composed of negative literals only;
3. every atom in Π occurs in the body of some rule;

It is easy to see that, in kernel programs, each atoms occurs as the head of some
rule and, being undefined under the well-founded semantics, it is either part of
a cyclic definition or defined using atoms that are part of a cycle (the notion of
cycle is formally defined and developed in [19]). Clearly, there are no facts.

For programs in kernel normal form, every supported model is stable [23,
22], where a supported model M is such that for every atom a ∈ M some
B ∈ Bodies(a) is true w.r.t. M . We may also notice that kernel programs are
tight, i.e., do not contain positive loops (which is obvious, as no atom occurs
positively). For tight programs, the same result has been proved in [24].

The kernel normal form can be obtained by means of a normalization algo-
rithm which is computable in polynomial time modulo however a preliminary
call to the program rewriting w.r.t. the WFS semantics described in [25]. This
algorithm, that we call BDFZ, transforms a given program Π into a (unique)
program remainder Π̂ obtained by means of a straightforward extension of the
above-mentioned Gelfond-Lifschitz operator, i.e., by deleting every rule instance
with a body literal which is false w.r.t. WFS(Π), and removing from the re-
maining rule instances the body literals which are true w.r.t. WFS(Π). As
atoms involved in positive cycles, if not supported differently, are false w.r.t.
WFS(Π), the algorithm is able to get rid of positive cycles. In particular, the
BDFZ algorithm has the following features:
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– it performs the preliminary grounding of Π;
– its main part consists of a confluent rewriting system, and
– it performs loop detection, thus deleting from the program all positive loops.

The kernelization algorithm (formally described in [26]) performs, as a first
step, a simplification of the given program Π w.r.t. the well-founded semantics
WFS(Π) by means of BDFZ. As a second step, the kernelization algorithm
performs top elimination, i.e., it eliminates all rule instances whose head is an
atom which never appears in the body of a rule. Finally, a Positive Condition
Elimination procedure produces the result ker(Π). The aim of this step is that
of eliminating all the remaining positive atoms, that constitute “intermediate
steps” between relevant atoms, and are immaterial to the existence and number
of answer sets.

As proved in [22], the answer sets of ker(Π) and the answer sets of Π are in
correspondence, in the sense that they are in the same number, and the latter
can be obtained from the former. In particular, given a answer set S of ker(Π),
a stable model of the original program Π can be obtained as follows:

(i) apply the Gelfond-Lifschitz transformation to Π w.r.t. S, and
(ii) compute the Least Model of the resulting (positive) program.

2.4 An Abstract Answer Set Solver

In the following, as it is customary in ASP solvers we will indicate ← with : − ,
and we will interpret it as an implication, where if the body of the rule is true
(w.r.t. a given answer set) then the head must be true as well. If instead the
body is false, then the head is false as well unless it is made true via some other
rule.

The complement l of literal l is such that, for atom a, we have a = not a and
not a = a. If B is a set of literals, by B we mean a set of literals composed of
the complements of all the literals in B. For any set M of literals, by M+ we
take the set of positive literals occurring in M .

The abstract solver is described by means of steps, or transition rules, that
can be applied to states. Given set σ of atoms, a state is either ∅, or FailState, or
a list M of literals (without repetitions). Each literal l in M can be annotated as
ld. Literals in the current state M are those that have been deemed true up to
that point. Each annotated literal has been assumed to be true, where the others
have been assigned true by some of the transition rules. A literal l is assigned
(w.r.t. unassigned) in state M (or for short by M) if either l or ld or l occur in
M . Sometimes, states will be treated as sets, regardless the order of literals and
the annotations.

The abstract solver starts from the empty state and from a given formula (in
this case a logic program Π) and applies transition rules until it reaches either
a FailState state, or a final state M where each atom in σ occurs in some literal
in M , and M is consistent, i.e., it is not the case that both a literal and its
negation (whatever their annotation) occur in M . In the rest of the paper, we
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will assume σ to be the atoms occurring in the given program Π. The set of
possible transitions from the empty state to final states can be represented as a
graph DPΠ where terminal nodes, i.e., nodes with no out-going arcs, are either
FailState or states where no transition is applicable.

We summarize below from [10] the transition rules that define the basic
version ATLEASTΠ of the abstract solver. Capital letters M,M ′, C, P,Q, . . .
denote states. A transition rule has the form M ⇒M ′ and is applicable (deter-
mining a step to be performed or, equivalently, a new arc of DPΠ to be created)
if its condition is satisfied by M . By mentioning a rule, we implicitly assume
that it is a rule occurring in Π.

Decide (D):
M ⇒M ld if l is unassigned by M .

Fail (F ):
M ⇒ FailState if M is inconsistent and M contains no decision literal.

Backtrack (B):
P ld Q⇒ P l if P ld Q is inconsistent

and Q contains no decision literal.

Notice that the definition of ⇒ B includes some strategic aspects proper of
most solvers. (i) Backtracking is performed to the last decision that has been
taken, i.e., literal ld: this comes from the assumption that part Q of initial state
M contains no decision literal. The negation l is added to the new state M ′ = P l
(as a plain true literal, not as a decision) as this has proved advantageous in
practice. Notice that adding l to the new state prevents l to be decided again
later, as it is already assigned. However, if later on a backtracking should be
performed to a literal which occurs prior than ld in M the assignment would be
canceled, and then l would be decided again, though in a new context.

Unit Propagate (UP):
M ⇒M a if a : −B and B ⊆M .

I.e., the head of a rule with body true (w.r.t. M) is added to the new state.

All Rules Canceled (ARC ):
M ⇒M not a if for all B ∈ Bodies(a), B ∩M 6= ∅

I.e., the negation not a of the head a is added to the new state if all the bodies
B of rules with head a are false w.r.t. M which in fact includes the negation of
some literal in B.

Backchain True (BT ):
M ⇒M B if a : −B, a ∈M (whatever its annotation in M),

and for all B′ 6= B, B′ ∈ Bodies(a) we have B′ ∩M 6= ∅
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I.e., if an atom a belongs to M and all but one body of a rule with head a
are false (w.r.t. M), then the literals occurring in the only remaining body are
added to the new state (which means that they are deemed true) as in supported
models atoms may occur only if derivable via a rule.

Backchain False (BF ):
M ⇒M l if a : − l, B, not a ∈M , and B ⊆M .

I.e., if atom a is false w.r.t. M (as M contains its negation not a) and if we
have a rule where all literals in the body but one are true (w.r.t. M) then this
last literal is deemed false, thus justifying the falsity of a.

As proved in [10], the terminal nodes of the graph DPΠ other than FailState
generated by ATLEASTΠ are consistent states and represent in particular all
the supported models of Π (which in the case of kernel and, more generally,
of tight programs correspond to all the answer sets). Moreover, FailState is
reachable only if no supported model exists.

The SMODELS solver and all the other solvers that accept programs that
are not tight apply another transition rule called Unfounded that is needed in
order to deem false all the atoms that in Π are involved in positive circularities
and cannot be deemed true by any rule. With this additional transition rule
the above results extends, i.e., the terminal nodes of the graph DPΠ other than
FailState correspond to all the answer sets of given program Π and FailState is
reachable only if Π is inconsistent.

3 Lower Bound for SMODELS-like Algorithm

In the discussion that follows we resort to the previous description ATLEASTΠ
of the abstract solver, as we will consider a class of programs composed of kernel
programs only. This is however without loss of generality, as we may notice that
any solver might in principle detect the fact that a given program is negative (if
no positive literal occurs in bodies) and omit the application of Unfounded.

Consider the following inconsistent kernel program Π6, containing 6 distinct
atoms (thus, n = 6).

p : −not p, not a1, not a2. (1)

q : −not q.
q : −not a1, not a2. (2)

a1 : −not b1.
b1 : −not a1.

a2 : −not b2.
b2 : −not a2.
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The reason why this program is inconsistent relies in its structure: there
are two odd loops, namely p : −not p and q : −not q, and as it is well-known
the existence of odd loops may cause inconsistency. The former one might in
principle be “rescued” by the conjunction not a1, not a2 that in terms of [19] can
be called AND-handle: if at least one literal is deemed false (i.e., if either a1 or
a2 are true) then p becomes false as well, as there are no other alternative rules
with head p. The latter instead might in principle be “rescued” by the same
conjunction not a1, not a2 that in terms of [19] can be called OR-handle: if both
literals are deemed true (i.e., if both a1 or a2 are false) then q becomes true,
thus overcoming the contradictory rule. However, the two conditions are clearly
in contrast with each other, and thus the whole program is inconsistent. This
might be easily seen either on the EDG (Extended Dependency Graph, [17]) or
even better on the Cycle Graph [19] corresponding to the program itself.

Without this “structural” information, let us try to assess how the abstract
answer set solver ATLEASTΠ will behave. We assume that the algorithm does
not perform a Decide step if some other step is possible. We also assume (as
most solvers do) to decide positive literals only. As said before, backtracking is
up to the last decision. Also, the execution of the algorithm stops in a final state
whenever all atoms have been assigned, no decision literal occurs in the state,
and no more step is possible. The final state can be FailState in case the last but
final is an inconsistent state. We finally assume, quite arbitrarily but harmlessly,
that UP is applied according to the order of the rules in the program.

Notice that the abstract solver behavior is simplified by the fact that, except
for q, each atom is the head of just one rule. Thus, after deciding the head
it is immediately possible to apply BT or ARC. An execution of the abstract
solver always starts with the empty state, an proceeds via steps corresponding
to the application of a transition rule. Following [10] we indicate on the right
of the current state (other than FailState) the transition which is applied (for
coinciseness, by using its label). Let us first assume that the solver tries to decide
atom p first. This results in the following sequence of states:

∅ ⇒ D
pd ⇒ BT
pd, not p, not a1, not a2 ⇒ B
not p . . .

I.e., as p is the head of just one rule, the solver applies Backchain True in order
to try to justify its truth, but it immediately finds a contradiction which implies
backtracking, i.e., retracting the decision to assume p true and asserting not p.
The execution will then continue with some other decision. Let us instead assume
that the solver tries to decide atom q first. This results in the following sequence
of states:

(2) Decide atom q first.
∅ ⇒ D
qd ⇒ BT
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qd, not a1, not a2 ⇒ ARC
qd, not a1, not a2 ⇒ UP
qd, not a1, not a2, b1 ⇒ UP
qd, not a1, not a2, b1, b2 ⇒ D
qd, not a1, not a2, b1, b2, p

d ⇒ BT
qd, not a1, not a2, b1, b2, p

d, p ⇒ B
qd, not a1, not a2, b1, b2, not p ⇒ UP
qd, not a1, not a2, b1, b2, not p, p ⇒ B
not q . . .

I.e., as q is the head of two rules where the body of the first one (not q) is in
constrast with the decision, the solver can apply Backchain True on the second
rule in order to try to justify its truth. After two steps of unit propagation, the
solver is forced to decide p, which leads to an inconsistency (via Backchain True
on the unique rule defining p) and to a backtracking, which via the assertion of
not p leads to another inconsistency and thus to backtrack the decision on q.

Therefore, as we are looking for a lower bound, we will optimistically assume
that the solver will start its execution by deciding some atom other than p or q,
say a1. The execution will proceed for instance as follows:

∅ ⇒ D
a1
d ⇒ ARC

a1
d, not p ⇒ BF (or ⇒ ARC )

a1
d, not p, not b1 ⇒ ARC

a1
d, not p, not b1, q ⇒ ARC

a1
d, not p, not b1, q, not q ⇒ B

Notice that in the above trace it is relevant whether one decides either a2 or
q first. In particular, deciding q first leads more quickly to discovering the in-
consistency, and it is what we have done as we are looking for a lower bound.
This determines to backtrack the decision qd, which implies asserting not q that
again implies q. What remains is a further backtracking, which means undoing
a1
d and restarting from not a1, which implies b1.

a1
d, not p, not b1, q, not q ⇒ B (6 steps)

not a1 ⇒ UP
not a1, b1 (two steps from backtracking)

If we now decide b2 we get q but we then run quickly into a contradiction on p,
as all conditions of its only rule become true but one (not p) that can be derived
by means of Backchain True thus determining inconsistency and backtracking
on the decision of p which however leads to inconsistency again, which forces to
retract the decision on f and assert not b2 which gives a2.

not a1, b1 ⇒ D (*)
not a1, b1, b2

d ⇒ BF (or ⇒ ARC )
not a1, b1, b2

d, not a2 ⇒ UP
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not a1, b1, b2
d, not a2, q ⇒ D (four steps, for each of the b2’s if there were

many)
not a1, b1, b2

d, not a2, q, p
d ⇒ BT

not a1, b1, b2
d, not a2, q, p

d, not p ⇒ B
not a1, b1, b2

d, not a2, q, not p ⇒ UP
not a1, b1, b2

d, not a2, q, not p, p ⇒ B (four steps more for each of the b2’s if
there were many)
not a1, b1, not b2 ⇒ UP
not a1, b1, not b2, a2 (two steps more for each of the b2’s if there were many)

At this point, p becomes false as the body of its only clause is false, where q has
to be decided and as the body of its second clause is false this leads to assuming
that the first rule should work, and then to inconsistency and failure.

not a1, b1, not b2, a2 ⇒ ARC
not a1, b1, not b2, a2, not p ⇒ D
not a1, b1, not b2, a2, not p, q

d ⇒ BT
not a1, b1, not b2, a2, not p, q

d, not q ⇒ B
not a1, b1, not b2, a2, not p, not q ⇒ UP
not a1, b1, not b2, a2, not p, not q, q ⇒ F
FailState (six final steps)

The total number of steps is 26, i.e., slightly less than 4n. It remains to see what
would happen if at point (*) one would decide a2.

not a1, b1 ⇒ D
not a1, b1, a2

d ⇒ BF (or ⇒ ARC )
not a1, b1, a2

d, not b2 ⇒ ARC
not a1, b1, a2

d, not b2, not p ⇒ D (three steps to get rid of p)
not a1, b1, a2

d, not b2, not p, q
d ⇒ ARC

not a1, b1, a2
d, not b2, not p, q

d, not q ⇒ B
not a1, b1, a2

d, not b2, not p, not q ⇒ UP
not a1, b1, a2

d, not b2, not p, not q, q ⇒ B

It turns out that we should backtrack this decision and then the execution would
proceed as before (with some modifications) after having performed more steps.
If the whole computation would have started by deciding a2 instead of a1, by
reverting the indexes we would have obtained the same trace. Instead, things
might be different if starting by deciding b1

∅ ⇒ D
b1
d, not a1 (two steps) (**)

Now, deciding b2 will quickly lead to an inconsistency on p.

b1
d, not a1 ⇒ D

b1
d, not a1, b2

d ⇒ BF (or ⇒ ARC )
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b1
d, not a1, b2

d, not a2 ⇒ UPb1
d, not a1, b2

d, not a2, q ⇒ D
b1
d, not a1, b2

d, not a2, p
d ⇒ BF

b1
d, not a1, b2

d, not a2, p
d, not p ⇒ B

b1
d, not a1, b2

d, not a2, not p ⇒ UP
b1
d, not a1, b2

d, not a2, not p, p ⇒ B(seven steps for each of the b2’s if there
were more)
b1
d, not a1, not b2 ⇒ UP

b1
d, not a1, not b2, a2 ⇒ ARC

b1
d, not a1, not b2, a2, not p ⇒ D

b1
d, not a1, not b2, a2, not p, q

d ⇒ BT
b1
d, not a1, not b2, a2, not p, not q ⇒ UP

b1
d, not a1, not b2, a2, not p, not q, q ⇒ B

not b1 ⇒ UP
not b1, a1 . . . (15 steps)

that is symmetrical to (*). Another variation variation is to decide a2 at (**).

b1
d, not a1 ⇒ D

b1
d, not a1, a2

d ⇒ BF (or ⇒ ARC )
b1
d, not a1, a2

d, not b2 ⇒ ARC
b1
d, not a1, a2

d, not b2, not p ⇒ D
b1
d, not a1, a2

d, not b2, not p, q
d ⇒ ARC

b1
d, not a1, a2

d, not b2, not p, q
d, not q ⇒ B

b1
d, not a1, a2

d, not b2, not p, not q ⇒ UP
not b1 ⇒ UP
not b1, a1 (9 steps)

that is symmetrical to (*) and takes a few less steps. If we decide a2 (or sym-
metrically b2) from the beginning we get:

∅ ⇒ D
a2
d, not b2 ⇒ ARC

a2
d, not b2, not p ⇒ D

a2
d, not b2, not p, q

d ⇒ ARC
a2
d, not b2, not p, q

d, not q ⇒ B
a2
d, not b2, not p, not q ⇒ UP

a2
d, not b2, not p, not q, q ⇒ B

not a2 ⇒ UP
not a2, b2

which requires a decision recollecting one of the traces before.
Therefore, the minimum number of steps that ATLEASTΠ can perform

before deciding that Π6 is inconsistent belongs to Σ(n).

4 Generalization

The program above is a sample of the following class of programs, that we call
OAH-programs where OAH stands for OR-AND-handles.
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Definition 2. An OAH-program Πn has the following structure:

p : −not p, not a1, . . . , not ak. (1)

q : −not q. (2′)
q : −not a1, . . . , not ak. (2′′)

%for every ai, i ≤ k
ai : −not bi.
bi : −not ai.

The number of composing atoms is n = 2k+ 2 and there are n+ 1 rules. as each
atom occurs in the head of just one rule, except q which occurs as the head of
two rules.

As said in previous section: the body of rule (1) is called, in the terminology
of [19], an AND handle, and for the program to be consistent at least one of the
composing literals must be false (thus making the AND handle active), so that
the head becomes false as well; the body of rule (2”) is called instead an OR
handle, and for the program to be consistent all the composing literals must be
true, thus making the head true as well (active OR handle); otherwise in fact,
no answer set exists as the contradiction over p and/or q cannot be overridden.
It is easy to see that in the above program the two handles are incompatible in
the sense that they cannot be both active, as this implies a conflict over at least
one literal, that should be simultaneously true and false. Therefore we have the
following.

Proposition 1. Every OAH-program Πn is inconsistent, whatever the number
n of composing atoms.

Notice that the above-defined OAH programs include, in rules (1) and (2’)
respectively, two negative odd cycles (involving atoms p and q respectively)
of length 1, i.e., composed of just one rule. In this sense, we might call these
program OAH1-programs, and introduce the classes of OAHn-programs with
n odd, involving two odd cycles each one of length at most n, the former one
exhibiting AND handles (no matter in which rules) and the latter one exhibiting
OR handles (no matter for which rules). The above proposition can thus be
immediately extended to OAHn-programs.

As it is well-known, inconsistency of logic programs stems from negative odd
cycles: in fact, every program involving no negative odd cycle is consistent (the
reader may refer, e.g., to [27] for a discussion). As discussed in depth in [19],
a kernel logic program is inconsistent either because there is an unconstrained
odd cycle (i.e., an odd cycle without handles) or because, as it happens in OAH
programs, there exists two odd cycles whose handles are incompatible. The same
can be said for any logic program, as in fact Kernelization does not affect its
underlying structure: in fact, on the one hand it eliminates atoms not involved in
negative cycles and on the other hand removes literal true/false in every stable
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models and skips intermediate steps. The only effect of kernelization can be that
some odd cycles, which in the original program seemed to have handles, become
unconstrained in its kernel version as the literals occurring therein are true w.r.t.
the well-founded model. Therefore, the significance of OAHn-programs consists
in the following:
Observation
Every inconsistent logic program includes in its kernel counterpart either an
unconstrained odd cycle or an OAHn-program (for some n).

Therefore, the following lower-bound result, that can be easily extended to
every OAHn-program, can be extrapolated to hold for every logic program.

Theorem 1. The abstract solver ATLEASTΠ on an OAH-program Πn per-
forms Ω(n) steps.

Proof (sketch) A simple possible strategy for performing the least possible num-
ber of steps is that of making the AND handle not active. This quickly falsifies
the contradictory atom in rule (1), and determines later the contradiction on the
second one thus leading to a failure state. This effect is obtained efficiently only
if one chooses to decide in the first place all of the ai’s. This choice results in get-
ting all of them false (and thus no more decidable) via backtracking, obtaining
therefore as soon as possible a failure state.

5 Concluding Remarks

As we have seen above, determining the strategy that chooses the atoms to
assume true so as to result in the least possible number of steps requires infor-
mation about the structure of the program. From the Cycle Graph (CG) [19]
of an OAH-program [19] one would see immediately that the program is incon-
sistent. Granted that obtaining the CG is computationally expensive, the solver
designers should evaluate whether some kind of structural analysis might actu-
ally be useful in order to reduce the number of steps, which is especially valuable
on large problem instances.

We remind the reader about the existence of alternative algorithms for com-
puting the answer sets, e.g., based on the EDG of a (kernelized) program [28]
whose underlying principles have been applied in order to improve existing
solvers [29].

To conclude, we have established that the lower bound of the ASP solvers
that adopt the abstract solver algorithm, like SMODELS, is by no means bad.
However, the integration with program analysis and transformation techniques
might bring relevant advantages.
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