
KAMP: Karlsruhe Architectural Maintainability Prediction

Johannes Stammel
stammel@fzi.de

Forschungszentrum Informatik (FZI), Karlsruhe, Germany

Ralf Reussner
reussner@kit.edu

Karlsruhe Institute of Technology (KIT), Germany

Abstract: In their lifetime software systems usually need to be adapted in order to fit in
a changing environment or to cover new required functionality. The effort necessary
for implementing changes is related to the maintainability of the software system.
Therefore, maintainability is an important quality aspect of software systems.

Today Software Architecture plays an important role in achieving software quality
goals. Therefore, it is useful to evaluate software architectures regarding their im-
pact on the quality of the program. However, unlike other quality attributes, such
as performance or reliability, there is relatively less work on the impact of the soft-
ware architecture on maintainability in a quantitative manner. In particular, the cost
of software evolution not only stems from software-development activities, such as re-
implementation, but also from software management activities, such as re-deployment,
upgrade installation, etc. Most metrics for software maintainability base on code of
object-oriented designs, but not on architectures, and do not consider costs from soft-
ware management activities. Likewise, existing current architectural maintainability
evaluation techniques manually yield just qualitative (and often subjective) results and
also do concentrate on software (re-)development costs.

In this paper, we present KAMP, the Karlsruhe Architectural Maintainability Pre-
diction Method, a quantitative approach to evaluate the maintainability of software
architectures. Our approach estimates the costs of change requests for a given archi-
tecture and takes into account re-implementation costs as well as re-deployment and
upgrade activities. We combine several strengths of existing approaches. First, our
method evaluates maintainability for concrete change requests and makes use of ex-
plicit architecture models. Second, it estimates change efforts using semi-automatic
derivation of work plans, bottom-up effort estimation, and guidance in investigation of
estimation supports (e.g. design and code properties, team organization, development
environment, and other influence factors).

1 Introduction

During its life cycle a software system needs to be frequently adapted in order to fit in its
changing environment. The costs of maintenance due to system adaptations can be very
high. Therefore, system architects need to ensure that frequent changes can be done as
easy as possible and as proper. This quality attribute of software systems is commonly
known as adaptability placed within the wider topic of maintainability.



With respect to [ISO90] we define maintainability as ”The capability of a software product
to be modified. Modifications may include corrections, improvements or adaptation of the
software to changes in environment, and in requirements and functional specifications”.
This capability of being modified in our point of view can be quantified by means of
the effort it takes to implement changes in a software system. If changes can be done
with less effort for one software system alternative than for another it indicates that the
maintainability for the first one is better.

An important means for making software engineering decisions is the software architec-
ture, which according to [IEE07] represents ”the fundamental organization of a system
embodied in its components, their relationships to each other, and to the environment, and
the principles guiding its design and evolution.” It is commonly agreed, that the quality
of a software system highly depends on its software architecture. One specific benefit of
architectures is that they provide documentation for different activities, also beyond soft-
ware implementation, such as software management or cost-estimation [PB01]. Software
architects nowadays specify software architectures using formal architecture models, like
[BKR07]. Ideally, it should already be possible to predict the resulting system’s quality on
basis of these models. The Palladio [BKR07] approach for instance allows an early per-
formance prediction for component-based software architectures. In the same way, main-
tainability is highly influenced by the architecture and should be supported within an early
design-time prediction. This observation is already considered by qualitative architecture
evaluation techniques, such as ATAM or SAAM [CKK05]. However, these approaches
mostly produce very subjective results as they offer little guidance through tool support
and highly rely on the instructors experience [BLBvV04], [BB99]. Moreover, they only
marginally respect follow-up costs, e. g. due to system deployment properties, team orga-
nization properties, development environment and generally lack meaningful quantitative
metrics for characterizing the effort for implementing changes.

This paper presents as a contribution KAMP, the Karlsruhe Architectural Maintainability
Method, a novel method for the quantitative evaluation of software architectures based on
formal architecture models. One specific benefit of KAMP is that it takes into account in
a unified manner costs of software development (re-design, re-implementation) and soft-
ware management (re-deployment, upgrade installation). Moreover, KAMP combines a
top-down phase where change requests are decomposed into several change tasks with
a bottom-up phase where the effort of performing these change tasks is estimated. The
top-down phase bases on architectural analyses, while the second phase utilises existing
bottom-up cost estimation techniques [PB01]. Our approach evaluates the maintainabil-
ity of an architecture by estimating the effort required to perform certain change requests
for a given architecture. By doing this it also differs from classical cost estimation ap-
proaches which do not systematically reflect architectural information for cost estimation.
The approach is limited to adaptive and perfective maintainability. This includes modifi-
cations or adaptations of a system in order to meet changes in environment, requirements
and functional specifications, but not the corrections of defects, as also mentioned by the
definition of maintainability we previously gave. Paper Structure: In Section 2 we summa-
rize related work. In Section 3 we introduce the Karlsruhe Architectural Maintainability
Prediction approach. Section 4 gives conclusions and points out future work.



2 Related Work

2.1 Scenario-Based Architecture Quality Analysis

In literature there are several approaches which analyse quality of software systems based
on software architectures. In the following paragraphs we discuss approaches which make
explicitly use of scenarios. There are already two survey papers ([BZJ04], [Dob02]) which
summarize and compare existing architecture evaluation methods.

Software Architecture Analysis Method (SAAM) [CKK05] SAAM was developed in
1994 by Rick Kazman, Len Bass, Mike Webb and Gregory Abowd at the SEI as one of
the first methods to evaluate software architectures regarding their changeability (as well
as to related quality properties, such as extendibility, portability and reusability). It uses
an informally described architecture (mainly the structural view) and starts with gathering
change scenarios. Then via different steps, it is tried to find interrelated scenarios, i.e.,
change scenarios where the intersection of the respective sets of affected components is
not empty. The components affected by several interrelated scenarios are considered to
by critical and deserve attention. For each change scenario, its costs are estimated. The
outcome of SAAM are classified change scenarios and a possibly revised architecture with
less critical components.

The Architecture Trade-Off Analysis Method (ATAM) [CKK05] ATAM was devel-
oped by a similar group for people from the SEI taking into account the experiences with
SAAM. In particular, one wanted to overcome SAAM’s limitation of considering only
one quality attribute, namely, changeability. Much more, one realised that most quality
attributes are in many architectures related, i.e., changing one quality attribute impacts
other quality attributes. Therefore, the ATAM tries to identify trade-offs between different
quality attributes. It also expands the SAAM by giving more guidance in finding change
scenarios. After these are identified, each quality attribute is firstly analysed in isolation.
Than, different to SAAM, architectural decisions are identified and the effect (sensitivity)
of the design decisions on each quality attribute is tried to be predicted. By this ”sensi-
tivity analysis” one systematically tries to find related quality attributes and trade-offs are
made explicit. While the ATAM provides more guidance as SAAM, still tool support is
lacking due to informal architectural descriptions and the influence of the personal experi-
ence is high. (Therefore, more modern approaches try to lower the personal influence, e.g.,
POSAAM [dCP08].) Different to our approach, change effort is not measured as costs on
ATAM.

The Architecture-Level Prediction of Software Maintenance (ALPSM) [BB99] ALPSM
is a method that solely focuses on predicting software maintainability of a software sys-
tem based on its architecture. The method starts with the definition of a representative
set of change scenarios for the different maintenance categories (e.g. correct faults or
adapt to changed environment), which afterwards are weighted according to the likeli-
hood of occurrence during the systems’s lifetime. Then for each scenario, the impact of
implementing it within the architecture is evaluated based on component size estimations
(called scenario scripting). Using this information, the method finally allows to predict



the overall maintenance effort by calculating a weighted average of the effort for each
change scenario. As a main advantage compared to SAAM and ATAM the authors point
out that ALPSM neither requires a final architecture nor involves all stakeholders. Thus, it
requires less resources and time and can be used by software architects only to repeatedly
evaluate maintainability. However, the method still heavily depends on the expertise of
the software architects and provides little guidance through tool support or automation.
Moreover, ALPSM only proposes a very coarse approach for quantifying the effort based
on simple component size measures like LOC.

The Architecture-Level Modifiability Analysis (ALMA) [BLBvV04]
The ALMA method represents a scenario-based software architecture analysis technique
specialized on modifiability and was created as a combination of the ALPSM approach
[ALPSM] with [Lassing1999a]. Regarding the required steps, ALMA to a large extend
corresponds to the ALPSM approach, but features two major advantages. First, ALMA
supports multiple analysis goals for architecture-level modifiability prediction, namely
maintenance effort prediction, risk estimation and comparison of architecture alternatives.
Second, the effort or risk estimation for single change scenarios is more elaborated as it
explicitly considers ripple effects by taking into account the responsible architects’ or de-
velopers’ expert knowledge (bottom up estimation technique). Regarding effort metrics,
ALMA principally allows for the definition of arbitrary quantitative or qualitative metrics,
but the paper itself mainly focuses on lines of code (LOC) for expressing component size
and complexity of modification (LOC/month). Moreover, the approach as presented in the
paper so far only focuses on modifications relating to software development activities (like
component (re-)implementation), but does not take into account software management ac-
tivities, such as re-deployment, upgrade installation, etc.

2.2 Change Effort Estimation

Top-Down Effort Estimation Approaches in this section estimate efforts in top-down
manor. Although they are intended for forward engineering development projects, one
could also assume their potential applicability in evolution projects. Starting from the re-
quirement level, estimates about code size are made. Code size is then related somehow to
time effort. There are two prominent representatives of top-down estimation techniques:
Function Point Analysis (FPA) [IFP99] and Comprehensive Cost Model (COCOMO) II
[Boe00]. COCOMO-II contains three approaches for cost estimation, one to be used dur-
ing the requirement stage, one during early architectural design stage and one during late
design stage of a project. Only the first one and partially the second one are top-down tech-
niques. Although FPA and COCOMO-II-stage-I differ in detail, their overall approach is
sufficiently similar to be treated commonly in this paper. In both approaches, the extent of
the functionality of a planned software system is quantified by the abstract unit of function
points (called ”applications points” in COCOMO). Both approaches provide guidance in
counting function points given an informal requirements description. Eventually, the ef-
fort is estimated by dividing the total number of function points by the productivity of the
development team. (COCOMO-II-stage-I also takes the expected degree of software reuse



into account.) In particular COCOMO-II in the later two stages takes additional informa-
tion about the software development project into account, such as the degree of generated
code, stability of requirements, platform complexity, etc. Interestingly, architectural infor-
mation is used only in a very coarse grained manner (such as number of components). Both
approaches require a sufficient amount of historical data for calibration. Nevertheless, it is
considered hard to make accurate predictions with top-down estimations techniques. Even
Barry Boehm (the author of COCOMO) notes that hitting the right order of magnitude is
possible, but no higher accuracy1.

Bottom-Up Effort Estimation – Architecture-Centric Project Management [PB01]
(ACPM) is a comprehensive approach for software project management which uses the
software architecture description as the central document for various planning and man-
agement activities. For our context, the architecture based cost estimation is of particular
interest. Here, the architecture is used to decompose planned software changes into sev-
eral tasks to realise this change. This decomposition into tasks is architecture specific. For
each task the assigned developer is asked to estimate the effort of doing the change. This
estimation is guided by pre-defined forms. Also, there is no scientific empirical validation.
But one can argue that this estimation technique is likely to yield more accurate predic-
tion as the aforementioned top-down techniques, as (a) architectural information is used
and (b) by asking the developer being concerned with the execution of the task, personal
productivity factors are implicitly taken into account. This approach is similar to KAMP
by using a bottom-up estimation technique and by using the architecture to decompose
change scenarios into smaller tasks. However, KAMP goes beyond ACPM by using a for-
malized input (architectural models must be an instance of a predefined meta-model). This
enables tool-support. In addition, ACPM uses only the structural view of an architecture
and thus does not take software management costs, such as re-deployment into account.

3 The Karlsruhe Architectural Maintainability Prediction Approach

The Karlsruhe Architectural Maintainability Prediction (KAMP) approach enables soft-
ware architects to compare architecture alternatives with respect to their level of difficulty
to implement a specific change request. For each alternative the effort it takes to implement
a change request is estimated. An important measure for maintainability is the change
effort necessary for implementation of a change. Therefore, the capability of change ef-
fort estimation is very important in the context of maintainability prediction. Our method
shows how change effort estimation can be embedded within an architectural maintainabil-
ity prediction methodology and predicts the maintainability using change requests. This is
because an architecture is not able to treat all change requests with the same level of ease.
An architecture should be optimized in a way that frequent change requests can be imple-
mented easier than less frequent ones. Our method makes explicit use of meta-modelled
software architecture models. From software architecture models our method derives im-
portant inputs for change effort estimation in a semi-automatic way. Additionally, we
use a bottom-up approach for estimation of change efforts. Thus, our method incorporates

1http://cost.jsc.nasa.gov/COCOMO.html



developer-based estimates of work effort. In order to get a higher precision of estimates our
method helps in investigation of estimation supports. We do this by explicitly considering
several kinds of influence factors, i.e. architectural properties, design and code properties,
team organization properties, and development environment properties. Use Case: Evalu-
ate Single Change Request One use case is to compare two architecture alternatives given
a single change request. The method helps answering the question which alternative sup-
ports better the implementation of the given change request. Use Case: Evaluate Multiple
Change Requests If there are several change requests at hand which occur with different
frequencies the method helps answering questions like: Is there a dependency between
given change requests? Is there a trade-off situation, where only one change request can
be considered? Which architecture alternative provides best for implementation of a given
set of change requests?

3.1 Properties of KAMP

Compared to the approaches presented in the related works section above, our approach
has the following specific benefits: (a) a higher degree of automation, (b) lower influence
of personal experience of the instructor, (c) stronger implicit consideration of personal
developer productivity. Different to other approaches, we use architectural models, which
are defined in a meta model (the Palladio Component Model). While this it no means
to an end, the use of well defined architectural models is necessary to provide automated
tool-support for architectural dependency analysis. Such tools are embedded into a general
guidance through the effort estimation process.

3.2 Maintainability Analysis Process

As Figure 1 shows the maintainability prediction process is divided into the following
phases: Preparation, Analysis, Result Interpretation. Each phase is described below. Run-
ning Example: In order to get a better understanding of the approach we provide a running
example, which considers a client-server business application where several clients issue
requests to a server in order to retrieve customer address information stored in a database.
There are 100 Clients deployed in the system.

Preparation Phase In the model preparation phase, the software architect at first sets up
a software architecture description for each architectural alternative. For this we use a
meta-modelled component-based architecture model, which can be handled within an tool
chain. Example: According to our running example the architects create an architecture
model of the client-server architecture. They identify two architecture alternatives. In
Architecture Alternative 1 (AA1) the clients specify SQL query statements and use JDBC
to send them to the server. The server delegates queries to the database and sends results
back to the client. In Architecture Alternative 2 (AA2) client and server use a specific
IAddress Interface which allows clients to directly ask servers for addresses belonging to



Process: Architectural Maintainability Prediction

Preparation Phase

Analysis Phase

Result Interpretation Phase

Create Architecture Model 
for each Architecture Alternative

Determine Change Request(s) of interest

<<iterate>> 

Estimate Change Effort

<<iterate>>

architecture alternatives

change requests

change requestarchitecture alternative

Compare Change Effort Estimates

Interprete Results 

Figure 1: Architectural Maintainability Prediction Process

a certain ID. The server transforms requests into SQL query statements and communicates
with the database via JDBC. The architecture model according to Figure 2 consists of a
three components (Client, Server, Database). Several Clients are connected to one Server.
Server and Database are connected via Interface Ports implementing JDBC Interface. The
database schema is considered as a Data Type in the architecture model. Since there are
two alternatives the architect creates two models. In alternative AA1 Client component
and Server component are connected via interface ports implementing JDBC Interface. In
alternative AA2 these interface ports use a IAddress Interface instead.

As a second preparation step the architect describes the considered change requests. A de-
scription of change request contains 1) a name, 2) an informal description of change cause,
and 3) a list of already known affected architecture elements. Example: Independently
from the system structure the architects have to design the database schema. Since they
can not agree on a certain database schema they want to keep the system flexible enough



Figure 2: Running Example Architecture Overview

to handle changes to database schema. In the following paragraphs we show how the ar-
chitects can use our approach to identify the better alternative with respect to expected
changes to database schema. Hence, the following change request description is given:
Name: CR-DBS, Change Cause: Database Schema needs to be changed due to internal
restructuring, List of known affected architecture elements: Data Type ”DB-Schema”.

Maintainability Analysis Phase In the maintainability analysis phase for each architec-
tural alternative and each change request a Change Effort Estimation is done. The process
of change effort estimation is shown in Section 3.4. Example: The architects in our ex-
ample want to analyse which architecture alternative (AA1 or AA2) needs less effort to
implement Change Request CR-DBS.

Result Interpretation Phase Finally the process summarises results, compares calculated
change efforts and enriches them with qualitative information and presents them to the
software architect.

3.3 Quality Model

Before we go on with the effort estimation process in Section 3.4 it is necessary to intro-
duce the underlying maintainability quality model and used metrics. In general, maintain-
ability characteristics have a rather qualitative and subjective nature. In literature main-
tainability is usually split up into several sub-characteristics. For example in [ISO90] the
quality model divides maintainability into analysability, stability, changeability, testabil-
ity and maintainability compliance. Unfortunately the given definitions of these terms
are rather abstract and therefore not directly applicable. Thus, we first use a systematic
way to derive maintainability characteristics and metrics. In order to get a quality model
with adequate metrics which provide consequently for specific analysis goals the Goal-
Question-Metrics method (GQM) [BCR94] is applied. In this approach, in the first step,



a set of analysis goals is specified by characteristics like analysis purpose, issue, object,
and viewpoint as explained here: 1) Purpose: What should be achieved by the measure-
ment? 2) Issue: Which characteristics should be measured? 3) Object: Which artefact
will be assessed? 4) Viewpoint: From which perspective is the goal defined? (e.g., the
end user or the development team). The next step is to define questions that will, when
answered, provide information that will help to find a solution to the goal. To answer
these questions quantitatively every question is associated with a set of metrics. It has to
be considered that not only objective metrics can be collected here. Also metrics that are
subjective to the viewpoint of the goal can be listed here. Regarding the GQM method
we specify the following goal for maintainability analysis: 1) Purpose: Comparison of
Architectural Alternative AAi and AAj , 2) Issue: Maintainability, 3) Object: Service
and Software Architecture with respect to a specific Change Request CRk, 4) Viewpoint:
Software Architect, Software Developer. The following questions and sub-questions are
defined according to the maintainability definitions above.

Question 1: How much is the maintenance effort caused by the architectural alter-
native AAi for implementing the Change Request CRk?

Question 1.1: How much is the maintenance workload for implementing the Change
Request CRk?

Question 1.2: How much maintenance time is spent for implementing the Change
Request CRk?

Question 1.3: How much are the maintenance costs for implementing the Change
Request CRk?

Based on the questions above we divide Maintenance Effort Metrics into Maintenance
Workload Metrics, Maintenance Time Metrics, Maintenance Cost Metrics.

Maintenance Workload Metrics Maintenance Workload Metrics represent the amount
of work associated with a change. To be more specific we consider several possible work
activities and then derive counts and complexity metrics according to these work activities.
Figure 3 shows how work activity types are found. A work activity is composed of a
basic activity which is applied to an artefact of the architecture. Basic activities are Add,
Change, and Remove. The considered architecture elements are Component, Interface,
Operation, and Datatype. This list is not comprehensive, but can be extended with further
architecture elements. Usually when we describe changes we refer to the Implementation
of elements. In the case of Interface and Operation it is useful to distinguish Definition
and Implementation since there is usually only one definition but several implementations
which cause individual work activities. Some architecture meta-models use the concept
of Interface Ports to bind an interface to a component. From the perspective of work
activities an Implementation of Interface is equal to an Interface Port. In Figure 3 there is
also a (incomplete) list of resulting work activity types. The following metrics are defined
based on Work Activity Types.

Number of work activities of type WATi: This metric counts the number of work activities
of type WATi. Complexity annotations for work activity WAi: At this point several types
of complexity annotations can be used, e. g. number of resulting activities, complexity



Basic Activities Architecture Elements Work Activity Set
Add Component Add Component
Change Interface Change Component
Remove Operation Remove Component

Datatype Add Interface
... ...

Figure 3: Work Activity Types

of affected elements in source code, number of affected files, number of affected classes,
number of resulting test cases to be run, number of resulting redeployments.
Maintenance Time Metrics These metrics describe effort spent in terms of design and
development time. The following metrics are proposed in this category: Working time for
activity WAi: This metric covers the total time in person months spent for working on
activity WAi. Time until completion for activity WAi: This metric describes the time be-
tween start and end of activity WAi. Total time for work plan WPi: This metric describes
the time between start and end of work plan WPi.
Maintenance Cost Metrics This subcategory represents maintenance efforts in terms of
spent money. Development costs for activity WAi / work plan WPi: The money paid for
development in activity WAi or of work plan WPi.

3.4 Change Effort Estimation Process

The architect has to describe how the change is going to be implemented. Based on the
architecture model he points out affected model artefacts. Our approach proposes several
starting points and guided refinements for detection of affected model elements. Starting
points represent affected model element which the architect can directly identify. Three
typical starting points are: 1) an already known Data Type change, 2) an already known In-
terface Definition change, 3) an already known Component change. Regarding our running
example the architect identifies the following direct changes to the architecture: Change
of Datatype Implementation ”DB-Schema”. Directly identified changes are described as
work activities in a work plan. A work plan is a hierarchical structured collection of work
activities. We now stepwise refine the work plan into small tasks. This means we identify
resulting changes and describe high-level changes on a lower level of abstraction. The
idea is the effort of such low-level activities can be identified easier and with higher ac-
curacy than high-level coarse grained change requests, in particular, as the latter do not
include any architectural informations. There are several types of relations between archi-
tectural elements. These relations help to systematically refine change requests and work
plans. In the following, these different types of relations are defined, their role in work
plan refinement is discussed and examples are given. Thereby, the actual relations de-
pend of the architectural meta model used. However, in one way or another such relation
types are present in many architectural meta models. In the following, we present relations



which are present in the Palladio Component (Meta-) Model (PCM) and the Q-ImPrESS
Service Architecture Meta-Model (SAMM). Include- / contains-relations: Architectural
elements which are contained in each other, are in a contains-relationship. This means, that
any change of the inner element implies a change of the outer element. Also, any work
activity of the outer element can be refined in a set of work activities of the inner elements.
Examples: A System consists of Components. A Component has Interface Ports (i.e. Im-
plementation of Interface). An Implementation of Interface contains Implementations of
Operations. In our running example a change to the database schema also implies a change
to database component. Hence, we get another work activity: Change Component Impl. of
”Database” Component. References-relations: Architectural elements which reference
(or use) other elements are related by a reference-relation. Such relations are the base for
architectural change propagation analyses. Such analyses allow to find potential follow-up
changes. This means, that the using entity which references a used entity is potentially af-
fected by a change of the used entity. The direction of the change propagation is reversed
to the direction of the reference-relation. This implies, that on a model level one needs to
navigate the backward direction of reference-relations. Examples: An Interface Port refer-
ences a Definition of Interface. A Definition of Operation uses a Data Type. A Definition
of Interface uses transitively a Data Type. In our running example a change to Data Type
”DB-Schema” also affects the JDBC Interface and all Interface Ports which implement the
JDBC interface. In both alternatives (AA1 and AA2) the Server component has a JDBC-
implementing interface port. Hence, we get the additional work activity: Change Interface
Port ”JDBC” of Component ”Server”. In alternative AA1 client components also imple-
ment the JDBC interface. Hence, another work activity is identified: Change Interface
Port ”JDBC” of Component ”Client”. By using kinds of relations we systematically iden-
tify work activities. For each work activity additional complexity annotations are derived.
This can comprise architecture properties (e. g. existing architecture styles or patterns),
design / code properties (e. g. how many files or classes are affected), team organization
properties (e. g. how many teams and developers are involved), development properties
(e. g. how many test cases are affected) system management properties (e. g. how many
deployments are affected). If those complexity annotations are present in the architecture
model they can be gathered with tool-support. Examples: In our architecture meta-model
we have a deployment view which specifies deployment complexity of components. In our
running example client components are deployed on 100 machines. Thus, a change activ-
ity affecting Client components also implies a redeployment on 100 component instances.
After work activities are identified and workload metrics are calculated the architect has
to assign time effort estimates for all work activities. Following a bottom-up approach the
architect presents low-level activities to respective developers and asks them to give esti-
mates. The results of the change estimation process are 1) the work plan with a detailed
list of work activities and annotated workload metrics, time effort estimates and costs, and
2) aggregated effort metric values.

Conclusions and Future Work In this paper, we presented a quantitative architecture-
based maintainability prediction method. It estimates the effort of performing change
requests for a given software architecture. Costs of software re-development and costs
of software management are considered. By this, KAMP takes a more comprehensive



approach than competing approaches. KAMP combines the strength of a top-down ar-
chitecture based analysis which decomposes the change requests into smaller tasks with
the benefits of a bottom-up estimation technique. We described the central change effort
estimation process in this paper. By extrapolating from the properties of our approach
compared to other qualitative approaches, we claim the benefits of lower influence of
personal experience on the prediction results accuracy and a higher scalability through
a higher degree of automation. By using bottom-up estimates we claim the personal pro-
ductivity is implicitly reflected. However, it is clear that we need to empirically validate
such claims. Therefore, we plan as future work a larger industrial case study and several
smaller controlled experiments to test the validity of these claims.
Acknowledgements – This work was funded in the context of the Q-ImPrESS research project (http://www.q-
impress.eu) by the European Union under the ICT priority of the 7th Research Framework Programme.

References

[BB99] P. Bengtsson and J. Bosch. Architecture level prediction of software maintenance. Soft-
ware Maintenance and Reengineering, 1999. Proc. of the Third European Conference
on, pages 139–147, 1999.

[BCR94] V. Basili, G. Caldeira, and H. D. Rombach. Encyclopedia of Software Engineering,
chapter The Goal Question Metric - Approach. Wiley, 1994.

[BKR07] S. Becker, H. Koziolek, and Ralf H. Reussner. Model-based Performance Prediction
with the Palladio Component Model. In WOSP ’07: Proc. the 6th Int. Works. on
Software and performance, pages 54–65, New York, NY, USA, Febr. 2007. ACM.

[BLBvV04] P. Bengtsson, N. Lassing, J. Bosch, and H. van Vliet. Architecture-level modifiability
analysis (ALMA). Journ. of Systems and Software, 69(1-2):129 – 147, 2004.

[Boe00] Barry W. Boehm, editor. Software cost estimation with Cocomo II. Prentice Hall,
Upper Saddle River, NJ, 2000.

[BZJ04] M.A. Babar, L. Zhu, and R. Jeffery. A framework for classifying and comparing soft-
ware architecture evaluation methods. Software Engineering Conference, 2004. Pro-
ceedings. 2004 Australian, pages 309–318, 2004.

[CKK05] Paul Clements, Rick Kazman, and Mark Klein. Evaluating software architectures.
Addison-Wesley, 4. print. edition, 2005.

[dCP08] David Bettencourt da Cruz and Birgit Penzenstadler. Designing, Documenting, and
Evaluating Software Architecture. Technical Report TUM-INFO-06-I0818-0/1.-FI,
Technische Universität München, Institut für Informatik, jun 2008.

[Dob02] E. Dobrica, L.; Niemela. A survey on software architecture analysis methods. Trans-
actions on Software Engineering, 28(7):638–653, Jul 2002.

[IEE07] ISO/IEC IEEE. Systems and software engineering - Recommended practice for ar-
chitectural description of software-intensive systems. ISO/IEC 42010 IEEE Std 1471-
2000 First edition 2007-07-15, pages c1–24, 15 2007.

[IFP99] IFPUG. Function Point Counting Practices Manual. International Function Points
Users Group: Mequon WI, 1999.

[ISO90] ISO/IEC. Software Engineering - Product Quality - Part 1: Quality. ISO/IEC 9126-
1:2001(E), Dec 1990.

[PB01] Daniel J. Paulish and Len Bass. Architecture-Centric Software Project Management: A
Practical Guide. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2001.


