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Abstract: Self-adaptive or autonomic systems are computing systems which are able
to manage/adapt themselves at runtime according to certain high-level goals. It is
appropriate to equip software systems with adaptation capabilities in order to optimize
runtime properties, such as performance, availability, or operating costs. Architectural
models are often used to guide system adaptation. When engineering such systems, a
number of cross-cutting design decisions, e.g. instrumentation, targeting at a system’s
later operation/maintenance phase must and can be considered during early design
stages.

In this paper, we discuss some of these required design decisions for adaptive
software systems and how models can help in engineering and operating these systems.
The discussion is based on our experiences, including those gathered from evaluating
research results in industrial settings. To illustrate the discussion, we use our self-
adaptation approach SLAstic to describe how we address the discussed issues. SLAstic
aims to improve a software system’s resource efficiency by performing architecture-
based runtime reconfigurations that adapt the system capacity to varying workloads,
for instance to decrease the operating costs.

1 Introduction

Self-managed or autonomic systems are those systems which are able to adapt themselves
according to their environment [11]. Self-adaptation can be described as a cycle of three
logical phases [19]: observation, analysis, and adaptation. The observation phase is con-
cerned with monitoring (e.g., system behavior or system usage). The analysis phase de-
tects triggers for adaptation and, if required, selects suitable adaptation operations, which
are executed in the adaptation phase. A recent survey on self-adaptation research can be
found in [5].

When engineering such systems, various non-functional aspects need to be considered.
Trade-offs between QoS (Quality of Service) requirements, such as a performance, avail-
ability, and operating costs have to be addressed. Thus, requirements of system operation
have a significant impact on the required design decisions of system engineering.

We illustrate the discussion of required design decisions based on the description of our
self-adaptation approach SLAstic [24]. SLAstic aims to improve the resource efficiency



of component-based software systems, with a focus on business-critical software systems.
Architectural models, specifying both functional and non-functional properties, play a cen-
tral role in the SLAstic approach as they are not only used for the specification of the sys-
tem at design time. The same models are updated by measurement data at runtime and
used for the required analysis tasks in order to achieve the self-adaption goals. SLAstic
explicitly considers a flexible system capacity in the software architecture.

The contribution of this paper is a discussion of design decisions that are required at design
time for an effective operation at runtime of continuously operating software systems, such
as business-critical software systems. We discuss the role of models in this context. This
discussion is based on our experience and lessons learned from lab studies and industrial
field studies with our monitoring framework Kieker [20].1 We illustrate how these design
decisions are addressed in our SLAstic approach for adaptive capacity management.

This paper is structured as follows: Section 2 describes the architecture-based self-
adaptation approach SLAstic aiming to support a resource-efficient operation of software
systems. Based on this, Section 3 discusses design decisions for engineering and operating
self-adaptive software systems and how they are addressed in the SLAstic approach. The
conclusions are drawn in Section 4.

2 The SLAstic Framework

With SLAstic, resource efficiency of continuously operating software is improved by
adapting the number of allocated server nodes and by performing fine-grained architectural
reconfigurations at runtime according to current system usage scenarios (workload) while
satisfying required external QoS objectives (as specified in service level agreements). It is
not the goal of this paper to present the SLAstic framework in detail. Instead, it is intended
to be used for illustration in our discussion in Section 3.

2.1 Assumptions on Software System Architectures

We assume a hierarchical software system architecture consisting of the following types
of hardware and software entities: (1) server node, (2) component container, and (3) soft-
ware component. This allows to design the SLAstic self-adaptation framework in a way
that provides reusability among different system implementations sharing common archi-
tectural concepts. Figure 1 illustrates this hierarchical structure with a Java EE example.

The business logic of a software system is implemented in a number of software com-
ponents with well-defined provided and required interfaces. Software components con-
stitute units of deployment [22] and can be assembled or connected via their interfaces.
Through their provided interfaces, they provide services to other software components or
systems. Software components are deployed into component containers, which constitute

1http://kieker.sourceforge.net
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Figure 1: Illustration of a hierarchical software system architecture

their execution context and provide middleware services, such as transaction management.
Moreover, a component container manages the thread pool used to execute external service
requests. Web servers or Java EE application servers are typical examples for component
containers. A component container is installed on a server node consisting of the hardware
platform and the operating system. Server nodes communicate via network links. For a
software system, a set of server nodes is allocated from a server pool. We denote the set
of allocated server nodes, the assembly of software components, as well as its deployment
to component containers as the software system’s architectural configuration.

Structural and behavioral aspects of a software system’s architecture can be described
using architecture description languages (ADL). Components, interfaces, and connectors
for architectural configurations are common (structural) features of ADLs [16]. A recent
survey of ADLs can be found in [23].

2.2 Framework Architecture

The SLAstic framework aims to equip component-based software systems, as described
in the previous Section 2.1, with self-adaptation capabilities in order to improve its re-
source efficiency. Figure 2 depicts how the concurrently executing SLAstic compo-
nents for monitoring (SLAstic.MON), reconfiguration (SLAstic.REC), and adaptation
control (SLAstic.CONTROL) are integrated and how they interact with the monitored
software system. It shows the typical, yet rather general, external control loop for adapta-
tion [9].

The software system is instrumented with monitoring probes which continuously collect
measurement data from the running system. The SLAstic.MON component provides the
monitoring infrastructure and passes the monitoring data to the SLAstic.CONTROL com-
ponent. The SLAstic.CONTROL component, detailed later in Figure 4 of Section 3.2,
analyzes the current architectural configuration with respect to the monitoring data and,
if required, determines an adaptation plan consisting of a sequence of reconfiguration op-
erations. The adaptation plan is communicated to the SLAstic.REC component which
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Figure 2: SLAstic self-adaptation system overview

is responsible for executing the actual reconfiguration operations. SLAstic employs our
Kieker framework for continuous monitoring and online analysis.

2.3 Reconfiguration Operations

Although, the SLAstic framework, in principle, supports arbitrary architectural reconfig-
uration operations, we will restrict us to the following three operations, illustrated in Fig-
ure 3.

(1) Node Allocation & Deallocation. A server node is allocated or deallocated, re-
spectively. In case of an allocation, this includes the installation of a component
container, but it does not involve any (un)deployment operation of software compo-
nents. Intuitively, the goal of the allocation is the provision of additional computing
resources and the goal of the deallocation is saving operating costs caused by power
consumption or usage fees, e.g. in cloud environments.

(2) Component Migration. A software component is undeployed from one execution
context and deployed into another. The goals of this fine-grained application-level
operation are both to avoid the allocation of additional server nodes or respectively
to allow the deallocation of already allocated nodes by executing adaptation opera-
tion (1).
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Figure 3: SLAstic reconfiguration operations

(3) Component (de-)Replication This application-level operation consists of the dupli-
cation of a software component and its deployment into another execution context
(as well as the reverse direction). Future requests to the component are distributed
between the available component instances. The goals of this application-level op-
eration are the same as the goals of operation (2).

3 Required Design Decisions and the Role of Models

The following three Subsections 3.1–3.3 discuss design decisions and the role of models
related to monitoring, analysis, and adaptation, respectively.

3.1 Monitoring

In order to obtain the required information to control adaptation, a system needs to be
instrumented with monitoring probes. Monitoring can be performed at the different ab-
straction levels of a software system, i.e., platform (e.g., CPU utilization), container (e.g.,
number of available threads in a thread pool), and application (e.g., service response times)



level. For example, SLAstic continuously requires performance data, such as CPU utiliza-
tion, workload (system usage), and service response times.

Since adaptation concerns a running system in production use, continuous monitoring of
the system state is required. We argue that the integration of monitoring should be de-
signed in a systematic way and although mainly becoming relevant not before a system’s
operation phase, its integration should be considered early in the engineering process. In
the following paragraphs we will discuss design decisions regarding continuous monitor-
ing. In [7], we present a process model for application-level performance monitoring of
information system landscapes. The design decisions should be integrated into such an
engineering process.

Selection of Monitoring Probes A monitoring probe contains the logic which collects
and possibly pre-processes the data of interest from within the application. Probes can
measure externally visible behavior, e.g. service response times, but also application-
internal behavior, such as calling dependencies between components.

SLAstic requires different types of monitoring probes, collecting workload, resource us-
age, and timing data. An example not focusing on self-adaptation is application level fail-
ure diagnosis [1, 14] requiring probes for monitoring response times and internal control
flow of operation executions.

In practice, new application-internal monitoring probes are often only introduced in an
ad-hoc manner, as a result of a system failure. For example, a probe for monitoring the
number of available database connections in a connection pool may have been introduced.
The selection of the types of monitoring probes must be driven by the goal to be achieved
by the gathered monitoring data and depends on the analysis concern.

Number and Position of Monitoring Points In addition to the above-mentioned de-
cision of what types of monitoring probes are integrated into the system, important and
very difficult decisions regard the number and the exact locations of monitoring points.
This decision requires a trade-off between the information quality available to the analysis
tasks and the overhead introduced by possibly too fine-grained instrumentation leading to
an extensive size of the monitoring log. As the type of monitoring probes to use, does the
number and position depend on the goal of monitoring. Additionally, the different usage
scenarios of the application must be considered, since an equally distributed coverage of
activated monitoring points during operation is desirable.

Intrusiveness of Instrumentation A major maintainability aspect of application-level
monitoring is how monitoring logic is integrated into the business logic. Maintainability
is reduced if the monitoring code is mixed with the source code of the business logic,
because this reduces source code readability.

We regard the use of the AOP (Aspect-Oriented Programming) paradigm [12] as an ex-
tremely suitable means to integrate monitoring probes into an application [8]. A popular
Java-based AOP implementation is AspectJ. Many middleware technologies provide sim-



ilar concepts. Examples are the definition of filters for incoming Web requests in the Java
Servlet API, the method invocation interceptors in the Spring framework, or handlers for
incoming and outgoing SOAP messages in different Web service frameworks. Kieker cur-
rently supports AOP-based monitoring probes with AspectJ, Spring, Servlets, and SOAP.

Physical Location of the Monitoring Log The monitoring data collected within the
monitoring probes is written to the so-called monitoring log. The monitoring log is typi-
cally located in the filesystem or in a database. The decision which medium to use depends
on the amount of monitoring data generated at runtime, the required timeliness of analy-
sis, and possibly restricted access rights or policies. A filesystem-based monitoring log
is fast, since usually no network communication is required. The drawback is that online
analysis of the monitoring data is not possible or at least complicated in a distributed set-
ting. A database brings the benefit of integrated and centralized analysis support such as
convenient queries but is slower than a file system log due to network latencies and the
overhead introduced by the DBMS. Moreover, the monitoring data should not be written
to the monitoring log synchronously since this has a considerable impact on the timing
behavior of the executing business service.

Since SLAstic performs the analysis online, it requires fast and continuous access to recent
monitoring data. For this reason, the SLAstic.MON and SLAstic.CONTROL components
communicates monitoring data via JMS messaging queues. Kieker includes different syn-
chronous and asynchronous monitoring log writers for filesystem, database, and for JMS
queues.2 Customized writers can be integrated into Kieker.

Monitoring Overhead It is clear that continuous monitoring introduces a certain over-
head to the running system. Of course, the overall overhead depends on the number of ac-
tivated monitoring points and its activation frequency. The overhead for a single activated
monitoring point depends on the delays introduced by the resource demand and process
synchronizations in the monitoring probes, the monitoring control logic, and particularly
I/O access for writing the monitoring data into the monitoring log.

It is a requirement that the monitoring framework is as efficient as possible and that the
overhead increases linearly with the number of activated monitoring points, i.e., each ac-
tivation of a monitoring point should add the same constant overhead. Of course, this
linear scaling is only possible up to a certain point and depends on the average number of
activated monitoring, i.e., the granularity of instrumentation.

Kieker has been used to monitor some production systems in the field. For these systems,
no major impact was reported, despite the fact that detailed trace information is monitored
for each incoming service request. In benchmarks, we observed an overhead that was
in the order of microseconds on modern desktop PCs for each activated instrumentation
point. We are currently working on a systematic assessment of the overhead introduced by
the Kieker monitoring framework.

2http://java.sun.com/products/jms/
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Model-Driven Instrumentation Model-driven software development (MDSD) [21]
provides a convenient means to lift the level of abstraction for instrumentation from source
code to the architectural or even business level. Static or dynamic design models can be
annotated with monitoring information whose transformation into the platform-specific
instrumentation can be integrated into the MDSD process. Possible annotation variants
are tagging, i.e., adding the instrumentation to the functional part of the model, and dec-
oration, i.e., the definition of a dedicated monitoring model referring to the architectural
entities captured in external models. Examples for the model-driven instrumentation for
monitoring SLAs employing (standardized) meta-models (e.g., [6, 18]), come from the
domain of component-based [4] and service-based systems [17].

3.2 Analysis

Analysis or adaptation control involves analyzing and, if required, planning and trigger-
ing the execution of system adaptation. Analysis and planning is based on architectural
knowledge about the system, the interpretation of monitoring data, and specified adapta-
tion. Analysis and planning may be performed autonomically or on-demand and manually
by the system administrator.

SLAstic analyzes the instrumented and reconfigurable system while it is running, i.e. on-
line. The internal architecture of the SLAstic.CONTROL component with its internal,
concurrently executing subcomponents is shown in Figure 4.



Runtime Models Design models can be used as or transformed into architectural run-
time models constituting an abstract representation of the current state and thus being
usable as a basis for analysis. Models more suitable for the performed analysis methods
can be automatically derived from the architectural models. For example, for performance
prediction, a number of transformations from design models to analysis models, such as
variants of queueing networks, were developed [2].

The architectural SLAstic runtime models for the analysis are accessible through the
Model Manager component which synchronizes access to these models in order to main-
tain consistent model state. The Model Updater component updates the runtime models
based on the monitoring data received from the SLAstic.MON component. In the SLAstic
framework, we are planning to use (extended) model instances of the Palladio meta-
model [3], a domain-specific ADL designed for performance prediction of component-
based software systems.

Runtime Analysis Methods A challenging decision is the selection of appropriate run-
time analysis methods, which depends on a number of factors, such as the arrival rate
of incoming monitoring data, variability in the data, available computational resources,
required accuracy of the analysis et cetera. The integration of the adaptation control in
a feedback loop with the controlled system, usually requires timely analysis results and
adaptation decisions.

The Performance Predictor in the SLAstic.CONTROL component predicts the perfor-
mance of the current architectural configuration based on the performance and workload
analysis, including a forecast of the near-future workload, performed by the Performance
Analyzer and Workload Analyzer components. The Adaptation Analyzer determines an
adaptation plan which is communicated to the SLAstic.REC component for execution. The
Model Updater updates the runtime model with respect to the new architectural configu-
ration. A number of analysis methods is imaginable in each of the analysis components.
The SLAstic framework allows to evaluate different analysis methods by its extendable
architecture.

3.3 Adaptation

The actual execution of an adaptation plan involves the execution of the included archi-
tectural reconfiguration operations. The reconfiguration can be performed offline or at
runtime. Offline reconfiguration means, that the running system is shut down, reconfig-
ured, and restarted. When reconfigured at runtime, a system is changed without a restart,
and while it is running and serving requests. In practice, adaptation or maintenance, e.g.
for system repair, is usually performed offline. Many companies have fixed “maintenance
windows”, i.e., timeframes during which the provided services are not available and a new
version of the software system is deployed. This section focuses on reconfiguration at
runtime.



Specification of Reconfiguration Operations State charts, or other modeling tech-
niques can be used to specify how reconfiguration operations are executed, e.g., in terms
of a reconfiguration protocol. The benefit of having a formal protocol is that its correct-
ness can be verified using formal analysis, and that quantitative analyses regarding the
reconfiguration may be performed. This is helpful in determining an adaptation plan using
certain reconfiguration properties. For example, regarding the SLAstic Node Allocation
operation (see Section 2.3), the average time period between an allocation request for a
node and its readiness for operation.

In this paper, we focus on business-critical software systems. In such systems, service
requests are usually executed as transactions. A specification of the SLAstic component
migration operation would include a definition of how transactions are handled. For exam-
ple, when migrating a software component, active transactions using the component to be
migrated would be completed and newly arriving transactions would be dispatched to the
migrated instances. In [15], we described our J2EE-based implementation of a redeploy-
ment reconfiguration operation, that is based on a reconfiguration protocol defined using
state charts.

Design of Reconfigurable Software Architectures Reconfiguration operations can be
defined based on architectural styles [10]. This allows to re-use the reconfiguration oper-
ations for systems having this architectural style. The SLAstic reconfiguration operations
can be applied to systems complying to the architectural assumptions sketched in Sec-
tion 2.1.

This reconfiguration capability needs to be integrated into the software system architec-
ture. Likewise to the annotation of design models with information regarding monitoring
instrumentation, as described in the previous Section 3.1, reconfiguration-specific anno-
tations can be added to design models. For example, software components could be an-
notated with the information whether they are designed to be replicated or migrated at
runtime using the SLAstic reconfiguration operations.

Transactional Reconfiguration An adaptation plan should be executed as a transac-
tion, in order to bring the system from one consistent architectural configuration into
another [13]. This means, that an adaptation plan is only committed if all included re-
configuration operations were successfully executed. In SLAstic we will only permit the
execution of one adaptation plan at a time.

4 Conclusions

Requirements of system operation have a significant impact on the required design de-
cisions in system engineering. In this paper, we discussed the design decisions that are
required at design time for an effective operation at runtime of continuously operating
software systems, such as business-critical software systems. This discussion is based on
our experiences and lessons learned from lab studies and industrial field studies with our



monitoring framework Kieker, and illustrated using our self-adaptation approach SLAstic.
SLAstic aims to improve the resource efficiency of component-based software systems.

Adaptation impacts running systems in production use, thus, continuous monitoring of the
system state is required if the systems are business-critical. The integration of monitoring
should be considered early in the engineering process. Our message is that requirements of
system operation should be considered early in the design process, not as an afterthought
as often observed in practice. Architectural models should be used both at design and
runtime. However, many of the discussed design decisions are not only relevant to online
self-adaptation, but also to offline maintenance activities. Concerns of self-adaptation
should, similar to monitoring, be considered as cross-cutting concerns.
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