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Abstract: In this paper we show a new approach to evolution of software systems.
We embed high-level specification information into program code patterns, so that
such program code is interpretable at different abstraction levels. Since these model
information is also acessed at run time for execution, we can avoid the situation that
program code and high-level specifications are out of synch. Since the program code
is thus a valid notation for the model syntax, we can apply transformations based on
model semantics to it. An example will be provided that transforms software based
on state machines to process models. This leads to a new perspective of software
evolution in which the program code can be considered at higher levels of abstraction.

1 Introduction

In many cases software systems are in use longer than their developers anticipate. This im-
plies especially for larger software systems that essential structural information regarding
the overall software architecture and the way operations inside the system actually work
is needed beyond the initial development of the system. Usually this kind of information
is called documentation and is notoriously out of synch with the actual system after some
development time.

Model-driven software development (MDSD) approaches have been advocated to remedy
some part of this problem which means that models at a higher level of abstraction con-
taining less detail are used to design a system and generate the actual running version
by means of a sequence of transformations. Such transformations take care of mapping
the high level concepts to low level details at the programming language level in order
to obtain an efficiently running software system. Such transformations can be executed
during development time or during run time which means direct execution of the specified
models.

Such approaches do not take into account the issues of evolution over a long period of
time. Software systems being in use and in constant development over decades is by now
the common case while green field developments are very rare these days. Such a long
development time requires tight synchronisation between the abstract models on the one



side and the code which is actually executed on the other side. This is due to the fact that
the abstract models contain the main part of the essential information regarding system
structure and system operation. This abstract specification information contained in the
models experiences less change and is thus more stable than the actual program code
which has to keep up with changing hardware and software platforms. To make this issue
of volatility even worse, hand coded pieces are necessary to overcome some limitations of
the automatic transformations. The inevitable evolution of the software system requires
then a careful and difficult evolution of the transformations and re-coding of the hand
coded pieces and fine tuning related additions.

A common observation is that although all stake-holders in the development process know
about these interdependencies between the various development stages, at the end of the
day the only piece of information being up to date and available is the program code.

Given these circumstances one would expect tools which help the developers to infer the
abstract information of a software system from the actual code. In fact, many approaches
[Ant07, Mef06, Mik98, EBM07, SD05, Nec02] pursue this goal. However, it is very
difficult to distinguish automatically between program code which represents essential
statements regarding business logic and system structure on the whole and code which
exists only due to some complicated requirements of some frameworks or libraries which
were used or had to be used in the code. So the result of these tools comes in many
cases attached with a degree of precision of less than 100 percent. This is not satisfying
especially in large software systems since additional analysis has to be done in order to
assess the outcome of changes to the source code or models (in case of MDSD).

The need to support long living evolving software systems thus requires a tight integration
of program code with its specification (the model) at an abstract level. An additional
benefit would be that the specification is contained in the program code in such a way
that the specification can be extracted and interpreted during runtime. Such a feature
would allow to analyse many important aspects during runtime. This is especially useful
in systems which need to run non-stop 24x7. An important aspect, for example, is the
set of dependencies a system has on other systems. Modern software systems come with
mechanisms like plug-ins which allow to add additional functionality at deployment or
even during runtime of the system. Thus the analysis of the interdependencies in a whole
landscape of software systems can only be done at a specific point in time regarding an
actual set of running systems containing all plug-ins etc.

If the model and the code is tightly intertwined a specific step of evolving a software
system entails various checks and (mostly local) transformations which ensure the desired
integration of program code and its model. Of course, this also means that not arbitrary
program code structures are possible. Such a concept has been described in our earlier
work [BSG08, BG09]. Here we show an additional benefit of our approach. This is
illustrated by the problem to transform the model which belongs to a specific class of
models into an equivalent model of another model class. Of course, this is only possible
for compatible model classes e.g. those specifying actions. Here we consider the class of
state machine models and process models. This is useful when there is a need to create a
new view on the system which has been recognised as an important need in the research
field of views and viewpoints in software engineering.



Below we describe our approach and illustrate it with the example transformation from
state machine models to process models. In section 2 we describe our general approach
which is not limited to models specifying actions. However, the specific approach using
state machines and process models is explained as well. In section 3 we show how the
actual program code based on a state machine model is transformed into a corresponding
program code based on an equivalent process model derived by a small set of transforma-
tion rules. This presentation is complemented with a brief discussion of related work in
section 4 and discusses pros and cons in the concluding section 5.

2 Embedded Models

Model-driven software development approaches have the objective of relating high-level
models to executable systems. Thus, when high-level models are transformed between dif-
ferent notations, a mechanism must exist that derives algorithmic program code from these
models. This development step is unidirectional since models cannot be unambiguously
extracted from arbitrary program code again. While working with different abstraction
levels is desirable for model-driven software development, this unidirectional step consti-
tutes a break of the principle of using model transformations at a higher level of abstraction
for software development.

2.1 Concept

We earlier proposed the concept of embedded models [BSG09] to overcome these prob-
lems. The basic idea of embedded models is to define program code patterns in object-
oriented general-purpose programming languages that represent the abstract syntax of
high-level models. The program code is thus interpretable at different levels of abstraction,
that of the programming language itself and that of the formal model. For this purpose,
only static object-oriented structures are used that are not only available at development
time, but also at run time. We make especially use of the ability of modern programming
languages to decorate object-oriented structures with type-safe meta data [Sch04], thus
adding information to program code fragments relating them to high-level models.

Thus it is possible to consider the program code at development time with respect to a
formal model. At run time, the same program code is executed by small frameworks that
access the program code fragments by means of structural reflection [DM95]. According
to the model semantics, acting on the static program code structures creates sequences of
actions. Since the program code pattern is part of arbitrary program code, well-defined
interfaces to the code outside the pattern must be defined to access the application’s state
and to invoke business logic. The complete definition of an embedded model thus consists
of the following:

• A precise formal model definition.



• A program code pattern that is formed after the abstract syntax of this formal model.

• An appropriate execution semantics.

• Interfaces to arbitrary program code that are interpretable at the level of the model
semantics and also provide an appropriate functionality at run time.

Figure 1: Model transformations with embedded models: The chain of possible bidirectional trans-
formations does not terminate with program code generation. Instead, program code can carry dif-
ferent abstraction levels, thus making it another notation for embedded models and part of the related
transformations .

With such embedded model definitions, the program is no longer unidirectionally derived
from models. Instead, it is another notation carrying the semantics of the formal model,
but includes the possibility to be executed by an appropriate framework while at the same
time being integrated in arbitrary applications. Considering model transformations, this
means that the program code can be fully integrated: When an embedded model exists, the
related code can be source or target of a model transformation. This makes transformations
a much more powerful tool for model-driven software development: Models can not only
be transformed for communication and design purposes, but also to create and re-engineer
executable systems. The principle of this approach is sketched in figure 1.

2.2 Example

An example for such a program code pattern is shown in figure 2. The program code
fragments represent a part of a state machine model we described in previous publica-
tions [BSG08]. The language chosen for this implementation is Java [GJSB05] with its
annotations enhancement for meta data inclusion [Sun04].

The class at the top represents a state where the class name equals the name of the state.
The method in the state class represents a transition. It is decorated with meta data re-
ferring to the target state class and a “contract” class containing guards and updates. An



Figure 2: A state definition with an outgoing transitions and its contract. The first method of the
contract checks a pre-condition with respect to the current variable values, while the second method
checks a post-condition and may thus compare the current values to the previous values.

interface type referred to as “actor” is passed to transition methods. Its methods are inter-
preted as action labels which can be called when the transition fires.

Guards and updates are implemented as two methods in a “contract” class which is shown
at the bottom of the figure. Both evaluate boolean expressions which serve as guards.
These guards use the current variable values of the state machine to determine if a transi-
tion can fire, the update compares the current values with the values from the point in time
before the transition fired to determine the changes to the state space. For this purpose
both methods access a “variables” type which is a facade type representing the variables
constituting the state space of the state machine. This type contains “get” methods for
each variable, which are by this means defined with a label and a data type.

The execution framework can access the classes, methods and annotations by means of
reflection. It invokes guards and determines a transition that can fire. After the transition
method has been invoked, the update is called and the next state is reached. For this em-
bedded model we already developed a transformation into the input language of the state
machine model checker UPPAAL [LPY97] which enabled graphical design and verifica-
tion of the model.



The complete example state machine consists of 10 states, 27 transitions and 8 variables.
It belongs to a load generator application for performance tests and entails a user interface,
networking functionality for remote controlled load generation and statistical evaluation
of measurement results. These issues are hard to express in models, so that a complete
model-driven development of the system was not feasible. However, the core of the load
generation process is the strategy used to generate load. It can be modeled as an embedded
state machine because it has a well-defined behavior, works with a limited set of variables
and initiates the execution of business logic depending on the current state.

3 Program Code Evolution by Model Transformation

In this section we are going to discuss a concrete example on how software evolution can
be supported by embedded models. In this example the core behaviour of a software sys-
tem is designed as a finite state machine. At the level of models this state machine can
be transformed into a process model automatically while losing only just a few features of
state machines that cannot be expressed in process models. Such an automatic transforma-
tion is only possible if the program code adheres to the rules and complies with the model
semantics. Thus, embedded models are needed, which define program code structures that
are unambiguous.

3.1 Sketch of Concept

Program code can be expressed as its syntax tree generated by a parser. This tree can
be enriched by additional semantic information (e.g. edges denoting references) and this
way be extended to an attributed graph. Since embedded models rely on static structures,
these parts of a model are reflected by the generated graph. Thus model transformation
rules that are able to transform a state machine model into a process model or vice versa
can be rewritten in order to transform program code with an embedded state machine into
program code with an embedded process model or vice versa respectively. From state
machines to process models, this transformation consists of several steps:

• All states of the state machine have to be converted to decision nodes in the process
model.

• All transitions in the state machine have to be converted to activity nodes properly
connected to decision nodes in the process model.

• Each activity node that contains more than one action label has to be split up into a
sequence of activity nodes. This step can be performed here or at any later point in
time.

• Each decision node having exactly one incoming and one outgoing transition can be
discarded, connecting the nodes of the incoming and outgoing transition directly.



• Each decision node without incoming transitions is changed to a start node.

• Each decision node without outgoing transitions is changed to an end node.

• Each descision node with multiple incoming transitions and only one outgoing tran-
sition is changed to a merge node.

While this list of steps applies to the model transformation itself, using embedded models
requires additional steps because formal aspects of program code (e.g. import statements)
have to be taken into account. Note that special concepts like state machines communi-
cating over channels, that have to be expressed by parallel and joining processes, are not
considered here in order to keep this example short.

All rules can be implemented as graph transformation rules acting on the graph gener-
ated by parsing program code. All changes can be written back as local changes without
overriding program code statements that are not part of the model. For example, methods
can be moved, copied or renamed and even modified by adding or removing annotations
or parameters without touching the body of the method. However, if the transformation
requires additional code, new source files can be generated.

3.2 Graph Transformation Rules

The actual set of graph transformation rules used to implement the concept sketched above
consists of 21 rules. The implementation has been done using AGG 1.6.4 [AGG] as graph
transformation engine with GGX-Toolbox [GGX] for parsing and rewriting Java files. The
algorithmic steps listed in the previous section could be implemented by transformation
rules straight forward. At first, two rules are concerned with converting states to decision
nodes and transitions to activity nodes, implementing the first two steps. After that, a set
of six minor rules do some necessary housekeeping to the graph like reordering imports
or removing unnecessary annotations. The next two rules remove source code not longer
needed and useless decision nodes according to the fourth step of the algorithm. A set
of three simple rules is the next to be executed, implementing the last three steps of the
algorithm. Afterwards only one major rule is left for splitting up activitiy nodes, which was
deferred until here. Another set of seven rules is finally concerned with some adjustments
to the code.

One of the most important rules – changing states to process nodes and creating activity
nodes – is shown in figure 3 in a simplified manner. Due to the use of embedded models,
elements to be moved can easily be identified by their annotations on the left hand side of
the rule and thus reassembled on the right hand side. Similarities between state machines
and process models allow to reuse larger parts of existing program code, e.g. complete
method bodies.



Figure 3: Simplified graph transformation rule for transforming states into process nodes. Nodes
deleted from the syntax graph are marked in red while newly created nodes are marked in green.
Some of the preserved nodes are renamed during transformation. Note, how contents from the
original state node are moved to a newly created activity node, while contents from the original
extra contract node are moved to the existing process node.

3.3 Generalization of the Approach

In order to gain reusability these rules can be grouped into five different categories. The
main criterion is whether they are concerend with elements of the embedded model before
transformation (source model), elements of the embedded model after transformation (tar-
get model), arbitrary source code or graph elements that are not relevant for the syntax of
program code.

The first category contains rules that act both on elements of the source model as well
as of the target model like the rule shown above. These rules can hardly be reused in a
general approach since they are specific for a transformation between a specific pair of
model types.

The second category contains rules that are responsible for deleting elements from the
source model. They can possibly be reused if a transformation starts from this type of
source model and has to delete these elements, independent from the target model. Sim-
ilary, the third category contains rules that create elements from the target model without
considering the source model. They can possibly be reused if a transformation has to
create the same type of target model.

The fourth category contains rules that work on arbitrary source code elements that are
not related to embedded models directly. They might be useful in general, even without
working with embedded models. The same applies to the fifth category, containing rules
that work on the structure of syntax graphs itself.



Besides rules from the first category, all other rules are reusable at least in some other
transformations, thus the approach can easily be generalized. Building a larger library
of rules would allow to define different transformations between embedded models, e.g.
from process models back to state machine models, by combining rules in the right way.

4 Related Work

Approaches exist that try to relate program code to higher-level specifications. When these
specification are formal models, round-trip engineering [SK04] concepts can be applied.
Informal specifications can inferred from program code by detecting patterns [PSRN05,
Shi07]. Although specifications can be extracted from program code based on design
patterns [NWZ01, DLDvL08, WBHS07, NKG+07, Mef06, GSJ00, MCL04, MEB05], all
of these approaches still require manual effort or are based on heuristics and are thus error-
prone. Approaches to formalize design patterns [SH04, Mik98, MDE97] work at a lower
level of abstraction and are not related to abstract specifications.

Approaches which consider the program code itself as a model [VHB+03, HJG08, Vol06],
for example using model checking techniques, also work with program code semantics at
a low level of abstraction and do not consider abstract specifications.

Integrating models in code has also been studied in [BM06]. Compared to our approach,
the references to model elements are generic and not related to specific properties of formal
models.

The main issue discussed in this presentation refers to model transformation. This area
of research is very active and well explored. A good overview of bidirectional transfor-
mations can be found in [CFH+09]. In addition, the field of program transformation is
addressing similar goals. In most cases program transformation is performed in form of
refactorings which is a different case compared to our approach here: In refactoring ap-
proaches a program is (locally) restructured in order to avoid bad code smells. Here we
transfer a given program which has a specific structure into an equivalent program with
another specific structure.

5 Conclusion

In this paper we described an approach which reports on the benefits of tight integration
between program code and its specification in form of a given class of models. The ap-
proach transforms a software system based on a state machine model into an equivalent
program code again with a model based on the class of process models. This could be
then the basis for further developments. The tool chain to support this kind of high level
transformation builds on graph transformation and a graph representation of the programs
which contains additional model information in form of annotations as available in Java.
The actual set of transformation rules is surprisingly small. Of course, there are the usual



preparation and house keeping transformations which provide the necessary build up and
cleaning process. The actual transformation is done by just a few transformation rules.
Of course, it can be argued that this is due to the small conceptual distance between state
machines and process models. But it is also clear from the discussion on views and view-
points in the literature that each view is a legitimate and useful way in its own right to
provide a specification of a system or a system part.

Tools have been implemented to support the actual transformations for multiple purposes,
as we described in our previous publications. The objective to recover specifications un-
ambiguously can be used to transform between models as presented in this contribution,
but also for visual design and verification. Since embedded models are based on static
program code structures that are accessible by means of reflection at run time, they can
also be extracted from running systems and transformed into abstract representations, for
example for monitoring.

If the approach is applied to model classes being more apart than the two classes used
in this paper we envisage still a great part of the transformation process being supported
automatically. The parts which have to be supported manually is very small and has clear
interfaces to the rest of the system. Thus specific support can be created for these manual
steps as well.

Support for additional model classes is currently in development. This will extend the
approach to structural models of the systems and widens the support for more runtime
related monitoring, refurbishment and evolution of software systems.
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