Maintainability and control of
long-lived enterprise solutions

Oliver Daute Stefan Conrad

SAP Deutschland AG & Co. KG Heinrich-Heine Universitéat Diisseldorf
Business Solution Technology Institut fir Informatik
Homberger Stralle 25 Universitétsstraie 1
40882 Ratingen 40225 Diisseldorf
oliver.daute@sap.com conrad@cs.uni-duesseldorf.de

Abstract: Maintainability of long-lived enterprise solutions is today’s top
challenge. The constantly increasing functionalities of information technology
provided these days, including hardware and software products, leads to giant
networked application infrastructures. Business processes glue applications and
data sources to enterprise solutions to fulfill business needs. Large firms are more
and more dependent on the permanent availability of their enterprise solution. A
failure in one part of the landscape can rapidly impair the whole enterprise
landscape and harm the business. Maintainability is a critical issue and new
approaches are required to keep complex landscapes under control at all times. We
introduced the Real-Time Business Case Database, RT-BCDB as a basic concept.
This paper presents the next reasonable step. Process Activity Control describes a
steering mechanism for complex enterprise application landscapes, to gain more
stability, transparency and visibility of processes activities in order to improve
maintainability and to support the system administration in their daily operations.

1 Introduction

More transparency and control inside complex application landscapes is required
[KMPO08] since concepts like cloud computing [\Vo08], IT service management [ITIL],
architecture frameworks [TOGO09] or service-oriented architecture [SOA06] make it
possible to build up giant enterprise application solutions. But mechanisms how to
manage the underlying technology have been neglected. Long-lived enterprise solutions
are subject to evolution [RB09], obsolescence and replacement. We have to find answers
to questions regarding system maintenance, troubleshooting, availability, change
management and the integration of new components.

Maintainability and control of complex software solutions is today’s top challenge.

This paper presents mechanisms for increasing the maintainability and control of
complex application landscapes. Process Activity Control (PAC) is the next step after the
introduction of the Real-Time Business Case Database [Da09].

mailto:oliver.daute@sap.com
mailto:conrad@cs.uni-duesseldorf.de

PAC concentrates on the control of business processes which are currently active within
an application landscape. The goal is to avoid indeterminate processing states which can
cause further incidents within the application environments.

Most enterprise or service frameworks are focused on business requirements which have
improved the design of enterprise solutions significantly but often with too little
consideration for the underlying information technology [Ro03]. Operation interests are
neglected and little information about how to run a designed enterprise solution can be
found. A single business process is able to trigger process activities across the whole
landscape, uses different applications, servers or exchanges data. If a server fails or a
database system stops its processing, then several business processes can be impaired
(Fig. 2). In such situations it is quite difficult to determine the cause or impact on other
process activities of the enterprise solution [KMP08].

The challenge for the system administration is to manage these complex application
environments and to react as swiftly as possible to incidents [SWO08]. Several tools are
available to monitor large enterprise landscapes. Some of them just monitor the
operating or the application level. Only few tools collect details about business processes
and try to control them. But each tools has its own proprietary view to applications.
There is no overall concept for heterogeneous application environments available.

Numerous business cases within an enterprise solution make it impossible to be aware of
what each single business process does. The system administration must be able to
analyze business processing like a technical issue. Thus, business processes are seen as
objects which have a run-state and are requesting to run. This eliminates the need to
collect information about what a specific business process does. The focus on essential
information also standardizes business processes and eliminates the need to identify its
run-state in the case of an incident. System administration can react more purposefully
and the designers of business processes get detailed information about the behavior of
their business cases.

Complexity leads to longevity of software solutions for several reasons; here we need
only to think of done investments, cross application dependencies and efforts to
exchange software products. This paper discusses the challenges and circumstances in
complex enterprise solutions and why it is so difficult to control business processes. We
will show how to set up a steering & control mechanism within the application
environments and will discuss the benefits for the system management administration.

For the communication with PAC, we will introduce a Code of Business Processes. It is
a valuable step forward in defining the frame to identify business processes.

Finally, the use of PAC in collaboration with the RT-BCDB will be presented, preceded
by a short introduction to it.

2 Background & Terminology

RT-BCDB stands for Real-Time Business Case Database and it is an approach to
collecting and providing information about business process activities in heterogeneous
application landscapes. RT-BCDB aims to improve the transparency of activities.

The knowledge acquired supports the administration during maintenance activities and is
an important source of information for the business designers as well. RT-BCDB
supports tasks, like updates, recovery, planning or optimization of the time schedules.

Directory

Business Case BC1 | RT-BCDB

Process Owner

Process P1 - <description>

Process Step PS1.1 - <processing unit>

Process Step PS1.2 - <processing unit> Run-Time History

Process P2/~ =<description> BC2.PS1.1s time |BC2.PS1.2s,time [BC2.PS1.2 s, time

Process Step PS2.1 - <processing unit> BC1PS11s time |BC1PS12s time |BC1PS11s, time |BC1PS11s, time |
Process Step PS2.2 - <processing unit> BC1PS1.1s time |BC1.PS12s tme |BC1PS11s time |BC1.PS11s, time |

BC4.PS1.1 s, time BC4.PS1.2 s, time
BC2.PS1.1 s, time BC2.PS1.2 s, time BC2.PS1.2 s, time

History of run-time information

Business Case BC2
Process Owner

Process P1 - <description> Active Business Cases

Process Step PS1.1 - <processing unit> [BC2.PS1.1 success [Bc2. Ps1.2 active [BC2.PS1.2 active

Process Step PS1.2 - <processing unit> [BC1.PS1.1 success | BC1.PS1.2 success | BC1.PS2.1 active | BC1.PS2.1 success
Process Step PS1.3 - <processing unit>
History of run-time information

Business Case BC<n>
Process Owner
Process P1 - <description>

Process Step PS1.1 - <processing unit>

History of run-time information API

Monitoing Data Collection

Figure 1: Real-Time Business Case Database

A system failure requires detailed investigations about the impact on business process
activities before a system recovery can take place. This means processes which were
impaired must be identified and must be included in the recovery process. The data of
RT-BCDB is important during the analysis and restoration phase in order to bring back
business processing to the latest consistent state. It is also indispensable for monitoring,
reporting and changing the landscape.

RT-BCDB stores data about business cases, processes, owners, history of previous
processing, execution frequencies, run-time, dependencies, as well as availabilities of
processing units and applications. Knowledge about run-states of business processes is
important information for maintaining and controlling business processes.

The term enterprise solution encapsulates a collaboration environment of hardware and
software technologies with the common purpose of providing an infrastructure for
business processes. A solution can consist of ERP software, various legacy systems, data
warehouses, middleware for exchanging data and connecting software applications.
Other expressions are application landscape or application environment.

Business cases are designed by the business requirements and needs. A business case
consists of several processes which can be performed on different systems. Business
cases determine the tasks of the customer’s enterprise solution.

A business process consumes data or provides them and can be triggered by other
processes or services. Business processes make use of different applications and data
sources across an application landscape with regard to the enterprise needs.

System maintenance activity relates to ongoing tasks on the system administration level.
Typical maintenance activities are updates, incident analysis, recovery, replacement and
the like. (RT-BCDB supports active or reactive maintenance activities).

3 The Idea

Process Activity Control is required because of the continuously increasing complexity
of long-lived enterprise solutions, driven by evolution, availability, growth, business
requirements, modern tools and enterprise application framework methods [TOGO09]. IT
administration has to manage these solutions in any situation. New mechanisms are
required to assist them.

The constantly increasing complexity of enterprise solution is the number one cause of
cost-intensive system failures [EIUO07].

Incidents interrupt business processes while they are performing a task. The malfunction
of a processing unit or of an application can cause process activities to fail. Processes
need to be restarted in order reach data consistency on business process level.

The idea of PAC is to minimize uncontrolled failure of business processes and reduce
the amount of incidents. If problems within the application landscape are already known,
e.g. a database stopped processing, then there is no reason for a process to start with the
risk of halting in a failure situation. PAC acts proactively and thus avoids disruptions.

PAC also addresses another currently unsolved problem: the start and stop process of a
complex application landscape or parts of it. It is still a complex matter to shutdown a
single application without the knowledge of dependent business cases and without
impairing the business. At the moment, there is no outer control for business cases
available. Whenever a shutdown is required, PAC identifies active business processes to
stop and will avoid the start of further business cases.

Business processes are triggered or started by different activators. A process can cause
different activities across the whole application landscape and exchanges data. Various
automated control instances start and stop processes, too. But there is no overall concept
for heterogeneous application environments.

The figure (Fig. 2) depicts a well-known situation in application environments without
control of processes. Uncontrolled failure of business processes may result in an
unknown run-state or data inconsistencies on business level.

From the perspective of a business case, a consistent state requires more than data
integrity on database level. Also dependent interfaces or single process steps must be
taken into consideration. Those can halt in an inconsistent state anywhere in an
application environment.

i | 3. Business
» *\ processes fail
BP1S2
BPI1S1" k BP353
Bris4 153 2pEE !
sineﬁjocess Layer

2. Database =
stopped

/

Figure 2: Failure within the application environment
PAC works as a steering mechanism for business processes and is especially valuable in
the control of core business processes. To interact with business processes, PAC makes
use of RunControl commands. We will discuss these later. PAC is able to collect run-
state information of business processes and send them to RT-BCDB.

4 Code of Business Processing

Various situations arise in complex application landscapes because a form of
identification for business processes is missing. These are not easy to handle or to
overcome in case of incidents. Therefore, identification is required for business
processes in the communication with PAC. The Code of Business Processing, CoBP
covers some minimum requirements.

Traffic laws are simple and effective. They are necessary to control and steer the traffic
within a defined infrastructure, the traffic network. Traffic laws and networks together
describe a kind of code of conduct which participants have to accept in order to
participate in the traffic. It is an appropriate steering mechanism for a complex
environment. This example of a regulating mechanism gives us an idea of what is
needed for application landscapes.

We will try to translate some elements of traffic laws and network into a code for
business processes.

We propose a Code of Business Processing which contains general rules and
requirements for using an application environment. The code should only be applied to
processes which are of significance for the enterprise solution itself. That means only
processes with a high impact in case of a failure have to meet the code. The CoBP
consists of rules and requirements:

First CoBP: Each process must have a unique form of identification. This is required to
identify and steer a process while it is active. Identification is needed to follow the tracks
(footprints) during the processing lifetime and to refer to the process owner. Process IDs
are unique across all applications to avoid false identification. A process ID can also be
used to classify. The most important business processes have a distinctive ID.

Second CoBP: Each business process must be documented. It must belong to a business
case and visualization must exist. A diagram contains the run-states a business process
can run in. Procedures must be given for recovery purposes in case of a process failure.

Third CoBP: Each process must have a given priority. On the one hand it is important
to decide which process should be given priority and also to determine a sequence of
processing. On the other hand it is useful to mark processes regarding the impact on the
application environment. The business processes with higher priority must process first,
unless PAC decides differently.

Fourth CoBP: The higher a priority is the higher is the charge for a business process.
Certainly, accounting and charging for processes is not very often done at customer site.
But a process with a high priority does have a significant impact on all other processes
that run within that environment.

For our purposes the first two rules are sufficient to control activities. Additional rules
can be added. Ideally, communication between processes should always take place in
traceable ways. As a result of this our last CoBP follows.

Fifth CoBP: Business Processes should use defined and traceable ways for interaction.
This forces the use of known and open interfaces. The CoBP improves the traceability of
business processing significantly and supports the maintainability. For existing
application landscapes, the 5™ CoBP requires reviewing the process interaction.

The rules of CoBP enable better steering of business processes, provide more
transparency and thus improve maintainability.

5 Process Activity Control

Process Activity Control is an approach to controlling process activities in complex
application environments. PAC will stop further business processing in case of problems
occurring. This will prevent business processes running into undefined processing states
and avoid further incidents.

PAC has to consider several issues in order to control process activities. A major task is,
for instance, determining the function state of business processes, applications and
processing units or the functioning of PAC itself. This can be done by RT-BCDB.

RT-BCDB uses agents to collect information about an application landscape. On the
hardware and application level, agents search for a specific pattern to determine the
function state and availability.

- ™\
Custom PAC
Rule Set CoBP
RfR

receive
&
answer

receive
request

decision

Run
Control

control

[request & update RT-BCDB]

N /

Figure 3: Architecture of PAC

Applications fork operating system processes, which can be monitored as well to
identify throughput. A premature termination of an application process on operating
systems can point to the failure of an application. The agents inspect the given sources of
information and try to identify run-state and availability information. This information is
used by PAC to react to current circumstances. PAC will try to avoid any starting or
triggering of business processes which will make use of a malfunctioning processing unit
or impaired applications.

For smaller software environments information about the availability of hardware and
software application is sufficient enough to control and to avoid further incidents. But
only few details about business process activities are visible.

For large application landscapes, such as long-lived enterprise solutions, PAC must also
be informed of run-states of business processes. This information is provided by the
knowledge base of RT-BCDB.

PAC consists of several basic elements: a decision-control mechanism, a Custom Rule
Set, the CoBP, an interface to RunControl, and a communication interface to RT-BCDB.
The decision-control mechanism is subdivided into four main activities: receive request,
evaluate, decision and control. Each activity has one or more tasks.

Activity ‘receive request’, just receives the Request for Run (RfR) in sequence of
income. Whenever a business process starts or stops or changes its run-state, then
RunControl will send an RfR. The RfR contains the process ID and the state of running.

The activity ‘evaluate’, evaluates the RunControl request against the information stored
in RT-BCDB. The run-state table of RT-BCDB always reflects the status of process
activities within the application environment. Any known problems with the availability
of applications or processing units are taken into consideration.

The “decision’ process uses CoBP, Custom Rule Set, RT-BCDB and the evaluation of
the previous activity. A final decision will be prepared to return a ‘Confirmation to Run
(CtR)’ or to stop a business process.

The ‘control’ activity is the steering process of PAC. It has two functions. The first is to
answer the RfR and to send a CtR. In the case of a business process having to be paused,
the control process waits to send the CtR until problems are solved. The second function
is to stop business processes in the case of the application landscape having to be shut
down. Vice versa ‘control’ enables the start-up of business cases in a predefined
sequence, for instance after maintenance activities or after the elimination of incidents.

The Custom Rule Set contains rules given for a customer’s application landscape. The
rule set can contain an alteration of priorities or a list of business cases which have to run
with a higher priority. Also preferred processing units can be part of the rule set. Another
element is CoBP, which was described previously. Finally, an application interface,
which is used to communicate with RT-BCDB, is also part of PAC.

In operation, PAC as a control instance must monitor its own availability. At least two
instances of PAC must run within the environment. This is necessary to prevent PAC is
becoming single-point of failure for the enterprise solution. In normal operation the
second instance should be used to answer RfR.

6 Run Control

PAC introduces an extension to RunControl [Da09] commands. RunControl commands
are used to receive information about processes and required for controlling the progress
of their activities. Whenever a business process starts, stops or waits, the RunControl
command will send a message with the process ID and the run-state. The information
will be stored immediately in the run-state table of RT-BCDB. Due to this, active
business cases and their status can be made visible (Fig.4).

Figure 4: Run-States of active business cases

We adapted the ‘RunControl’ statement for use with PAC. Instead of sending the run-
states information using the agents, this information is send to PAC immediately. PAC
forwards the information to RT-BCDB. On the business process layer, PAC takes over
the tasks of the agents. The second change is an extension of functionality. The
RunControl function waits until it receives a ‘Confirmation to Run’ from PAC. To
distinguish between the two versions of RunControl statements, we will use
RunControl AC when using PAC.

RunControlAC (BC1.P5S1, MYactive™)
call function PurchaseOrder;
if return code <> 0 then
call ExceptionHandling;
RunControlAC(BC1.FS1, “exception™)
aend
RunControlAC (BC1.P51, “successful”™)

Figure 5: Example for RunControl in source code or transparent layers
Several options are given to implement RunControl statements (Fig. 5). An option is to
insert RunControl statements into the source code [UML] [Sv07]. For existing
applications adaptations are possible during migration projects [St06]. Reverse
engineering might be an appropriate discipline too. Consequently for the future design of
business solutions, applications should be developed with regard to run-state information
or the RunControl statements.

Instead of modifying the source code, processes can also be called up from a transparent
layer in which functions are embedded in RunControl statements (Fig.6). This option is
much easier to implement and to introduce for heterogeneous landscapes.

Certainly, some effort is needed for the implementation of the RunControl. But with the
constantly increasing complexity of application landscapes, a mechanism as described is
indispensable for keeping a long-lived enterprise solution under control.

7 Improving Maintainability and Control

The aim of our concepts is to gain more transparency of and control over process
activities. To increase the overall availability, e.g. by the prevention of cost-intensive
incidents, is one aim more to be listed. We will discuss next by means of a simple
example, how PAC improves the maintainability of complex application landscapes.

An application stops its processing (Fig. 6). PAC recognizes this problem and stops
further processing of business cases which will make use of the application. Here, a
single business case is impaired and has to be stopped in order to prevent data
inconsistencies. If a standby application is available, PAC can move the processing to it.

In the case of performance bottlenecks, PAC is able to stop a business process in order to
prevent a problem from getting worse or shift an RfR to another application unit if
possible.

Although users have to wait until the problem is solved, indeterminate processing states
will be avoided. These can cause further incidents and additional efforts for solving.

PAC makes use of RT-BCDB knowledge to decide a ‘Request for Run’. If incidents to
databases, applications, processing units or business cases are known, then PAC will
determine if a ‘Request for Run’ will make use of them. The run-state and availability
information, stored in RT-BCDB, provides a virtual image of activities within the
application infrastructure.

PAC stops use Custom PAC coBP
A Rule Set
of business case
wansparontoor
‘ BC1P1 BC1P2 BC2P1 BC2P2 BC3P1)- BC3P2 BC3P3 '—
receive .

N W O

|

control

&

|

|

I I

: ; [request & update RT-BCDB }
Fkt1 App3
[rasees] |

| "

I

e

RT-BCDB

i

<>
IJ = EE

Agent [orsz @ [scrszde
& i LR) Gl I et =T
Infrastructure C

Figure 6: Avoiding indeterminate run-states and inconsistencies

Maintenance tasks like updates or upgrades of the applications also require detailed
information about the business cases possibly involved. The constant availability of
long-lived enterprise solution requests to maintain the landscape while numerous
business processes are running. PAC can prevent process activities while parts of the
application landscape are under construction. RT-BCDB provides the dependencies.

How to measure improvements in terms of Return on Investments? We will try to answer
this question with regard to time, money and quality.

Time: Each incident which was prevented saves time. ldentifying the cause of and
solution to an incident cost time. Additional time is needed for reporting and
documenting the solution, and several persons of different departments are involved.
Users are hindered in their work and will lose time. PAC prevents cost-intensive
incidents and improves the overall-availability of the enterprise solution.

Money: Costs are incurred by incident handling, software for incident tracking and
support staff. Downtimes can cause less productivity and can result in fewer sales. An
overall estimation is difficult to provide. In the worst case, especially in the area of
institutional banks, an incident can cause bankruptcy within a few days [EIU07].

Quality is often not easy to measure. In enterprise application landscapes quality means
availability, reliability, throughput, maintainability and competitiveness. Quality can
save money but can increase costs. The introduction of PAC and RT-BCDB requires
investments. But more visibility and transparency lead to more purposeful reactions to
incidents within the landscape. This saves time.

And fewer incidents, however, increase the quality and the availability of an enterprise
solution. We assume that for large environments the investment in regard to the increase
in quality will save money in the end. In smaller environments our concept will at least
improve quality. We expect that PAC & RT-BCDB reduce the TCO [Ga87], but further
investigations are required to determine the quantity and quality of improvements.

8 Evolution and Obsolescence

Long-lived enterprise solutions are subject to evolution, obsolescence and replacement.
Typical, for long-lived solutions is that the interaction between software components last
longer than the components themselves. Therefore knowledge about activities is
essential to maintain the landscape and to support the change management process.

Evolution is driven by new requirements, growth and replacements of hardware or
software, including general maintenance. Evolving a long-lived application solution can
be difficult. Lack of information about dependencies of process interactions, the way the
solution works and the integration of new components are some examples. Moreover the
enterprise solution requires close to 100% availability. RT-BCDB is oriented to the
information about the processing-unit, business cases and process activities. PAC
supports the maintenance process while the enterprise solution is in use.

Innovation can lead step by step to obsolescence of applications of the enterprise
solution. Often, so called legacy systems are difficult to exchange for some reasons.
Problems are missing documentations, designers left the organization and too little
information about the purpose and frequency of usage. Our concepts can explain their
usage and improve the replacement. They are able to detect monolithic applications. A
constantly decreasing usage can indicate obsolescence.

As we pointed out, most frameworks are focused on business requirements and neglect
the maintenance interest. Thus, insufficient transparency in operation and missing
control mechanism are the results to name only some of the gaps. Maintainability and
availability (incl. avoidance of cost-intensive incidents) are the main really challenging
tasks. But also recovery is an interesting issue to ensure data consistency across large
application landscapes. Our concepts are steps forward to improving maintainability and
control of long-lived software-solutions.

9 Conclusion

The concepts presented support maintenance tasks and the evolution of long-lived
enterprise solutions. System administration can react more purposefully. PAC improves
the control over business process activities, avoids incidents and makes better utilization
of resources. This leads to a higher availability and a better quality of the complex
application landscape. RT-BCDB is the knowledge basis and provides transparency; an
image of process activities and their dependencies.

Certainly, some work needs to be done to implement such concepts, especially if
software applications need to be adapted. But, with the constantly increasing complexity
of enterprise solutions, mechanisms as described are indispensable for keeping long-
lived enterprise application landscapes maintainable in the future.

References

[Da09] Daute, O.: Introducing Real-Time Business CASE Database, Approach to improving
system maintenance of complex application landscapes, ICEIS 11th Conference on
Enterprise Information Systems, 2009

[Da04] Daute, O.: Representation of Business Information Flow with an Extension for UML,
ICEIS 6th Conference on Enterprise Information Systems, 2004

[EIUO7] Economist Intelligence Unit: Coming to grips with IT risk; A report from the Economist
Intelligence Unit, White Paper 2007

[Ga87] Gartner Research Group: TCO, Total Cost of Ownership, 1987, Information Technology
Research, www.gartner.com

[ITIL] ITIL, IT Infrastructure Library, ITSMF, Information Technology Service Management
Forum, www.itsmf.net

[KMPO08]Kabbacy, Khairy A. H.; Murthy, D. N. Prabhakar, 2008, Complex System Maintenance
Handbook, Springer Series in Reliability Engineering

[PHO7] Papazoglou, M.; Heuvel, J.: Service oriented architectures: approaches, technologies and
research issues, Paper, International Journal on Very Large Data Bases (VLDB), 16:389-
415, 2007

[Ro03] Rosemann, M: Process-oriented Administration of Enterprise Systems, ARC SPIRT
project, Queensland University of Technology, 2003

[SWO08] Schelp, J.: Winter, Robert: Business Application Design and Enterprise Service Design:
A Comparison. In: Int. J. Service Sciences 3/4 (2008)

[SOA06] SOA: Reference Model for Service Oriented Architecture Committee Specification,
WWWw.0asis-open.org, 2006

[St06] Stamati, T: Investigating The Life Cycle Of Legacy Systems Migration, European and
Mediterranean Conference on Information Systems (EMCIS), Alicante Spain 2006

[Sv07] Svatos, O.: Conceptual Process Modeling Language: Regulative Approach, Department
of Information Technologies, University of Economics, Czech Republic, 2007

[RBO9] Riebisch, M; Bode, S.: Software-Evolvability, GI Informatik Spektrum, Bd 32 4,
Technische Universitat llImenau, 2009

[TOG09] TOGAF, 9.0: The Open Group Architecture Framework, Vendor- and technology-
neutral consortium, The Open GROUP, www.togaf.org, 2009

[UML] UML: Unified Modeling Language, Not-for-profit computer industry consortium, Object
Management Group, www.omg.org

http://www.gartner.com/
http://www.itsmf.net/
http://www.oasis-open.org/
http://www.togaf.org/
http://www.omg.org/

