Supporting Evolution by Models, Components, and
Patterns

Isabelle Coté and Maritta Heisel
Universitidt Duisburg-Essen
{Isabelle.Cote, Maritta. Heisel } @uni-duisburg-essen.de

Abstract: Evolvability is of crucial importance for long-lived software, because no
software can persist over a long time period without being changed. We identity three
key techniques that contribute to writing long-lived software in the first place: mod-
els, patterns, and components. We then show how to perform evolution of software
that has been developed according to a model-, pattern-, and component-based pro-
cess. In this situation, evolution means to transform the models constructed during
development or previous evolutions in a systematic way. This can be achieved by us-
ing specific operators or rules, by replacing used patterns by other patterns, and by
replacing components.

1 Introduction

As pointed out by Parnas [Par94], software ages for two reasons: first, because it is
changed. These changes affect the structure of the software, and, at a certain point, further
changes become infeasible. The second reason for software aging is not to change the soft-
ware. Such software becomes outdated soon, because it does not reflect new developments
and technologies.

We can conclude that software evolution is indispensable for obtaining long-lived soft-
ware. However, the evolution must be performed in such a way that it does not destroy
the structure of the software. In this way, the aging process of the software can be slowed
down.

An evolution process that does not destroy the structure of the software first of all requires
software that indeed possesses some explicit structure that can be preserved. Hence, dif-
ferent artifacts (not only the source code) should be available. In conclusion, to avoid the
legacy problems of tomorrow [EGGT09], we first need appropriate development processes
that provide a good basis for future evolutions. Second, we need systematic evolution ap-
proaches that can make use of that basis.

In this paper, we first point out that the use of models, patterns, and components are suit-
able to provide the basis that is necessary for an evolution that does not contribute to
software aging. Second, we briefly describe a specific process (called ADIT: Analysis,
Design, Implementation, Testing) that makes use of these techniques. Third, we sketch
how evolution can be performed for software that was developed using ADIT. There, re-
play of development steps as well as model transformations play a crucial role.

The rest of the paper is organized as follows: Section 2 discusses the role of models,
patterns, and components for the construction of long-lived software. Section 3 introduces
the development process ADIT. How the ADIT artifacts can be used to support evolution
is shown in Sect. 4. Related work is discussed in Sect. 5, and we conclude in Sect. 6.



2 Models, Patterns, and Components

Models, patterns, and components are all relatively recent techniques that have turned out
to be beneficial for software development. Models provide suitable abstractions, patterns
support the re-use of development knowledge, and components allow one to assemble soft-
ware from pre-fabricated parts. These three techniques contribute to the maturing of the
discipline of software technology by introducing engineering principles that have counter-
parts in other engineering disciplines.

2.1 Models

The idea of model-based software development is to construct a sequence of models that
are of an increasing level of detail and cover different aspects of the software development
problem and its solution. The advantage of this procedure is that it supports a separation of
concerns. Each model covers a certain aspect of the software to be developed, and ignores
others. Hence, to obtain specific information about the software, it suffices to inspect only
a subset of the available documentation.

Using models contributes to developing long-lived software, because the models constitute
a detailed documentation of the software that is well suited to support evolution. Of course,
the models and the code must be kept consistent. The process we describe in Sect. 4
guarantees that this is the case, because it first adjusts the models, before the code is
changed.

Today, the Unified Modeling Language [For06] is commonly used to express the models
set up during a model-based development process. For UML, extensive tool support is
available. The ADIT process described in Sect. 3 mostly makes use of UML notations.

2.2 Patterns

Patterns are abstractions of software artifacts (or models). They abstract from the application-
specific parts of the artifact and only retain its essentials. Patterns are used by instantiation,
i.e., providing concrete values for the variable parts of the pattern.

Patterns exist not only as design patterns [GHJV95] (used for fine-grained software de-
sign), but for every phase of software development, including requirements analysis [JacO1,
Fow97], architectural design [SG96], implementation [Cop92], and testing [Bin00].

Since patterns can be regarded as templates for software development models, model- and
pattern-based software development approaches fit very well together. Patterns further
enhance the long-livedness of software: first, since the purpose of the different patterns
is known, the use of patterns supports program comprehension. Second, patterns enhance
the structure of software, e.g., by decoupling different components. Thus, evolution tasks
can be performed without tampering too much with the software’s structure.

Problem Frames [Jac01] are patterns that can be used in requirements analysis. Since they
are less known than the other kinds of patterns just mentioned, we briefly describe them in
the following. The ADIT process makes use of problem frames.

2.2.1 Problem Frames

Problem frames are a means to describe software development problems. They were in-
vented by Jackson [JacO1], who describes them as follows: “A problem frame is a kind of
pattern. It defines an intuitively identifiable problem class in terms of its context and the


sauer
Rechteck


characteristics of its domains, interfaces and requirement.” Problem frames are described
by frame diagrams, which consist of rectangles, a dashed oval, and links between these
(see frame diagram in Fig. 1). All elements of a problem frame diagram act as placehold-
ers which must be instantiated by concrete problems. Doing so, one obtains a problem
description that belongs to a specific problem class.

ETIE ) va
WPIY2 Workpieces |- _ .
e
Editing I,' Command \\
tool '
effects
USIE3 User .-°" E3
E3: wuser commands ,—
El: editing operations B
Y2: workpieces status
Y4: workpieces properties

Figure 1: Simple workpieces problem frame

Plain rectangles denote problem domains (that already exist in the application environ-
ment), a rectangle with a double vertical stripe denotes the machine (i.e., the software)
that shall be developed, and requirements are denoted with a dashed oval. The connect-
ing lines between domains represent interfaces that consist of shared phenomena. Shared
phenomena may be events, operation calls, messages, and the like. They are observable by
at least two domains, but controlled by only one domain, as indicated by an exclamation
mark. For example, in Fig. 1 the notation US!E3 means that the phenomena in the set E3
are controlled by the domain User. A dashed line represents a requirements reference. It
means that the domain is mentioned in the requirements description. An arrow at the end
of such a dashed line indicates that the requirements constrain the problem domain. In
Fig. 1, the Workpieces domain is constrained, because the Editing tool has the role
to change it on behalf of user commands for achieving the required Command effects.
Each domain in a frame diagram has certain characteristics. In Fig. 1 the x indicates that
the corresponding domain is a lexical domain. A lexical domain is used for data repre-
sentations.A B indicates that a domain is biddable. A biddable domain usually represents
people [JacO1].

Problem frames support developers in analyzing problems to be solved. They show what
domains have to be considered, and what knowledge must be described and reasoned
about when analyzing the problem in depth. Thus, the problem frame approach is much
more than a mere notation.! Other problem frames besides simple workpieces frame are
required behaviour, commanded behaviour, information display, and transformation.
After having analyzed the problem, the task of the developer is to construct a machine
based on the problem described via the problem frame that improves the behavior of the
environment it is integrated in, according to its respective requirements.

2.3 Components

Component-based development [CD01, SGMO02] tries to pick up principles from other
engineering disciplines and construct software not from scratch but from pre-fabricated

IThe diagrams used in the problem frame approach can easily be translated to UML class models, using a
number of stereotypes. For a UML metamodel of problem frames, see [HHSO08].


sauer
Rechteck


parts. Here, interface descriptions are crucial. These descriptions must suffice to decide if
a given component is suitable for the purpose at hand or not. It should not be necessary
(and, in some cases, it may even be impossible) to inspect the code of the component.

Using components makes it easier to construct long-lived software, because components
can be replaced with new ones that e.g. provide enhanced functionality, see [HS04,
LHHSO07, CHS09]. Again, it becomes apparent that evolvability and long-livedness are
deeply intertwined.

Component-based software development fits well with model- and pattern-based devel-
opment: components can be described by models, and they can be used as instances of
architectural patterns.

3 The ADIT development process

In the following, we describe the original development process ADIT that serves as basis
for our evolution method in Sect. 4. ADIT is a model-driven, pattern-based development
process also making use of components. In this paper we consider the analysis and design
phases. To illustrate the different steps within the phases, we briefly describe what the
purpose of the different steps is and how they can be realized. We also indicate in bold
face the model, pattern, and component techniques that are relevant for the respective step.
Should any of the three mentioned techniques not be described in a certain step, then the
technique is not used in the respective step.

Al Problem elicitation and description

To begin with, we need requirements that state our needs. Requirements are expressed
in natural language, for example “A guest can book available holiday offers, which then
are reserved until payment is completed.”, “A staff member can record when a payment
is received.” In this step, also domain knowledge is stated, which consists of facts and
assumptions. An example of a fact is that each vacation home can be used by only one
(group of) guests at the same time. An example of an assumption is that each guest either
pays the full amount due or not at all (i.e., partial payments are not considered). We now
must find an answer to the question: “Where is the problem located?”. Therefore, the
environment in which the software will operate must be described. A model which can
be used to answer the question is a context diagram [Jac01]. Context diagrams are similar
to problem diagrams but it does not take requirements references into account. A context
diagram for our vacation rentals example is shown in Fig. 3. Thus, the output of this step
is: the context diagram, the requirements and the domain knowledge.

A2 Problem decomposition

We answer the question: “What is the problem?” in this second step. To answer the
question, it is necessary to decompose the overall problem described in Al into small
manageable subproblems. For decomposing the problem into subproblems, related sets of
requirements are identified first. Second, the overall problem is decomposed by means of
decomposition operators. These operators are applied to context diagram. Examples of
such operators are Leave out domain (with corresponding interfaces), Refine phenomenon,
and Merge several domains into one domain . After applying the decomposition operators
we have our set of subproblems with the corresponding operators that were applied to
obtain the different subproblems. Furthermore, the subproblems should belong to known
classes of software development problems, i.e., they should fit fo patterns for such known
classes of problems. In our case it should be possible to fit them to problem frames. Fitting
a problem to a problem frame is achieved by instantiating the respective frame diagram.


sauer
Rechteck


Instantiated frame diagrams are called problem diagrams. These serve as models for this
second analysis step. Thus, the output of this step is a set of problem diagrams being
instances of problem frames.

A3 Abstract software specification

In the previous step, we were able to find out what the problem is by means of problem
diagrams. However, problem diagrams do not state the order in which the actions, events,
or operations occur. Furthermore, we are still talking about requirements. Requirements
refer to problem domains, but not to the machine, i.e., the software that should be built.
Therefore, it is necessary to transform requirements into specifications (see [JZ95] for
more details). We use UML sequence diagrams as models for our specifications. Se-
quence diagrams describe the interaction of the machine with its environment. Messages
from the environment to the machine correspond to operations that must be implemented.
These operations will be specified in detail in Step AS. The output of this step is a set of
specifications for each subproblem.

A4 Technical infrastructure

In this step, the technical infrastructure in which the machine will be embedded is spec-
ified. For example, a web application may use the Apache web server. The notation for
the model in this step is the same as in A1, namely a context diagram. As it describes the
technical means used by the machine for communicating with its environment, we refer to
it as technical context diagram. In this step we can make use of components for the first
time. Usually, we rely on the APIs of those prefabricated components in order to describe
the technical means, e.g., on the API of the Apache web server.

A5 Operations and data specification

The models set up in this step are class diagrams for the internal data structures and pre-
and postconditions for the operations identified in step A3. These two elements constitute
the output of this step.

A6 Software life-cycle

In the final analysis step, the overall behavior of the machine is specified. Here, behavioral
descriptions such as life-cycle expressions [CABT94] can be used as a model. In our
case this means that in particular, the relation between the sequence diagrams associated
to the different subproblems is expressed explicitly. We can relate the sequence diagram
sequentially, by alternative, or in parallel.

With the software life-cycle as output we conclude the analysis phase and move on to the
design phase.

D1 Software architecture

The first step of the design phase is aimed at giving a coarse-grained structure to the soft-
ware. This structure can be illustrated by using structural description models, such as
UML 2.0 composite structure diagrams. We assign a candidate architecture to each sub-
problem, making use of architectural patterns for problem frames [CHHO06]. Thus, we
obtain a set of sub-architectures. Some components within these sub-architectures are
pre-fabricated or pre-existing, e.g. for the web application example we make use of a
pre-existing SMTP-Client. The architectural patterns lead us to a layered architecture con-
sisting of an application layer, an interface abstraction layer (IAL) abstracting technical
phenomena to application related ones, and a hardware abstraction layer (HAL) repre-
senting hardware drivers. The overall architecture must be derived from the subproblem
architectures. The crucial point of this step is to decide if two components contained in


sauer
Rechteck


different subproblem architectures should occur only once in the global architecture, i.e., if
they should be merged. To decide this question, we make use of the information expressed
in Step A6 and by applying merging rules. An example for such a rule is “Adapters and
storage components belonging to the same physical device or data storage are merged.”
These rules are described in more detail in [CHHO6].

Figure 2 illustrates the global software architecture of our vacation rentals example, i.e.
the output of this step. Furthermore, we have a first skeleton of the interfaces connecting

the different components in our architecture by taking advantage of the information of the
analysis phase [HHO09].

VacationRentals

VacationRentalsApplication

I o o
oL

Invoice Check

IHolidayOffer

(—O—]
O]

DB Adapter Guest Staff eMail Adapter Timer
ues|
Interface Member -
[0..7] Intejface :ModuIAPI
5 (0. 0
Holiday Offer
+ Review SMTP Client
(Driver + DBMS)

) LJ
ApacheAPI ApacheAPI SMTPI
U O

Apache eMail Server

Staff Member / Guest Guest

Figure 2: Global software architecture of vacation rentals

D2/D3/D4 Inter-component interaction/ intra-component interaction/ complete compo-
nent or class behavior

Steps D2-D4 treat the fine-grained design. In these steps, the internal structure of the soft-
ware is further elaborated. Several patterns can be applied in these steps, such as design
patterns, patterns for state machines, etc.

Note that we are not treating these steps further in this paper.

4 Evolution Method

During the long lifetime of a software it is necessary to modify and update it to meet new or
changed requirements and/or environment to accommodate it to the changing environment
where it is deployed in. This process is called software evolution. The new requirements
that should be met are called evolution requirements. An example for such an evolution
requirement is “Guests can write a review, after they have left their vacation home.” Mod-
ified or additional domain knowledge is referred to as aD. An example for some new
domain knowledge is the additional assumption that “Guests write fair reviews”.

We define a corresponding evolution step for each ADIT step. These steps address the
special needs arising in software evolution by providing operators leading from one model
to another and an explicit tracing between the different models. Basically, we perform a
replay of the original method, adding some support for software evolution.


sauer
Rechteck


In the following we illustrate the steps to be performed for software evolution. As an
example, we evolve the vacation rentals application introduced in Sect. 3.

EAOQ0 Requirements relation

Not all development models will be affected by the evolution task. Therefore, we first
have to identify those models that are relevant. For that purpose, we relate the evolution
requirements to the original requirements. We identified several relations the original and
evolution requirements may share:

e similar: a functionality similar to the one to be incorporated exists.

e extending: an existing functionality is refined or extended by the evolution task.

e new: the functionality is not present yet, and it is not possible to find anything that
could be similar or extended.

e replacing: the new functionality replaces the existing one.

As a means of representation, we use a table. This table —together with other tables that
are created during the process — serve for tracing purposes. An example of such a repre-
sentation is shown in Tab. 1.

The entry “recordPayment” in the first row refers to the requirement involving the staff
member which has been introduced in Sec. 3. The entry “writeReview” in the first col-
umn refers to the above mentioned evolution requirement. The table is read as follows:
“writeReview” is similar to “recordPayment”.

recordPayment
writeReview similar

Table 1: Excerpt of relation between requirements and evolution requirements for vacation rentals

The requirements sharing a relation with the evolution requirements are collected to form
the set of relevant requirements (rel_set). This set then constitutes the focus for our further
investigation.

EA1 Adjust problem elicitation and description

We use the output of Al, i.e., context diagram as input for the first step of the evolution
method. We revise this context diagram by incorporating the new/changed requirements
and domain knowledge to it. To support the engineers, we defined evolution operators,
similar to the original operators, to ease modifying the context diagram. The operators
relevant for this step are (for more details refer to [CHWO7]):

add new domain — A new domain has to be added to the context diagram.

modify existing domain — A domain contained in the context diagram has to be modified,
e.g. by splitting or merging.

add new phenomenon — A new phenomenon is added to an interface of the context dia-
gram.

modify existing phenomenon — An existing phenomenon has to be modified in the con-
text diagram, e.g. by renaming.


sauer
Rechteck


In some cases, it may also occur that neither domains nor shared phenomena are newly
introduced. Then, no changes to the context diagram are necessary at this place, but the
new requirements/domain knowledge may require changes in later steps.

The resulting context diagram now represents the new overall problem situation (cf. Fig.
3). The modifications are highlighted through bold-italic font, e.g., a phenomenon writeRe-
view has been added to the interface between the domains guest and vacation rentals (op-
erator add new phenomenon). Furthermore, add new domain and add new phenomenon
have been applied to introduce the domain Review with the corresponding phenomenon
writingReview.

V{Status}
Home

Staff
Member

S{makeHolidayOffer, recordPayment, browseBookings, rate}

Bl{Payments} H!{availableHolidayOffer, Bookings
reservedHolidayOffer, paidHolidayOffer}
VR!{makingHolidayOffer,recordingPayment, setAvailableHolidayOffer
bookingHolidayOffer}

Vacation
Rentals

VRY{Invoice}

VR!{writingReview}

Gl{payInvoice} Gl!{browseHolidayOffers, bookHolidayOffer,

writeReview}
GUeSt IW
Gl{arrive, leave} E n

Figure 3: Context diagram with revisions

EA2 Adjust problem decomposition

In this step we take the output of A2, i.e., the resulting set of problem diagrams, as well

as the operators that were applied to the context diagram for the decomposition as input.

Furthermore, we use both the context diagram created in EA1, as well as the rel_set of

EAOQ as additional input. As we modified the context diagram by applying some operators,

this has impacts on the problem decomposition, as well. Therefore, it is necessary to

investigate the existing subproblems. We again define evolution operators to guide the

engineer.

Examples of evolution operators for this step are:

integrate eR in existing problem diagram — New domains and associated shared phe-
nomena may be added to an existing problem diagram.

eR cannot be added to existing subproblem - create new one — The eR is assigned to
a given subproblem, but the resulting subproblem then gets too complex. Hence, it
is necessary to split the subproblem into smaller subproblems.
More details on these operators can be found in [CHWO7].
In addition it is necessary to check whether the resulting problem diagrams still fit to
problem frames or, for new subproblems, to find an appropriate frame to be instantiated,
e.g. via operators such as fit fo a problem frame or choose different problem frame.
Figure 4 shows the problem diagram for the evolution requirement “writeReview” (oper-
ator eR cannot be added to existing subproblem - create new one). As we know that it
is similar to “recordPayment” we check whether it is possible to apply the same problem
frame. In this case, this is the problem frame simple workpieces (cf. Fig. 1). It is obvious
that our problem diagram is an instance of that problem frame (operator fit to a problem
frame).


sauer
Rechteck


VRY{writingReview}
R!{postedReview}

I Review

"=~ __ writingReview

II VR_post \/j'writeReview")
GHwriteReview} T i writeReview

Vacation

Figure 4: Problem diagram for “writingReview’

1

EA3 Adjust abstract software specification

The sequence diagrams of A3 serve as input for this step, together with the results of EA2.
Whenever an existing sequence diagram has to be investigated, the following cases may
occur:

e Operator integrate eR in existing problem diagram was applied.
Operator name: use existing sequence diagram

The existing diagram has to be modified in such a way that it can handle the ad-
ditional behavior by adding messages, domains etc. to the corresponding sequence
diagram. The changes reflect the modifications made in EA2. It may also be neces-
sary to add new sequence diagrams, as well.

e The parameters of existing messages must be adapted.
Operator name: modify parameter

Existing parameters must be either modified (rename), extended (add) or replaced.
Otherwise, the sequence diagram remains unchanged.

e Operator eR cannot be added to existing subproblem - create new one was applied.
Operator name: no operator
The original ADIT step must be applied.

EA4 Adjust technical software specification
The original technical context diagram is adapted to meet the new or changed situation.
The procedure is the same as in A4.

EAS Adjust operations and data specification

The actions performed in EA3 trigger the modification. For example, a message on the se-
quence diagram as been modified. These changes are then also made in the corresponding
operations in this step. For newly introduced operations, the original method is applied.

EA6 Adjust software life-cycle
New relations need to be incorporated. Existing relations need to be adapted, accordingly.
However, the behavior that has not been altered by the evolution task must be preserved.

ED1 Adjust software architecture

We use the revised subproblems of Step EA2 as input. For our example we were able
to apply the same architectural style for “writeReview” as we did for “recordPayment”.
Therefore, we can apply the same merging rules, as well. Figure 2 illustrates the resulting
global architecture. The changes are indicated in italics and bold face.


sauer
Rechteck


The interfaces are adapted according to the changes made in the analysis phase based
on operators such as modify interface, add new component, or add new interface. For
example, we introduced a new message “writeReview()” in step EA3 (as consequence
of operator eR cannot be added to existing subproblem - create new one). By doing a
replay of the merging rules, we know, that it is necessary to extend the existing interfaces
IHolidayOffer and GCmds (operator modify interface). As writing a review is performed
after guests have taken the holiday offer the component Review can be merged with the
existing component Holiday Offer (operator modify component) resulting in a modification
of the corresponding interface SQLCmds (operator modify interface), as well.

5 Related Work

This work takes up ideas from modern software engineering approaches and processes,
such as the Rational Unified Process (RUP) [JBR99], Model-Driven Architecture (MDA)
[MSUWO4], and Service-Oriented Architecture (SOA) [Erl05]. All these approaches are
model-driven, which means that in principle, an evolution process for them can be defined
in a similar way as for the ADIT process.

The work of O’Cinnéide and Nixon [ON99] aims at applying design patterns to existing
legacy code in a highly automated way. They target code refactorings. Their approach is
based on a semi-formal description of the transformations themselves, needed in order to
make the changes in the code happen. They describe precisely the transformation itself
and under which pre- and postconditions it can successfully be applied.

Our approach describes and applies model transformation in a rather informal way. The
same is true for the transformation approaches cited above. Czarnecki and Helsen give an
overview of more formal model transformation techniques [CHO3].

Researchers have used versions and histories to analyze different aspects considering soft-
ware evolution. Ducasse et al. [DGF04] propose a history meta-model named HISMO.
A history is defined as a sequence of versions. The approach is based on transformations
aimed at extracting history properties out of structural relationships. Our approach does
not consider histories andhow to analyze them. In contrast, we introduce a method for ma-
nipulating an existing software and its corresponding documentation in a systematic way
to perform software evolution.

ROSE is the name of a tool created by Zeller et al. [ZWDZ05], which makes use of data
mining techniques to extract recurring patterns and rules that allow to offer advice for new
evolution tasks. The tool can propose locations where a change might occur based on the
current change, help to avoid incomplete changes, and detect coupling that would not be
found by performing program analysis. It does, however, not provide help on what to do
once a potential location has been identified. With our method we intend to provide help
to systematically modify source code after the corresponding part has been located.

Detecting logical coupling to identify dependencies among modules etc. has been the
research topic of Gall et al.[GHJ98]. Those dependencies can be used to estimate the
effort needed to carry out maintenance tasks, to name an example. Descriptions in change
reports are used to verify the detected couplings. The technique is not designed to change
the functionality of a given software.

Others investigate software evolution at run-time [Piz02]. Evolving a software system at
run-time puts even more demands on the method used than ordinary software systems.
Our approach does not take run-time evolution into account.


sauer
Rechteck


Sillito et al. [SMDVO06] conducted a survey to capture the main questions programmers
ask when confronted with an evolution task. These fit well to our method as they can be
used to refine the understanding of the software at hand especially in later phases.

We agree with Mens and D’Hondt [MDOO] that it is necessary to treat and support evo-
lution throughout all development phases. They extend the UML meta-model by their
so-called evolution contracts for that reason. The aim is to automatically detect conflicts
that may arise when evolving the same UML model in parallel. This mechanism can very
well be integrated into our method to enhance the detection of inconsistencies and con-
flicts. Our approach, however, goes beyond this detection process. It strives towards an
integral method for software evolution guiding the software engineer in actually perform-
ing an evolution task throughout all development phases.

The field of software evolution cannot be examined in isolation as it has contact points
with other disciplines of software engineering. An example is the work of Demeyer et al.
[DDNO2]. They provide a pattern system for object-oriented reengineering tasks. Since
software evolution usually involves some reengineering and also refactoring [Fow00] ef-
forts, it is only natural that known and successful techniques are applied in software evo-
lution, as well. Software evolution, however, goes beyond restructuring source code. Its
main goal is to change the functionality of a given software.

Furthermore, software evolution can profit from the research done in the fields of fea-
ture location e.g. [ESW06, KQO5], re-documentation, e.g. [CY07, WTM™195], and agile
development processes such as extreme programming [Bec99].

Finally, we have to mention another paper of ours on pattern-based software evolution for
component-based systems [CHS09]. In this paper, we give architectural evolution patterns
that can be used to evolve component architectures.

6 Conclusions

In this paper, we have pointed out that using models, patterns, and components is a promis-
ing approach to develop long-lived software. However, long-lived software needs to un-
dergo evolution. Therefore, we have shown how software that was developed according to
a model-/pattern-/component-based process can be evolved in a systematic way. We have
applied our method successfully on several software systems amongst them open source
software such as Doxygen [Hee09].

In the future, we intend to elaborate on the model transformations that are needed to per-
form the evolution steps. We will formalize the model transformations and also provide
further tool support for the evolution process. Furthermore, we plan on conducting further
evolution tasks on other open source projects to validate the method as well as the tool.

References

[Bec99] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley,
1999.

[Bin00] Robert Binder. Testing Object-Oriented Systems. Addison-Wesley, 2000.

[CABT94] D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes, and P. Jeremaes.
Object-Oriented Development: The Fusion Method. Prentice Hall, 1994. (out of print).

[CDO1] John Cheesman and John Daniels. UML Components — A Simple Process for Specifying
Component-Based Software. Addison-Wesley, 2001.


sauer
Rechteck


[CHO3]

[CHHO6]

[CHS09]

[CHWO07]

[Cop92]
[CYO07]

[DDNO2]

[DGF04]

[EGG109]
[Erl05]
[ESW06]
[For06]

[Fow97]
[Fow00]

[GHJ98]

[GHIV95]
[Hee09]

[HHO9]

Krzysztof Czarnecki and Simon Helsen. Classification of Model Transformation Ap-
proaches. In Proc. of the 2nd OOPSLA Workshop on Generative Techniques in the
Context of MDA, 2003.

C. Choppy, D. Hatebur, and M. Heisel. Component composition through architectural
patterns for problem frames. In Proc. XIII Asia Pacific Software Engineering Conf.,
pages 27-34. IEEE Computer Society, 2006.

Isabelle Coté, Maritta Heisel, and Jeanine Souquieres. On the Evolution of
Component-based Software. In 4th IFIP TC2 Central and Eastern European Conf. on
Software Engineering Techniques CEE-SET 2009. Springer-Verlag, 2009. to appear.

Isabelle Coté, Maritta Heisel, and Ina Wentzlaff. Pattern-based Exploration of Design
Alternatives for the Evolution of Software Architectures. Int. Journal of Cooperative
Information Systems, World Scientific Publishing Company, Special Issue of the Best
Papers of the ECSA’07, December 2007.

J. O. Coplien. Advanced C++ Programming Styles and Idioms. Addison-Wesley, 1992.

Feng Chen and Hongji Yang. Model Oriented Evolutionary Redocumentation. In
COMPSAC °07: Proc. of the 31st Annual Int. Computer Software and Applications
Conference - Vol. 1- (COMPSAC 2007), pages 543-548, Washington, DC, USA, 2007.
IEEE Computer Society.

S. Demeyer, S. Ducasse, and O. Nierstrasz. Object-Oriented Reengineering Patterns.
Morgan Kaufmann, 2002.

Stéphane Ducasse, Tudor Girba, and Jean-Marie Favre. Modeling Software Evolution
by Treating History as a First Class Entity. In Proc. on Software Evolution Through
Transformation (SETra 2004), pages 75-86, Amsterdam, 2004. Elsevier.

G. Engels, M. Goedicke, U. Goltz, A. Rausch, and R. Reussner. Design for Future —
Legacy-Probleme von morgen vermeidbar? Informatik-Spektrum, 20009.

T. Erl. Service-Oriented Architecture (SOA): Concepts, Technology, and Design. Pren-
tice Hall PTR, 2005.

Dennis Edwards, Sharon Simmons, and Norman Wilde. An approach to feature loca-
tion in distributed systems. In Journal of Systems and Software, 2006.

UML Revision Task Force. OMG Unified Modeling Language: Superstructure, April
2006. http://www.omg.org/docs/ptc/06-04-02.pdf.

M. Fowler. Analysis Patterns: Reusable Object Models. Addison Wesley, 1997.

M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley,
2000.

Harald Gall, Karin Hajek, and Mehdi Jazayeri. Detection of Logical Coupling Based
on Product Release History. In ICSM ’98: Proc. of the Int. Conf. on Software Mainte-
nance, page 190, Washington, DC, USA, 1998. IEEE Computer Society.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns — Elements of
Reusable Object-Oriented Software. Addison Wesley, Reading, 1995.

D. van Heesch. Doxygen - A Source Code Documentation Generator Tool, 2009.
http://www.stack.nl/ dimitri/doxygen.

D. Hatebur and M. Heisel. Deriving Software Architectures from Problem Descrip-
tions. In Jiirgen Miinch and Peter Liggesmeyer, editors, Workshop Modellgetriebene
Softwarearchitektur — Evolution, Integration und Migration (MSEIM), Software Engi-
neering 2009, LNI P-150, pages 383—-392, Bonn, 2009. Bonner Koéllen Verlag.


sauer
Rechteck


[HHSO08]

[HS04]

[JacO1]
[JBR99]

[JZ95]

[(KQO5]

[LHHSO07]

[MDO00]
[MSUWO04]

[ON99]

[Par94]
[Piz02]
[SG96]
[SGMO02]

[SMDVO06]

[WTIM™95]

[ZWDZ05]

Denis Hatebur, Maritta Heisel, and Holger Schmidt. A Formal Metamodel for Prob-
lem Frames. In Proc. of the Int. Conf. on Model Driven Engineering Languages and
Systems (MODELS), volume 5301, pages 68-82. Springer Berlin / Heidelberg, 2008.

Maritta Heisel and Jeanine Souquieres. Adding Features to Component-Based Sys-
tems. In M.D. Ryan, J.-J. Ch. Meyer, and H.-D. Ehrich, editors, Objects, Agents and
Features, LNCS 2975, pages 137-153. Springer, 2004.

M. Jackson. Problem Frames. Analyzing and structuring software development prob-
lems. Addison-Wesley, 2001.

L. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software Development Process.
Addison-Wesley, 1999.

M. Jackson and P. Zave. Deriving Specifications from Requirements: an Example. In
Proc. 17th Int. Conf. on Software Engineering, Seattle, USA, pages 15-24. ACM Press,
1995.

Rainer Koschke and Jochen Quante. On dynamic feature location. In ASE "05: Proc.
of the 20th IEEE/ACM Int. Conf. on Automated Software Engineering, pages 86-95,
New York, NY, USA, 2005. ACM.

Arnaud Lanoix, Denis Hatebur, Maritta Heisel, and Jeanine Souquieres. Enhancing
Dependability of Component-Based Systems. In N. Abdennadher and F. Kordon, ed-
itors, Reliable Software Technologies — Ada Europe 2007, LNCS 4498, pages 41-54.
Springer, 2007.

Tom Mens and Theo D’Hondt. Automating support for software evolution in UML.
Automated Software Engineering Journal, 7(1):39-59, February 2000.

S. J. Mellor, K. Scott, A. Uhl, and D. Weise. MDA Distilled. Addison-Wesley Profes-
sional, 2004.

M. O’Cinnéide and P. Nixon. A Methodology for the Automated Introduction of De-
sign Patterns. In ICSM ’99: Proc. of the IEEE Int. Conf. on Software Maintenance,
page 463, Washington, DC, USA, 1999. IEEE Computer Society.

D. L. Parnas. Software aging. In ICSE '94: Proc. of the 16th Int. Conf. on Software
Engineering, pages 279-287, Los Alamitos, CA, USA, 1994. IEEE Comp. Soc. Press.

M. Pizka. STA — A Conceptual Model for System Evolution. In Int. Conf. on Software
Maintenance, pages 462 — 469, Montreal, Canada, October 2002. IEEE CS Press.

M. Shaw and D. Garlan. Software Architecture. Perspectives on an Emerging Disci-
pline. Prentice-Hall, 1996.

C. Szyperski, D. Gruntz, and S. Murer. Component Software. Pearson Education, 2002.
Second edition.

J. Sillito, G. C. Murphy, and K. De Volder. Questions programmers ask during software
evolution tasks. In SIGSOFT '06/FSE-14: Proc. of the 14th ACM SIGSOFT Int. Sym-
posium. on Foundation of Software Engineering, pages 23-34, New York, NY, USA,
2006. ACM.

K. Wong, S. R. Tilley, H. A. Muller, M. D. Storey, and T. A. Corbi. Structural redocu-
mentation: A case study. IEEE Software, 12:46-54, 1995.

T. Zimmermann, P. Weissgerber, S. Diehl, and A. Zeller. Mining Version Histories
to Guide Software Changes. IEEE Transactions on Software Engineering, 31(6):429—
445, June 2005.


sauer
Rechteck


