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ABSTRACT
With the growing amount of semantic data being published
on the Web the problem of finding individuals in different
datasets which correspond to the same entity is gaining im-
portance. Given that datasets are often structured using
different ontologies, automatic schema-matching techniques
have to be utilized before proceeding with data-level align-
ment. In this paper we discuss how ontology schema mis-
matches influence data-level alignment based on our first
experience with implementing a data fusion tool for a multi-
ontology environment.

Categories and Subject Descriptors
H.4.m [Information Systems]: Miscellaneous;
D.2 [Software]: Software Engineering
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Data fusion, coreference resolution, linked data

1. INTRODUCTION
The data integration process has to deal with two top-level

problems: resolving schema-level and data-level issues. On
the Web scale, semantic heterogeneity of data is inevitable,
which makes it necessary for a data coreference resolution
system to use results of automatic ontology matching tech-
niques. These techniques do not guarantee 100% accuracy
and errors produced by them may influence the quality of the
data fusion stage. In our previous work we developed an ar-
chitecture for semantic data fusion called KnoFuss [14]. The
initial version of the system was designed for the enterprise
knowledge management scenario, in which it was assumed
that schema-level issues were resolved and datasets being in-
tegrated were already structured according to the same on-
tology. We implemented an extension of the system, which
utilizes schema-level mappings, produced automatically, to
resolve coreferences between datasets using different ontolo-
gies. In this paper we discuss the impact of the ontology
heterogeneity on the quality of instance coreferencing.

2. ONTOLOGICAL MISMATCHES AND
DATA INTEGRATION ISSUES

The situation when datasets to be integrated use different
ontologies makes it hard for data integration methods to use
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the semantic data structure. Mappings between ontology
terms are needed to provide a uniform view over individuals
in two datasets and make the individuals comparable.

2.1 Ontological mismatches and
correspondence patterns

Obtaining an adequate representation of mappings which
allows correct data transformation is a non-trivial problem
due to ontology mismatches. A classification framework of
different types of mismatches between overlapping ontolo-
gies was given in [11]. Assuming that ontologies are repre-
sented in the same language, the framework distinguishes:

• Conceptualisation mismatches caused by different ways
of domain interpretation. These different ways in turn
may concern:

– Scope, when two classes seemingly representing
the same concept do not contain the same in-
stances (e.g., the class PoliticalOrganization in
TAP ontology includes terrorist groups, while in
SWETO it is meant to represent only legal organ-
isations).

– Model coverage and granularity, when parts of the
domain in one ontology are not covered in another
or covered with a different level of detail (e.g., in
SWETO the class Company does not have sub-
classes while TAP and DBPedia 3.2 distinguish
between different types of companies).

• Explication mismatches caused by different ways the
conceptualisation is specified. These are further di-
vided into:

– Modelling style mismatches, when the same do-
main is modeled using different paradigms (e.g.,
point vs interval logic for time representation)
or concept specification (e.g., splitting the sub-
classes of the same class in a hierarchy according
to different criteria).

– Terminological mismatches, when different terms
are used to represent the same entity (synonymy)
or the same term represents different entities
(homonymy).

– Encoding mismatches, when the values at the data
level have different formats. This one has to be
dealt at the data-level stage, so we do not consider
it in this paper.



Figure 1: Correspondence patterns of ontology
matching according to [16] (fragment). A commonly
used DisjointClass pattern is included.

To represent correctly the correspondences between on-
tologies and overcome these mismatches mappings of vary-
ing degrees of complexity are required. In [16] common cor-
respondence patterns are introduced to represent such map-
pings (see Fig. 1). For the most part mapping patterns
represent description logic relations. Available automatic
ontology matching algorithms can only produce a subset of
possible mappings. Given the limited capabilities of ontol-
ogy matching tools we can expect that some of the ontology
mismatches will remain unresolved or partially unresolved
at the data integration stage. Below we try to consider the
impact of such mismatches during the data integration pro-
cess.

2.2 Data-level impact of ontology mismatches
The first type of mismatches in the classification presented

in [11] concerns conceptualisation. For the coreference reso-
lution stage shared conceptualisation allows the system to:

• consider individuals belonging to the same class as can-
didates for matching;

• estimate the likelihood of individuals being equiva-
lent given available evidence (e.g., having two people
with the same name belonging to a specific class Se-
manticWebResearcher is a much stronger evidence of
equivalence than if they only had a generic class Per-
son in common).

Conceptualisation mismatches between two ontologies (in
particular, scope mismatches) may reduce both recall and
precision of coreference resolution algorithms. For exam-
ple, the class Company in SWETO does not include finan-
cial organisations, while its counterpart in TAP includes
them. Thus, when the system tries to find for each com-
pany in TAP coreferent individuals in SWETO only having
the equivalence relation between these classes, it will not
find matching pairs for financial organisations, because they
belong to a different class in SWETO. This will make the
recall decrease. On the other hand, the class ComputerSci-
entist in TAP contains only world-famous computer scien-
tists while most researchers are classified according to their
place of work (e.g., CMUPerson, W3CPerson). Computer-
ScienceResearcher in SWETO, which automatic tools often
consider equivalent, has much wider coverage and includes

Figure 2: Fusion task decomposition incorporating
schema matching.

everybody who contributed to a CS paper mentioned in the
knowledge base. Thus, labels in SWETO are much more
ambiguous and the danger of matching two unrelated in-
dividuals increases, which may affect precision. The same
happens when there is no equivalence between classes but a
Sub-Super-Class relation: the same degree of similarity be-
tween individuals may provide much weaker evidence, which
makes it hard to adequately estimate the reliability of meth-
ods’ output. Another area of impact involves disjointness re-
lations. Disjointness between classes can be used as evidence
to consider some coreference mappings incorrect and delete
them. Scope mismatches can lead to errors when classes con-
sidered disjoint in one ontology are overlapping in another
one (like in the case with PoliticalOrganization and Ter-
roristOrganization above): correct mappings can be deleted
if they are perceived as causing inconsistency. Granularity
mismatches do not allow using ontological constraints de-
fined for classes at the lower levels of the hierarchy if the
other ontology does not distinguish between these classes.

Among the explication mismatches modelling style differ-
ences are the hardest to solve automatically. Translation
between paradigms is a very domain-specific problem and
common correspondence patterns are often not sufficient to
align two ontologies. In a simple example case, if one ontol-
ogy represents colours using a set of pre-defined labels (red,
yellow, black) and another one uses RGB encoding, it is very
hard to find similar values automatically: a hand-tailored
matching procedure is necessary. To our knowledge, no ex-
isting automatic ontology matching tool is capable of deal-
ing with different paradigms. For the case when subclasses
of the same class in two ontologies are split according to
different criteria, no useful DL relations can be established
between them (apart from the fact that there may be some
overlap). Such differences can make any automatic data in-
tegration procedures intractable. If these mismatches occur
at lower levels of the hierarchy, methods can operate only
with information defined at a higher level.

Finally, terminological mismatches are the primary focus
of most existing ontology matching tools [5], which makes
them the simplest to handle. They can be solved by creating
EquivalentClass and EquivalentAttribute correspondences.

3. KNOFUSS ARCHITECTURE
The KnoFuss architecture [14] implements a modular frame-

work for semantic data fusion. The fusion process is divided
into subtasks as shown in the Fig. 2 and the architecture
focuses on its second stage: knowledge base integration.
The first subtask is coreference resolution: finding poten-



tially coreferent instances based on their attributes. The
next stage, knowledge base updating, refines coreferencing
results taking into account ontological constraints, data con-
flicts and links between individuals. Algorithms performing
fusion subtasks (e.g., string-based similarity matchers) are
represented as problem-solving methods. All methods for
the same task have a common interface and their capabil-
ities (range of applicability and reliability of output) are
formally defined using the fusion ontology. Because each al-
gorithm behaves differently depending on the data to which
it is applied, optimal parameters can be defined depending
on the application context (type of data): e.g., Jaro-Winkler
string similarity is appropriate for comparing person names
but not suitable for publication titles, etc.

To deal with the multi-ontology scenario the architecture
has to cover the ontology integration stage, which includes
two subtasks: ontology matching and instance transforma-
tion.

3.1 Ontology matching
The Ontology matching task involves creation of mapping

rules or alignments: sets of correspondences between two
ontologies [5].

Considering correspondence patterns, data fusion needs
both correspondences between concepts (ClassCorrespon-
dence) and correspondences between properties (Attribute-
Correspondence). Class mappings allow relevant method
application contexts to be translated into the terms of the
source ontology, if they were initially defined in terms of the
target ontology. Attribute correspondences are needed in
order to retrieve properties relevant for coreference resolu-
tion in both knowledge bases. Equivalence and subsumption
relations allow relevant data structures in the source ontol-
ogy to be found. Disjointness relations between concepts
are usable for the Knowledge base updating stage, providing
evidence for inconsistency resolution. The architecture as-
sumes that ontology matching methods provide their output
in the standard Alignment API format [4].

3.2 Instance transformation
The goal of the Instance transformation stage is to resolve

structural differences between two knowledge bases so that
the architecture itself and instance-level methods can pro-
cess individuals in the source and target knowledge bases in
the same way. Alignments produced by ontology match-
ing methods are applied to provide a uniform view over
data in two knowledge bases. In the KnoFuss architecture
SPARQL queries are used as a primary means of retriev-
ing data (method applicability ranges, application contexts,
sets of relevant attributes). These queries are translated into
the terms of the source ontology using available mappings.
Sometimes a term in the target ontology potentially corre-
sponds to several terms in the source ontology. This happens
when there are several candidate EquivalentClass mappings
provided by one or several ontology matching tools. In such
situations we combine these mappings and consider them as
a single ClassUnion mapping. For instance when we con-
sider the query
SELECT ?uri WHERE {

?uri rdf:type sweto:Computer Science Researcher }
the system tries to find all ClassCorrespondence mappings,
which include the class sweto:Computer Science Researcher.
In our example with the CIDER tool (see below) these in-

cluded EquivalentClass mappings with classes tap: CMU-
Person, tap:ComputerScientist and tap:MedicalScientist.
Such a variety of potentially corresponding classes is caused
by several existing mismatches between ontologies, in par-
ticular terminological mismatches (Computer Science Re-
searcher vs ComputerScientist), modelling style mismatches
(tap: CMUPerson includes computer science researchers who
worked in the CMU) and conceptualisation scope mismatches
(tap: ComputerScientist represents only a subset of “world-
famous” researchers and tap:Medical-Scientist includes au-
thors of medical AI expert systems). From the strict logical
point of view the only correct mapping would be a Sub-
Super-Class mapping tap:ComputerScientist ⊆ sweto: Com-
puter Science Researcher. However, excluding other map-
pings would remove from consideration many TAP individ-
uals, which have their equivalent SWETO counterparts. In
reality, the data integration system needs information about
partial alignments between concepts to select individuals
which may potentially be coreferent rather than strict logical
relations. We can call this the OverlapClass correspondence
pattern. Thus, the query from our example is translated
into:
SELECT ?uri WHERE
{ {?uri rdf:type tap:CMUPerson}
UNION {?uri rdf:type tap:Computer Scientist}
UNION {?uri rdf:type tap:Medical Scientist}}

These pairs of queries assumed to be equivalent are then
used at the later stages of the workflow, which allows the
system to operate in the same way as in a single ontology
case. At this stage the system utilizes the DisjointClass
mappings. The system uses a simple algorithm to search
for contradictory mappings: it finds situations when two
classes in different ontologies are connected via a Sub-Super-
Class mapping (created by ontology matching methods or
inferred) and at the same time are disjoint (again, directly
or via inference). Such mappings are considered conflicting.
If the DisjointClass mapping has higher confidence then the
contradictory Sub-Super-Class mapping (or the mapping it
was inferred from) is removed from consideration.

4. EXPERIMENTS
To test the KnoFuss architecture in a multi-ontology sce-

nario we used two artificially created knowledge bases in-
tended to be used as benchmarks for Semantic Web ap-
plications: TAP [9] and SWETO testbed [1]. As primary
methods for ontology matching we used two tools, which
participated in the last OAEI contest: CIDER [8] and Lily
[18]. Also we used the SCARLET service [15] as a method
for generating DisjointClass mappings using existing ontolo-
gies defined elsewhere on the Web. Assuming that all sib-
ling classes in the target ontology (SWETO) were mutually
disjoint and using equivalence mappings produced by the
CIDER tool we inferred additional disjointness mappings.
Disjointness mappings were used to filter out conflicting
equivalence relations with a low reliability. As coreference
resolution methods for instances we used the same string
similarity techniques as in our single-ontology scenario ex-
periments [14]. While our experiments are still ongoing,
from these tests we could make several observations.

First, as could be expected, errors during schema match-
ing stage are propagated and can potentially lead to signifi-
cant distortions during instance coreferencing. For instance,
when matching instances of the class sweto:Company the



CIDER tool incorrectly aligned it with the class tap:Country.
This led the coreference precision to drop to 41% while it
reached 74% without this mistake (many companies have
names derived from country names). We found ontological
constraints to be extremely valuable as a means to repair
such errors. Apart from the widely used owl:Functional-
Property and owl:InverseFunctionalProperty, which allow
non-ambiguous instance identification, ontological axioms,
which may lead to inconsistency, allow filtering out incor-
rect mappings. These constraints include disjointness and
datatype properties with cardinality constraints. E.g., know-
ing that Company is disjoint with Country (or inferring
that) would repair the problem. However, most ontologies
do not define these constraints explicitly because they are
not needed in common ontology usage scenarios.

Second, although semantic heterogeneity (different mean-
ing attached to similar resources) is seen primarily as a
schema-level knowledge modelling issue, it can cause prob-
lems at the instance level as well. For instance, the TAP on-
tology contains a single individual describing the Coca-Cola
Company while SWETO contains several individuals de-
scribing Coca-Cola branches in different countries. Whether
such instances should be considered coreferent depends on
the context of the task.

Then, as for the single-ontology scenario, it is hard to find
a single instance matching algorithm to apply to all kinds
of data: settings have to be optimized for a specific type
of data rather than for a specific pair of ontologies as in
schema matching. Ontology mismatches may lead not just
to irrelevant instances being compared, but also to instances
being compared using inappropriate similarity measures.

5. DISCUSSION
As we said in the beginning, our primary interest when

implementing the version of the KnoFuss architecture to be
used in a multi-ontology scenario was to observe the in-
fluence of schema-level mismatches on the data integration
stage.

In comparison with the single-ontology data fusion sce-
nario, adding the ontology heterogeneity challenge results
both in decreased reliability of methods’ output and diffi-
culties in precise estimation of this decrease. For data-level
coreference resolution methods we assume that the perfor-
mance of the method depends on some common features of
individuals belonging to a class: this assumption was the
basis for the usage of application contexts in the KnoFuss
architecture. For ontology matching methods even knowing
the estimated quality of a method (e.g., precision/recall in
some test scenarios) it is hard to estimate whether it will
hold for a different pair of datasets. Second, it is hard to
measure precisely the impact of a single ontology-level error
at the data level. This possible negative impact can result
in:

• Erroneous widening or narrowing of the applicability
range of integration methods (misaligned concepts).

• Providing noisy evidence for data-level methods (mis-
aligned properties and ontological restrictions).

Finally, some ontological mismatches, such as modelling style,
cannot be resolved fully automatically by currently existing
tools and can make data-level methods inapplicable. Based

on our experience, we can outline several directions for as-
sisting data fusion in the presence of schema heterogeneity.

First, label comparison is usually not considered suffi-
ciently reliable evidence for coreference resolution (e.g., [7]).
However, more complex algorithms utilizing context data
(additional properties and links between individuals) can
only be applied to datasets containing sufficiently overlap-
ping data. It can be expected that many data integration
tasks on the Web scale will only be able to rely on in-
stance names and thus can only provide suggestions rather
than generate owl:sameAs statements carrying strong im-
plications. Given that the output is likely to be noisy it is
necessary to keep track of data integration decisions (such
as instance coreference mappings or statements considered
incorrect) and their provenance. One possible way is to ex-
tend the coreference bundles approach [10] to include for
each URI the confidence of its inclusion into the set.

Second, considering the limited capabilities of automatic
ontology matching methods, availability of trusted reusable
schema-level background knowledge is important. Such man-
ually built reference knowledge is useful when it covers the
gaps existing in common ontology matching scenarios.
Among others, such reference knowledge may include:

• Specifying rich semantic restrictions existing in a cer-
tain domain, e.g., disjointness relations, property car-
dinality and domain/range constraints.

• Covering common ontological mismatches, which can-
not be resolved automatically. For instance, these can
include transformation rules between common time
modelling approaches and overlaps between subclasses
of the same concept divided according to different cri-
teria (e.g., classifying historical artifacts from China
by centuries or by dynastic periods). In this way a
complex modelling style mismatch can be reduced to
a terminological one, which can be treated automati-
cally.

Third, sometimes existing automatic matching tools im-
pose too rigid restrictions on their output aimed at improv-
ing the precision. For instance, some tools (like Lily) pro-
duce only one-to-one equivalence mappings assuming that
two different classes in one ontology cannot be considered
equivalent to the same class in another ontology. Thus, only
the best candidate for equivalence is selected and all oth-
ers are filtered out. While a useful assumption for termi-
nological mismatches, it may miss important mappings in
the presence of conceptualisation and modelling style mis-
matches. From the data fusion point of view it would be
useful if ontology matching algorithms could produce weak
mapping relations such as ClassOverlap.

6. RELATED WORK
Given the amount of data, which needs to be handled on

the Web scale, the need to use automatic coreference reso-
lution techniques is recognized in the Semantic Web com-
munity [2], [7], [6]. Among the existing systems Sindice
[17] uses a straightforward method for coreference resolu-
tion by utilizing explicitly defined key properties (inverse
functional properties). Individuals, which have equal val-
ues for such properties are considered equivalent. This is
an approach which provides high precision but can only



be applied to a limited subset of data, where such prop-
erties are defined explicitly and have values in a standard
format. Other tools implement approximate matching tech-
niques similar to those created in the database integration
and ontology matching domains. The OKKAM server [3]
used the Monge-Elkan string similarity metrics for select-
ing coreferent instances in the experiments. RDF-AI [12]
concentrates on data-level issues when combining datasets
using the same schema. The algorithm uses string (Monge-
Elkan) and linguistic (WordNet) similarity to calculate dis-
tance between literal property values and then uses the itera-
tive graph matching algorithm, similar to similarity flooding
[13], to calculate distance between individuals.

7. SUMMARY AND FUTURE WORK
We implemented the first prototype of the KnoFuss data

integration system for the multi-ontology environment and
performed initial experiments with it. In our view, combin-
ing automatic schema-level and data-level alignment tech-
niques in a single workflow still presents difficulties not only
because schema-level matching tools occasionally produces
errors, but also because some important types of ontology
mismatches are not handled properly by them. In partic-
ular, this concerns conceptualisation and modelling style
mismatches. While being very hard to solve automatically,
there are several ways to assist the coreference resolution
process when dealing with these mismatches, in particular:

• Extend the functionality of automatic schema-matching
tools to discover different types of mappings such as
DisjointClass and OverlapClass.

• Develop and publish reference ontologies explicitly defin-
ing common relations between concepts and proper-
ties, which remain neglected in existing ontologies, in-
cluding disjointness relations and translation rules be-
tween common modelling paradigms.

• Maintain provenance and estimated reliability of auto-
matically produced instance-level mappings so that an
agent can make a decision about whether to use them
or not.

As the top priorities for the future work currently we are
considering the following:

• Continue more experimental testing with public linked
data sources using detailed ontologies (such as DBPe-
dia 3.2).

• Develop a data fusion service, which can operate on the
Semantic Web in conjunction with existing linked data
sources and semantic applications (such as WATSON,
SCARLET, Alignment Server).
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