Representing Linked Data as Virtual File Systems

Bernhard Schandl
University of Vienna
Department of Distributed and Multimedia Systems
Liebiggasse 4/3-4
A-1010 Wien, Austria
bernhard.schandl@univie.ac.at

ABSTRACT

One of the main characteristics of Linked Open Data (LOD)
is the exclusive application of standards published and main-
tained by the World Wide Web Consortium. This strict
adherence is kept on all levels, ranging from the identifi-
cation and transportation (URI, HTTP) to the interpre-
tation (RDF, RDFS, OWL) of resource descriptions. Be-
cause these standards are open and accessible to everybody,
broad acceptance and proliferation of LOD technologies in
Web-based applications and services are enabled. On typi-
cal desktops, however, the majority of applications are not
aware of Web standards, but use hierarchical file systems to
organize and store information. This results in a gap be-
tween the two distinct information spaces of the Web and
the desktop. To bridge this gap, we propose a virtual file
system representation of LOD sets, through which they can
be accessed as if they were present in the file system and
thus easily be used within desktop applications.

Categories and Subject Descriptors

D.4.3 [Operating Systems]: File Systems Management;
H.3.5 [Information Storage and Retrieval]: Online In-
formation Services

General Terms
Algorithms, Design

Keywords

Linked Open Data, file systems, information representation,
Semantic Desktop

1. INTRODUCTION

The goal of Linked Open Data (LOD) [5] is to increase the
value of publicly available data sets by exposing them on the
Web using standardized technologies, and by interlinking re-
lated items so that clients can easily combine information
from various sources. To accomplish this, the LOD princi-
ples [8] are fully integrated with the Web architecture [16]
and technologies: URIs are used to identify resources, RDF
(usually serialized using XML) is used to describe them, and
resource descriptions and representations are transferred us-
ing HTTP.

Copyright is held by the author/owner(s).
LODW April 20, 2009, Madrid, Spain.

A large number of applications, however, are executed in
desktop environments and are, in turn, designed and built
under entirely different assumptions w.r.t. information rep-
resentation, storage, and exchange. On the desktop, the file
system is the main mechanism for the storage and organiza-
tion of data, and consequently data exchange on the desktop
is mostly implemented based on files. This is reflected by
the fact that many applications provide import and export
filters, which allow them to read and write different file for-
mats and hence exchange data with other applications. A
number of de-facto standard file formats exist which are ex-
pected to work across platforms and applications.

The Semantic Web, and Linked Open Data in particu-
lar, are distinct from desktop environments in this respect.
On the Web, different formats and mechanisms are in oper-
ation. As a consequence, we can observe distinct informa-
tion spaces as well as conceptual and technical gaps between
these two worlds. To bridge them, it is desirable to build a
bridge between LOD and desktop applications so that desk-
top users can directly access and integrate information from
LOD sources, but continue to work with the applications
they are familiar with. For instance, it would be desirable
to directly insert a textual description of Berlin within one’s
favourite word processing application, or to seamlessly load
structured descriptions about this city into a spreadsheet
tool.

In this paper we present such a bridge: we propose a mech-
anism that represents LOD sets as virtual file systems, which
enables applications and users to directly access resource de-
scriptions and their representations. Such a representation
can be useful in a number of scenarios, which we describe
in Section |2} In Section |3| we discuss our mapping approach
and a prototypical implementation. We also discuss struc-
tural differences between file systems and LOD principles,
and how the LOD technology family could be improved in
order to extend their applicability in Section

2. APPLICATIONS FOR VIRTUAL LOD-
BASED FILE SYSTEMS

The possible usage scenarios of file systems are manifold,
as we can observe on our own desktop computers. A number
of them are especially interesting in the context of Linked
Open Data. In this section we outline such scenarios that
would benefit from a virtual representation of LOD sets.

Browsing and Navigation.
Most desktop computer users are familiar with naviga-
tion in hierarchical file systems. The visual rendering of file

system structures, provided by applications like Windows
Explorer or Apple Finder, is similar on all desktop oper-
ating systems. They indicate files as atomic information
entities, which are grouped by hierarchical collections, i.e.,
directories. Navigation within the directory hierarchy of a
file system is understood by most end users: directories can
be “opened” and their contents can be inspected. Similarly,
files can be opened with their respective applications in or-
der to view and manipulate their content.

A virtual file system representation of Linked Open Data
applies the metaphors of directories and files to these data:
it allows users to navigate through the RDF graph provided
by a LOD set as if it was a hierarchical file structure on one’s
personal desktop. Hence users are not required to mentally
“switch” between the Web and the desktop contexts.

Data Import.

The data found in LOD sources can be relevant in many
scenarios. However, common desktop applications usually
do not provide means to import data directly from the Web,
neither in “traditional” formats (e.g., HTML pages) nor in
the form of RDF. Consequently, a user of such applications
who wishes to reuse information from LOD sources is forced
to perform intermediate data conversion. First, the data of
interest must be located, then it must be downloaded to a
local file, and as a final step it must be converted into a
format that can be read by the target application.

To efficiently perform these tasks, extensive knowledge of
LOD technologies (SPARQL and RDF) and of the target
application’s data formats is needed. With a virtual file
representation of LOD, at least the first two steps can be
executed by the virtual file system driver, allowing users
and applications to access data as if they were stored in the
local file system. Additionally, conversion from RDF to typ-
ical desktop application file formats that can be interpreted
by many applications (e.g., Rich Text Format or Comma-
separated Values) can be performed directly by the virtual
file system driver.

Integration with Desktop Resources.

Information resources on the desktop are typically orga-
nized using hierarchical file systems, which allow users to ar-
range documents within a tree of (nearly) arbitrarily named
directories. Even applications that do not follow this pattern
store and organize their data in file system structures [22].
These hierarchies help users to retrieve previously stored in-
formation, mostly by step-by-step navigation through the
directory hierarchy, as described before.

The integration of resources other than files, like web re-
sources, into file systems is often cumbersome. Many sys-
tems allow users to link web resources (URLs) into hierar-
chical file systems by saving the target address into a special
file. This file however can often not be used by applications
that operate on the file system. By representing Linked
Open Data (i.e., resource descriptions on the Semantic Web)
as virtual file systems, these data can be directly integrated
with other file-based resources, and it can be seamlessly pro-
cessed by humans and applications.

3. REPRESENTING LOD AS VIRTUAL
FILE SYSTEM

3.1 Design Considerations

A number of conceptual differences between Linked Open
Data and hierarchical file systems have to be considered in
order to define a useful and valid representation. In the fol-
lowing we outline these issues and, where possible, describe
directions how to solve them.

e Structural Mismatch. Linked Open Data is published
in the RDF format, which essentially is a graph model:
resources and literals can be interpreted as (labelled)
nodes, and property relationships between them can
be interpreted as directed, labelled edges. In contrast,
file systems are trees, which consist of inner nodes (di-
rectories) and leaf nodes (files). In hierarchical file
systems, each node is labelled, and there exists only
one type of relationship between nodes (contains).

Consequently, in order to prevent information loss, the
labelled edges of the RDF graph must be represented
as labelled nodes in the file system representation. A
graph cannot be reduced to a tree without the loss of
edges, which in the case of RDF means information
loss. However, one can circumvent the strictly hierar-
chical structure of file systems using shortcutsﬂ The
representation of edges in the RDF graph model as file
system shortcut allows for a complete graph represen-
tation.

e FEntry Point. File systems, due to their hierarchical
structure, have a natural entry point, the root direc-
tory. This entry point is present in every file system
and commonly serves as the starting point for activi-
ties like browsing and searching, but also as reference
for unique naming within the file system tree. A graph
structure does not have such a natural starting point.
Two possibilities for selecting a starting point for a
tree-based representation of a graph can be derived
from typical usage patterns of the (classic) Web: users
either are aware of a URL they want to visit (e.g., by
using a bookmarking system) and navigate directly to
the corresponding Web site, or use search engines to
find resources that fulfil their information needs.

e Naming. RDF, the meta model for representation of
Linked Open Data, uses URIs [4] to identify resources
and the relationships between them. Per definition,
URIs are globally unique, and two resources that are
identified with the same URI are considered to be the
same resource. In the RDF context, the inner struc-
ture of URIs is irrelevant, and a similarity in resource
naming does, per se, not imply any kind of relationship
between these resources.

Naming in file systems is different: the uniqueness of
file and directory names is ensured only locally, i.e., in
the context of the objects’ parent directory. A file’s
full path is unique within the local machine context

!Different names and semantics are used for such mecha-
nisms in different operating systems; e.g., alias or symbolic
link. Essentially all these mechanisms allow file system ob-
jects (files or directories) to virtually appear in multiple lo-
cations, i.e., they can be accessed via multiple paths.

and can be interpreted as a sequence of local names.
In this regard, file systems are more restrictive than
RDF, which allows for a lossless mapping from URIs
to file names. However, the syntactic rules for valid
URIs differ from the rules for valid file and directory
names (for instance, several characters that are allowed
in URIs are not allowed in file names), which must be
solved by suitable escaping algorithms.

e Literal Values. This naming mechanism does not ap-
ply to literals. In fact, literals are more convenient
and intuitive substitutes for URIs (cf. Section 3.4 of
[17]), and hence it would be obvious to map literals
in the same manner as resource URIs. Literals how-
ever carry an important part of information encoded
in RDF: without literals, resource descriptions would
consist only of a graph interrelating abstract identi-
fiers; with literals, humans and machines are enabled
to display, process, and interpret actual data about
resources.

In file systems, the actual information to be used and
processed by applications is stored within files, and
not in the structure of the file system hierarchy. This
means that file-based applications are designed to read,
write, interpret, and modify not directory hierarchies,
but file contents. Thus it is more practical and con-
venient to represent RDF literal values as file content
rather than to encode them as file or directory names.

e Resource Representations. One basic idea of the Se-
mantic Web is that it is used to describe resources.
The actual representation of a resource, however, is
out of the scope of RDF since it deals only with the
metadata layer. The connection between a resource’s
descriptions and its actual representations is usually
established by dereferencing its URIL. By doing so a
client can expect to retrieve a resource’s representa-
tion (in the case of information resources) or a RDF-
based metadata record about a resource (in the case
of non-information resources, cf. [16], Section 2.2).

In file systems, only information resources in the sense
of the Web architecture exist: the file as a concep-
tual entity cannot be separated from its representa-
tion. This is both an advantage and a disadvantage:
on the one hand, it is possible to directly reflect a re-
source representation in the file system. On the other
hand, a resource may have multiple representations of
different types (for instance, different text formats),
which (in the case of HT'TP resources) clients can re-
trieve using content negotiation (cf. [14], Section 12).

Since a file has only one (main) content strea one
has to find another mapping mechanism for resource
representations.

Since file systems follow a relatively simple underlying
model, the degrees of freedom for modeling a virtual LOD
representation are limited. Summing up the issues described

2Different file systems provide mechanisms to represent mul-
tiple content streams for files; e.g., Alternate Data Streams
[3], file forks |1], or extended attributes. None of these ap-
proaches, however, is easily accessible for applications and
users, and also data can often not be transferred across plat-
forms.

before we come to a number of restrictions that determine
our mapping definition. The following prerequisites for our
virtual file system representation of Linked Open Data sets
must be considered.

1. Resources cannot be mapped to files. Since file sys-
tems provide a manifestation of inner structure only for
directories through the containment relationship de-
scribed before but not for file contents, RDF resources
cannot be mapped to files, but must be mapped to di-
rectories in order to preserve their structured descrip-
tions.

2. Properties cannot be mapped to files. An RDF prop-
erty establishes either a relationship between two re-
sources or between a resource and a literal string.
Again, the only model element of file system that can
be used to express such relationships between objects
are directories and the elements they contain.

3. Literal values should be represented inside files. As
described before, applications should be enabled to di-
rectly access literal values, but this can only be accom-
plished if they are represented as file contents.

4. Resource representations should be considered. In file
systems, contents and metadata are tightly integrated,
and a file cannot be considered separate from its con-
tents. To sustain this assumption on which file-based
applications are designed, it is desirable to include re-
source representations of various content types into the
virtual file system, thus extending the scope of RDF.

5. A meaningful root node should be defined. For a proper
file system representation, a meaningful root node
should be defined that is useful both to humans and
to machines. This root node should also be chosen so
that it provides a permanent mapping of resource iden-
tifiers (URISs) to file paths in order to allow to maintain
file paths even if the LOD set changes.

We have defined a virtual file system representation of
Linked Open Data sources that considers these conditions.
In the following we present this approach and discuss our
prototypical implementation.

3.2 Approach

According to the considerations described before, we rep-
resent each RDF resource within a LOD set as a virtual di-
rectory (cf. Figure [1]), and we collect all (known) resources
within one directory called /!resource/. Hence each re-
source obtains a unique absolute path, which corresponds to
the RDF principle that each resource has a globally unique
URI. To determine the name of the virtual resource direc-
tory, we convert full URIs to qualified names (cf. Section 4
of |10]). We encode URI characters that are not allowed in
file systems, e.g., slashes or quotation marks, using UTF-8
character encodin

The representation of each resource as a virtual direc-
tory allows us to collect all information about this resource

31t depends on the operating system which characters are
affected by this encoding: for instance, Windows does not
permit colons in file systems, whereas in UNIX-based oper-
ating systems they can be used as long as they are escaped

properly.

dbpedia:Berlin |:'> /Iresource/ | dbpedia:Berlin |/

Figure 1: Mapping of RDF resources to virtual di-
rectories

within one single point in the virtual file system, and also to
uniquely refer to this resource across the entire file system.

Within the resource directory we can now represent all
available information about this resource, i.e., properties
that have this resource as subject. Since a property can have
multiple values we represent each property as virtual direc-
tory that contains all corresponding values. This is done
differently for object properties (i.e., properties whose value
is a RDF resource) and datatype properties (i.e., properties
whose value is a literal). For the former, we represent the
property value resource as a symbolic linkEI that refers to
the resource’s virtual directory, as described before. This
(i) avoids long pathnames, which otherwise would reduce
the system’s usability and may cause implementation prob-
lems, and (i) avoids cycles and hence indefinite hierarchy
depths. An example for the representation of a object prop-
erty is depicted in Figure[2]

dbpedia:Berlin rdf:type —C dbpedia-owl:City

/Iresource/| dbpedia-owl:City |/

Figure 2: Mapping of object properties to virtual
directories

We represent the lexical representation of datatype prop-
erty values (i.e., literals) not as file name or directory name,
but within the contents of a virtual file, which is located
within the virtual property directory. Since a resource may
have multiple properties with the same property URI but
different literal values, we distinguish the single value files
by numbering them (see Figure [3). This mapping provides
the possibility to directly read literal strings from applica-
tions, but also to search for them using file system fulltext
indices.

In addition to representing a resource’s “outgoing” prop-
erties (i.e., triples that have this resource as subject) we also
represent “incoming” properties (i.e., triples that have this
resource as object) for convenience reasons. This representa-
tion allows a client user or application to backwards-traverse
edges in the RDF graph. To distinguish incoming properties
from outgoing ones, we apply the same naming convention
as popular LOD browsers (e.g., Tabulator [6]) and encap-
sulate the property URI by "is" and "of" strings. This
representation is depicted in Figure[d] Of course this map-

*A symbolic link (symlink) is a special file that contains a
reference to another file or directory.

dbpedia:Berlin p:area —>| "891.82"Mxsd:double |

/Iresource/ | dbpedia:Berlin |/| p:area |/| value-17.txt

"891.82"Mxsd:double

S

Figure 3: Mapping of datatype properties to virtual
files

ping only applies to object properties since literals cannot
be the subject of an RDF triple.

dbpedia:Berlin rdf:type —»C dbpedia-owl:City
__________ [}

/!resource/| dbpedia-owl:City |/| is rdf:type of /i-dbpedia:BerIin |

QI symlink . _ /

rT~a ~ 4

NP4

symlink - - _ - - x

1
A i
/lresource/ | dopedia:Berlin |/| rdf:type | /1 dbpedia-owl:City |
I_

Figure 4: Mapping of incoming object properties to
virtual directories

Finally, we include resource representations in our vir-
tual file system in order to enable applications and users
to directly access them without the need to deal with the
HTTP protocol or other retrieval mechanisms. We repre-
sent resource contents as files that reside within the virtual
resource directory, and include the representation’s content
type in the file name in order to distinguish them. Since
the Web architecture [16] provides no means to determine
which resource representations are available, we currently
use three common content types (application/rdf+xml,
text/rdf+n3, and text/html). Additionally, a comma-
separated value (CSV) representation of all properties of the
resource is created under the text/csv content type, which
is of immediate use for many applications, e.g., spreadsheet
tools. Figure [5| shows the resulting virtual files.

The combination of all these mappings constitutes a vir-
tual tree-based representation of Linked Open Data sets.
Using this representation, users and applications are enabled
to navigate through the virtual directories that represent re-
sources and properties, and to access property values and
resource representations, which are stored as virtual files.
All resources whose URIs are known can be used as starting
point, since they are represented under the virtual /!re-
source/ directory.

However, a LOD set may contain descriptions about large
numbers of resources, and retrieving all known resources
from the endpoint is an expensive task. As described in

dbpedia:Berlin

J

N'resource/| dbpedia:Berlin |/(content-application_rdf.xml)

/'resource/ | dbpedia:Berlin |/| content-text_rdf.n3

N'resource/| dbpedia:Berlin |/{ content-text.html)
/lresource/ | dbpedia:Berlin |/[content-text.csv

Figure 5: Mapping of resource representations to
virtual files

Section [3:]] it is very common to use full text search en-
gines as starting point for information retrieval from the
Web. To provide similar behavior for linked data that is
represented as virtual file system, we allow the user—in ad-
dition to the possibility of directly navigating to a virtual
resource directory—to execute full text searches by creating
a directory in the virtual file system’s root folder, whereas
the directory name is used as search temﬂ When such a
folder is created, a query is issued against the LOD set and
symlinks for the resulting resources are created within that
directory. Such a behaviour is also implemented in a number
of application-specific virtual file systems, some of which we
present in Section [5

Figure |§| shows an extract of a complete file system tree
that represents data from one of the most popular LOD
sources, DBpedia [2]. We can see the root directory for
resources, which contains one virtual directory for each
resource. FEach resource contains files for representations
as well as sub-directories for properties (in this example,
"p:location" and "rdfs:label"), which again contain files
or symlinks that represent the property values. Finally, a
virtual keyword search folder ("berlin" in this example) is
depicted that contains symlinks for each result.

3.3 Implementation

We have implemented a virtual file system driver called
LODF@ that represents data from an arbitrary SPARQL
endpoint as virtual file system. This implementation uses
the FUSE-J toolkitﬂ which allows for the implementation of
file system drivers in the user space and thus disburdens the
developer from the need to develop kernel extensions. Cur-
rently, FUSE file systems can be used on Linux, FreeBSD,
and Mac OS X platforms.

A LODFS instance is always bound to one SPARQL end-
point and potentially represents all data that is available
through this endpoint. When the LODFS driver is launched,
it only provides a root directory that contains an empty
/'resource/ directory. The preferred way to access re-

SFor a discussion on the practical applicability of fulltext
queries in the context of Linked Open Data, refer to Sec-
tion

SLODFS: http://lodfs.sourceforge.net

"FUSE-J Framework: http://fuse-j.sourceforge.net

/]

— dbpedia:2raumwohnung |

— dbpedia:Berlin

—t:lbpedia:Wannsee
content-text.html

content-application_rdf.xml

p:location

ldbpedia:BerIin |

rdfs:label
| {

value-1 Axt
value-2.txt

dbpedia:Vienna

berlin Symbols

- dbpedia:Berlin |
i —— _ _ .
— dbpedia:Wannsee |

- =
1 Symlink |
.

Figure 6: A complete virtual file system, represent-
ing resources from DBpedia

sources is through a full text search. Whenever a user creates
a directory within the driver’s root directory, a correspond-
ing SPARQL SELECT query is issued, the resulting resources
are added under the /!resource/ directory, and symlinks
are created within the virtual search directory. Alterna-
tively, the user can directly access resource descriptions by
creating (mkdir) or changing into (cd) the corresponding re-
source directory, e.g., /!resource/dbpedia:Berlin/.

The implementation retrieves resource descriptions only
on demand: when a request (e.g., a directory listing) to
a virtual resource directory is issued, and the data of the
resource has not yet been retrieved, a SPARQL DESCRIBE
query is issued, and the resource representations of various
types (cf. Figure [5)) are retrieved. Then, the resulting re-
sources are represented as virtual directories, files, and sym-
links.

Figure |Z| shows a transcript of a console session that
interacts with a LOD dataset. In this example, a full
text search directory is created and its contents are listed.
Then, all properties and representations of one resource
(dbpedia:Wannsee) are listed. Finally, the contents of all
literal values for the resource’s rdfs:label property are
printed.

4. PRELIMINARY EXPERIENCE

So far we have discussed a number of conditions for a vir-
tual file system representation of LOD data (Section [3.1).
In Section we have presented our mapping approach,

http://lodfs.sourceforge.net
http://fuse-j.sourceforge.net

$ cd /Volumes/lodfs
$ 1s
mkdir berlin
cd berlin
1s
dbpedia:Berlin@ ->
/Volumes/lodfs/!resource/dbpedia:Berlin
0 dbpedia:Wannsee@ ->
/Volumes/lodfs/!resource/dbpedia:Wannsee
[...]
$ 1s dbpedia:Wannsee
26093 content-application.rdf+xml*
17060 content-text.csv*
30331 content-text.htmlx*
17417 content-text.rdf+n3x*
0 foaf:depiction/
foaf:img/
geo:lat/
geo:long/

O & & &+

—- O O o

[...
$ cat dbpedia:Wannsee/rdfs:label/*
"Wannsee"Qes

"Grofler Wannsee"@nl

"Grofler Wannsee'"@de

"Grofler Wannsee"@da

[...]

$

Figure 7: Transcript of a LODFS session

and in Section a prototypical implementation of this ap-
proach was described. From the experience we have gained
in the course of the design, implementation, and usage of
our approach, we can observe a number of open issues in
the context of LOD related technologies. In the following
we outline several of these issues in order to indicate direc-
tions for further research and development.

4.1 Linked Open Data Issues

Resource Rendering.

URIs play a fundamental role in Linked Open Data, as
they are used for the identification of resources and proper-
ties. Although they are not primarily designed for human
consumption, URIs are also often used for the visual render-
ing of resources in user interfaces. A number of vocabularies
provide properties designed to describe a resource’s human-
readable label (e.g., rdfs:1label or skos:prefLabel), how-
ever their presence is not guaranteed, in which case the URI
serves as fallback for rendering. Moreover, a resource may
have multiple rdfs:1label property values, or different re-
source’s labels may be equal, which causes confusion in user
interfaces.

URI Prefixes.

Long URIs are hard to render in a user interface, and
they are also not directly suitable to be used as file names
or directory names because of forbidden characters. In our
implementation, QNames are used to abbreviate URIs with
human-friendly shortcuts, and a number of URI prefixes
(e.g., rdf: or owl:) can be regarded as commonly accepted.

However, in principle there exists no globally valid mapping
for URI prefixes since they are by definition valid only in a
local context. For generic client applications like our virtual
file system it is therefore hard to determine which URIs are
used and which URI prefixes can be applied. URI prefixes
can be embedded in the various RDF serializations (e.g.,
using namespaces in the RDF/XML serialization), but in
practice often default prefixes are applied which have no
meaning to the user (e.g., j_0: and similar prefixes are reg-
ularly found in RDF serializations produced by the Jena
Semantic Web framework).

To overcome this drawback one could imagine metadata
that describes a LOD set, and also indicates which vocabu-
laries and URI prefixes are used therein. The recently pre-
sented Vocabulary of Interlinked Datasets (voiDﬂinCIudes a
property (void:vocabulary) to describe which vocabularies
are used within a dataset, but does not consider the defini-
tion of preferred URI prefixes. Thus, it would be an option
to extend the voiD vocabulary towards this direction.

Another approach to solve this problem is the usage of
lookup indices like the recently presented prefix.cc ser-
viceﬂ which maintains a list of mappings from prefixes to
URIs. Developers can use this service to submit their prefix-
to-URI mapping and to look up the full URI for a given
prefix. prefix.cc resolves prefix naming conflicts using a
voting mechanism, hence the most popular prefix mapping
is determined by the user community. Currently, however,
this service does not allow clients to query the preferred pre-
fix for a given URI, which reduces its applicability for the
purposes described in this paper.

Content Representation.

The Web Architecture [16] does not provide means to
specify which content types can be used to retrieve a re-
source representation. Thus it is difficult for a generic client
to identify and retrieve all existing representations. Cur-
rently, a client can only try to retrieve common content
types (e.g., text/html or application/rdf+xml). A mech-
anism to obtain existing resource representations of specific
content types would greatly increase the applicability of re-
source descriptions.

RDF Language Features.

A number of RDF language features (especially anony-
mous resources, collections, and reification) are considered
problematic in the context of Linked Open Data (cf. [8], Sec-
tion 2.2). Their applicability in the context of virtual file
systems is also restricted, since file systems do not provide
mechanisms to reflect these language elements (e.g., it is not
possible to define files without a name to represent anony-
mous resources, or to represent reified files or directories).
As it is considered good practice to avoid these features in
Linked Open Data (cf. [8], Section 2.2) our approach also
ignores blank nodes and treats collections and reification in
the same manner as other RDF triples.

Fulltext Queries.

Currently, SPARQL provides fulltext search only through
the usage of the regex () filter (cf. Section 11.4.13 of |21]); a
typical fulltext query according to this specification is de-

8voiD vocabulary: http://rdfs.org/ns/void
9Namespace lookup for RDF developers: http://prefix.cc

http://rdfs.org/ns/void
http://prefix.cc

picted in Figure The implementation of this class of
queries, however, is usually not optimal; for instance, the
current DBpedia SPARQL implementatiorﬂ runs into a
timeout when this query is issued.

SELECT DISTINCT ?s
WHERE { ?s ?p 7o .
FILTER regex(?o, "viemna", "i") . }

Figure 8:
query

Standards-compliant SPARQL fulltext

On the other hand, different SPARQL implementations
provide fulltext search through proprietary query language
extensions. For DBpedia, fulltext queries can efficiently be
issued through the virtual bif:contains property (cf. Fig-
ure E[), which is defined by the underlying OpenLink Virtu-
0so implementation [12]. This query form cannot be used in
a generic client since it depends on the implementation of
the SPARQL endpoint, which contradicts the intention of a
high-level query language; i.e., to abstract over a service’s
implementation specifics. It is crucial for LOD endpoints to
efficiently implement a standardized mechanism for fulltext
search in order to be used by generic clients.

SELECT DISTINCT 7s
WHERE { 7?s ?p 7o .
70 bif:contains "vienna" . }

Figure 9: Fulltext queries in OpenLink Virtuoso

Updates.

Linked Open Data does not provide a mechanism to up-
date data, hence the virtual file system is read-only. There
exist proposals for an update extension to SPARQL (e.g.,
the SPARQL/Update proposal which is currently a W3C
member submission [23]), but the “Writable Web” has been
addressed only in a few number of works (e.g., [7]), and
is currently being addressed also in a W3C community
projec

4.2 File System Issues

Operating System Specifics.

There exist a number of differences regarding the file sys-
tem implementations of common operating systems. For
instance, the meaning of a backslash (\) in a path expres-
sion differs under Windows, where the backslash separates
sub-directory names, and under Linux/Unix-based systems,
where it is used to escape special characters. Even on a
single platform the behaviour can be different: for instance,
Mac OS X allows the usage of slashes (/) in file names,
but the underlying Unix file system implementation converts
them to colons. Our prototype implementation follows the
convention of using a colon to separate URI prefixes from
the local names; consequently these directory names show

DBpedia SPARQL endpoint:

http://dbpedia.org/

sparql
Hpushback — Write Data Back From RDF to
Non-RDF Sources: http://esw.w3.org/topic/

PushBackDataToLegacySources

up with a slash in the Finder (cf. Figure . Of course, for
a Windows implementation a different separator would have
to be chosen.

o006 (] dbpedia/Berlin

L)z [(=HEom [(o][%#-] Q

DEVICES Name A Size
I LODFS a content-application.rdf+xml 389 KB
? MERCURY content-text.csv 32 KB
- content-text.html 327 KB
SHARED content-text.rdf+n3 210 KB
PLACES || dbpedia-owl/areaCode -
|| dbpedia-owl/areaTotal -
|| dbpedia-owl/latitudeminutes -
|| dbpedia-owl/latitutedegrees -
|| dbpedia-owl/leaderTitle -
|| dbpedia-owl/longitudedegrees -
|| dbpedia-owl/longitudeminutes -
|| dbpedia-owl/populationAsOf -
L] dbpedia-owl/populationMetro --
|| dbpedia-owl/populationTotal -
.| dbpedia-owl/postalCode -
| foaf/depiction -
[foaf/img -
L] foaf/name - v
) >
213 items, 476.84 GB available 4

0

O

SEARCH FOR

YVYVYVVYVVYVVYVYVYYY

A
-~

Figure 10: LOD resource representation in Mac OS
X Finder

Path Lengths.

Many operating systems impose a limit on the maximum
number of characters for absolute file paths. Although ob-
ject properties are realized using symbolic links in our im-
plementation, the virtual path to a resource may become
very long, especially in the case of cyclic RDF properties.
Currently this can be solved within applications and file
browsers by resolving symbolic links.

5. RELATED WORK

The current state of the art w.r.t. the consumption of
Linked Open Data for end users are RDF browsers, of which
a number have been presented previously (e.g., [6, [18} [20]).
These provide useful navigation interfaces for end users,
but do not provide the possibility for applications to access
Linked Open Data without the need to implement the cor-
responding client protocols or complex data transformation
operations.

A number of approaches have been presented how to use
(semi-)structured object annotations for the generation of
virtual file system views; e.g., by interpreting file path ele-
ments as AND-combination of attribute/value pairs |11 |15],
tags [9], or automatically generated classifications [13]. In
this approaches the virtual file system path is translated
into a query which is executed on the underlying data, and
the results are presented as virtual files and sub-directories.
With our virtual fulltext search directory (cf. Section |3.2))
we follow a similar approach, but additionally we map each
resource in the underlying data set to a fixed file system
representation, which allows for permanent file path refer-
ences to be made. A virtual hierarchical file system entirely
built on Semantic Web technologies, which allows for addi-
tional annotations and expressive search using an extended
file API, is presented in [22], and it is shown that the perfor-
mance of such systems is approaching a level sufficient for
interactive usage.

http://dbpedia.org/sparql
http://dbpedia.org/sparql
http://esw.w3.org/topic/PushBackDataToLegacySources
http://esw.w3.org/topic/PushBackDataToLegacySources

The libferris virtual file system [19] provides a generic
architecture that allows to mount a vast number of data
sources, including relational data bases, remote HTTP and
FTP servers, and XML documents. Libferris provides means
not only to read from these sources but also to store mod-
ifications to the virtual file system in the underlying data
source (e.g., a new node in an XML document can be in-
serted by creating a directory in the virtual directory hier-
archy), including locally stored RDF data which is accessed
by the means of the Redland RDF frameworklzl RDF2FS
[24] is a utility that transforms a given RDF file into an ac-
tual directory tree. Its mapping approach is comparable to
the one presented in this paper, but RDF2FS is limited to
locally available RDF data and does not dynamically down-
load data from remote LOD sources. Finally, in [25] a vir-
tual file system based on Topic Maps, which are conceptually
close to RDF, is presented.

A number of approaches comparable to ours can be found
for specific web applications, including ﬂickrfﬂ GmailFﬂ
or youtubef These approaches translate file system calls
to operations on the underlying service API and represent
data from the service’s account as virtual files. Services that
deal with multimedia content like the ones described here are
predestined to be represented as files since their APIs pro-
vide a unified view on content but also on annotations like
tags or user comments. To the best of our knowledge, the
approach presented in this paper is the first one that uses
arbitrary data accessible via a SPARQL endpoint and addi-
tionally considers fulltext search and resource representation
in conjunction with RDF descriptions.

6. CONCLUSIONS

In this paper we have shown how Linked Open Data sets
can be represented as virtual file systems, and hence be di-
rectly used by file-based applications without further con-
version steps. We have sketched a number of potential ap-
plication scenarios for such an implementation, and we have
discussed design considerations that influence our mapping.

Our prototypical implementation maps RDF resources to
virtual directories, which contain sub-directories and files
that represent object and datatype properties. We addition-
ally include resource representations of various content types
into our virtual file system in order to allow applications to
directly operate on these data. From our implementation
we have drawn a number of conclusions and issues that in-
dicate how the Linked Open Data technology family can be
extended and improved in order to better support generic
client applications.

Currently however a virtual file system based on LOD is
read-only since there exists no standardized way to mod-
ify linked datasets. We believe that controlled write access
could significantly improve the applicability of Linked Open
Data and related techniques, not only for virtual file systems
as presented in this paper; thus we will investigate more to-
wards this direction in the future.

12Redland RDF Libraries: http://1librdf.org
13http://manishrjain.googlepages.com/flickrfs
Yhttp://richard. jones.name/google-hacks/
gmail-filesystem/gmail-filesystem.html
Dhttp://code.google.com/p/youtubefs/

Acknowledgements

Parts of this work have been funded by FIT-IT grants
812513 and 815133 from Austrian Federal Ministry of Trans-
port, Innovation, and Technology. The author thanks Niko
Popitsch, Bernhard Haslhofer, and Stefan Zander for valu-
able comments on this paper.

7. REFERENCES
[1] Apple Inc. File Forks, 2005. Available at

http://developer.apple.com/documentation/mac/
Files/Files-14.html.

[2] Soren Auer, Christian Bizer, Georgi Kobilarov, Jens
Lehmann, Richard Cyganiak, and Zachary Ives.
DBpedia: A Nucleus for a Web of Open Data. In
Proceedings of the 6th International Semantic Web
Conference (ISWC 2007), Busan, Korea, 2007.

[3] Hal Berghel and Natasa Brajkovska. Wading into
Alternate Data Streams. Communications of the
ACM, 47(4):21-27, 2004.

[4] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform
Resource Identifier (URI): Generic Syntax (RFC
3986). Network Working Group, January 2005.

[5] Tim Berners-Lee. Linked Data. World Wide Web
Consortium, 2006. Available at
http://www.w3.org/Designlssues/LinkedData.html
retrieved 08-Aug-2008.

[6] Tim Berners-Lee, Yuhsin Chen, Lydia Chilton, Dan
Connolly, Ruth Dhanaraj, James Hollenbach, Adam
Lerer, and David Sheets. Tabulator: Exploring and
Analyzing Linked Data on the Semantic Web. In
Proceedings of the 3rd International Semantic Web
User Interaction Workshop, 2006.

[7] Tim Berners-Lee, J. Hollenbach, Kanghao Lu,

J. Presbrey, Eric Prud’hommeaux, and m.c. schraefel.
Tabulator Redux: Browsing and Writing Linked Data.
In Proceedings of the Workshop on Linked Open Data
on the Web (LDOW2008), 2008.

[8] Chris Bizer, Richard Cyganiak, and Tom Heath. How
to Publish Linked Data on the Web, 2007. Available at
http://wwwd.wiwiss.fu-berlin.de/bizer/pub/
LinkedDataTutorial/| retrieved 02-Dec-2008.

[9] Stephan Bloehdorn, Olaf Gérlitz, Simon Schenk, and
Max Volkel. TagFS — Tag Semantics for Hierarchical
File Systems. In 6th International Conference on
Knowledge Management (I-KNOW’06), 2006.

[10] Tim Bray, Dave Hollander, Andrew Layman, and
Richard Tobin. Namespaces in XML (Second Edition)
(W38C Recommendation 16 August 2006). World Wide
Web Consortium, 2006. Available at
http://www.w3.org/TR/REC-xml-names/.

[11] Paul Dourish, W. Keith Edwards, Anthony LaMarca,
and Michael Salisbury. Using Properties for Uniform
Interaction in the Presto Document System. In UIST
’99: Proceedings of the 12th annual ACM symposium
on User interface software and technology, pages
55-64, New York, NY, USA, 1999. ACM.

[12] Orri Erling and Ivan Mikhailov. RDF Support in the
Virtuoso DBMS. In Séren Auer, Christian Bizer,
Claudia Miiller, and Anna V. Zhdanova, editors,
CSSW, volume 113 of LNI, pages 59-68. GI, 2007.

[13] Sebastian Faubel and Christian Kuschel. Towards
Semantic File System Interfaces. In Christian Bizer

http://librdf.org
http://manishrjain.googlepages.com/flickrfs
http://richard.jones.name/google-hacks/gmail-filesystem/gmail-filesystem.html
http://richard.jones.name/google-hacks/gmail-filesystem/gmail-filesystem.html
http://code.google.com/p/youtubefs/
http://developer.apple.com/documentation/mac/Files/Files-14.html
http://developer.apple.com/documentation/mac/Files/Files-14.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial/
http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial/
http://www.w3.org/TR/REC-xml-names/

[16]

and Anupam Joshi, editors, Proceedings of the Poster
and Demonstration Session at the 7th International
Semantic Web Conference (ISWC 2008), volume 401.
CEUR Workshop Proceedings, 2008.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk,

L. Masinter, P. Leach, and T. Berners-Lee. Hypertext
Transfer Protocol — HTTP/1.1 (RFC 2616). Network
Working Group, 1999.

David K. Gifford, Pierre Jouvelot, Mark A. Sheldon,
and Jr. James W. O’Toole. Semantic File Systems. In
SOSP ’91: Proceedings of the 13th ACM Symposium
on Operating Systems Principles, pages 1625, New
York, NY, USA, 1991. ACM Press.

Tan Jacobs and Norman Walsh. Architecture of the
World Wide Web, Volume One (W3C
Recommendation 15 December 2004). World Wide
Web Consortium, 2005. Available at
http://www.w3.org/TR/webarch/.

Graham Klyne and Jeremy J. Carroll. Resource
Description Framework (RDF): Concepts and
Abstract Syntaz (W3C Recommendation 10 February
2004). World Wide Web Consortium, 2004.

Georgi Kobilarov and Ian Dickinson. Humboldt:
Exploring Linked Data. In Proceedings of the Linked
Data on the Web Workshop (LDOW2008), 2008.

Ben Martin. The World is a libferris Filesystem. Linux
Journal, April 2006.

Eyal Oren, Renaud Delbru, and Stefan Decker.
Extending Faceted Navigation for RDF Data. In
International Semantic Web Conference, pages

21]

(22]

23]

(24]

(25]

559-572, 2006.

Eric Prud’hommeaux and Andy Seaborne. SPARQL
Query Language for RDF (W3C Recommendation 15
January 2008). World Wide Web Consortium, 2008.
Bernhard Schandl and Bernhard Haslhofer. The Sile
Model — A Semantic File System Infrastructure for the
Desktop. In Proceedings of the 6th European Semantic
Web Conference (ESWC 2009), Heraklion, Greece,
2009.

Andy Seaborne, Geetha Manjunath, Chris Bizer, John
Breslin, Souripriya Das, lan Davis, Steve Harris,
Kingsley Idehen, Olivier Corby, Kjetil Kjernsmo, and
Benjamin Nowack. SPARQL Update — A Language for
Updating RDF Graphs (W8C Member Submission 15
July 2008). World Wide Web Consortium,
http://www.w3.org/Submission/2008/SUBM-
SPARQL-Update-20080715/, 2008. Available at
http://www.w3.org/Submission/2008/
SUBM-SPARQL-Update-20080715/.

Michael Sintek and Gunnar Aastrand Grimnes.
RDF2FS — A Unix File System RDF Store. In
Christian Bizer, Séren Auer, Gunnar Aastrand
Grimnes, and Tom Heath, editors, Proceedings of the
4th Workshop on Scripting for the Semantic Web,
2008.

Alexander Zangerl and Robert Barta. Virtual File
System on Top of Topic Maps. In Proceedings of the
Fourth International Conference on Topic Maps
Research and Applications, 2008.

http://www.w3.org/TR/webarch/
http://www.w3.org/Submission/2008/SUBM-SPARQL-Update-20080715/
http://www.w3.org/Submission/2008/SUBM-SPARQL-Update-20080715/

	Introduction
	99993em.5Applications for Virtual LOD-based File Systems
	Representing LOD as Virtual File System
	Design Considerations
	Approach
	Implementation

	Preliminary Experience
	Linked Open Data Issues
	File System Issues

	Related Work
	Conclusions
	References

