
Formal Metadata Semantics for Interoperability
in the Audiovisual Media Production Process

Martin Höffernig and Werner Bailer

JOANNEUM RESEARCH Forschungsgesellschaft mbH
Institute of Information Systems

Steyrergasse 17, 8010 Graz, Austria
firstname.lastname@joanneum.at

Abstract. In the different stages of the production process of audio-
visual media such as movies, a number of different metadata properties
exist. Different metadata formats and standards are used in the stages of
the process, containing metadata properties with similar and partly over-
lapping semantics, though not fully identical. We attempt to model the
metadata properties used throughout the production process in a format
independent way by creating an ontology that models these properties
and the relations between them. Modeling is done on a high level, con-
sidering grouping and definition relations between the properties. We
apply the proposed approach to the problem of verifying whether a set
of metadata properties can be unambiguously derived from another and
present a web based demo application for this use case.

1 Introduction

1.1 Motivation

A large number of different metadata properties exist throughout the audiovisual
media production process. These properties are produced and consumed at dif-
ferent stages of the process. Typically the different devices and tools used in the
chain also make use of different metadata representations. The SMPTE meta-
data dictionary [11] alone lists nearly 1,500 metadata properties, and there are
many more that are not covered by this dictionary [1]. Other relevant standards
in the media production process are for example the MXF Descriptive Metadata
Scheme 1 [3], MPEG-7 Multimedia Content Description Interface [6] and EBU
P Meta [9]. Current trends such as 3D and multi-view content add additional
requirements to the metadata representation, as the relations between different
media properties need to be described (from high level information such as re-
lating different views of the same scene down to precise measurements such as
camera calibration parameters).

When analyzing the various properties and their definitions in different stages
of the process or in different metadata formats, we encounter a number of proper-
ties which represent the same information, but modeled differently or only partly
overlapping. For example, at capture, a number of parameters are available, such



as the resolution of the sensor, its aspect ratio, the temporal sampling rate, etc.
At a later stage, the header of a stream might contain an identifier of the video
standard used, which implies the values for a number of these parameters. In
order to support content exchange and automation in the production process, it
is necessary to establish metadata interoperability between the steps of the pro-
cess. Due to the multitude of metadata properties and formats, which are often
tailored toward the specific needs of a certain step in the process, it is utopian
to expect that a single format serving the needs of all steps in the process can
be defined, that will also be adopted by all the devices and tools involved. We
thus need to deal with the diversity in terms of metadata and establish interop-
erability by well-defined semantics of the different metadata properties, so that
they can be mapped between the different stages of the process.

This work presents a first step in this direction. We aim to model the concepts
behind the metadata properties in the process, leaving specifics of formats such as
data types aside. These things can be addressed in an additional layer on top. In
the remainder of this section we discuss approaches for solving related problems.
We then analyze the aspects of this interoperability problem in more detail in
Section 2 and present the proposed approach in Section 3. In Section 4 we discuss
a prototypical implementation of the approach for an ontology covering a small
set of metadata properties and Section 5 concludes the discussion.

1.2 Related Work

In [8] the automation of media production processes by using a workflow man-
agement system is discussed. In that work, the open source workflow language
YAWL (Yet Another Workflow Language [12]) has been chosen and extended to
fit the area of film production (YAWL4Film1). YAWL4Film contains workflow
patterns that support the production crew in collecting, creating, and distribut-
ing required documents and data for certain production tasks. For example, the
process for a daily shooting procedure has been modeled, in which documents
such as time sheets for cast members or the daily-shooting progress reports are
created and distributed automatically by the workflow system. YAWL is based
on XML technologies and all the data being processed during the process steps is
defined using custom XML Schemata. Due to known limitations of XML Schema
describing semantics [7], interoperability to existing metadata standards in the
media production process is very limited.

In the different stages of the media production process, different types of
metadata are needed, such as descriptive, technical, structural, composition,
and editing metadata. In [10] these metadata types are listed and allocated to
the concerning production stages. Furthermore, relevant metadata standards,
for describing these different types of metadata have been identified. In [1] the
requirements for a metadata model for audiovisual media production have been
developed and discussed, and existing standards have been analyzed. The con-
clusion of this work is that none of the current metadata standards is able to

1 http://www.yawl4film.com/



achieve all the defined requirements. However, interoperability between meta-
data standards needs to be enabled in order to exchange metadata properties
between different standards.

The Simple Knowledge Organization System Reference (SKOS) provides a
vocabulary to classify concepts and to describe how they relate to others con-
cepts [5]. Semantic relations, such as narrower, broader, and related are available
for describing relations between SKOS concepts. It is of course possible to build
up a classification scheme using the SKOS relations. However, we want to model
more complex relations, for example, if a concept defines other concepts or if a
concept can be substituted by others. Describing such relations are out of the
scope of SKOS2.

The W3C Media Annotations Working Group3 also deals with the interop-
erability issue of metadata formats. Their goal is to develop a simple ontology of
core metadata properties for audiovisual content and an API for accessing these
properties from descriptions in a range of formats. This clearly needs mappings
between the considered formats and the proposed set of properties. The work-
ing draft containing the core vocabulary to describe media resources is available
at [4]. In contrast to this work we do not want to define mappings between dif-
ferent metadata standards, but rather to describe semantic relations between
format independent metadata properties.

2 Problem Definition

Different metadata properties represented in different metadata formats exist in
the media production process. However, we encounter a number of properties
which represent – at least partially – the same information, but modeled dif-
ferently or with only partly overlapping semantics. In order to support content
exchange and automation in the production process, it is necessary to establish
metadata interoperability between different metadata models and representa-
tions being used in the steps of the process. As first step to solve this interop-
erability issue we model the relations between metadata properties or groups of
metadata properties. We then define a set of queries that our system needs to be
able to answer. These queries yield information about the how metadata proper-
ties in the different stages of the process are related, they do not yet implement
conversion between metadata formats.

2.1 Relations

Definition A metadata property (or group of properties) A defines another
metadata property (or group of properties) B, if B can be derived without
any semantic ambiguity from A by some mapping/conversion.

2 Compare the discussion about the usage of SKOS mappings for this purpose:
http://lists.w3.org/Archives/Public/public-media-annotation/2009Mar/0067.html

3 http://www.w3.org/2008/WebVideo/Annotations/



Equivalence A metadata property (or group of properties) B is equivalent to
another metadata property (or group of properties) B, if A defines B and B
defines A.

At this point it is not relevant which specific metadata formats are used and
what kind of data type is used to represent a specific metadata property. It is
only important to model the concept represented by a metadata property and
the relations between them.

In this paper we use the following notation. To formally express a group of
metadata properties, the conjunction (∧) is employed. Additionally, the impli-
cation operator (→) is used to express the definition relation between metadata
properties (or group of) properties, and the equivalence operator (↔) describes
the equivalence relation between metadata properties (or group of) properties.

As an example, assume that there are the following metadata properties of a
video: number of lines, number of columns, spatial resolution, frame rate, and a
video payload identifier of a container file format, that describes the video stan-
dard by an identifier4. Spatial resolution is equivalent to a metadata properties
group containing lines and columns. Furthermore, the payload identifier defines
lines, columns, and frame rate. These two statements can be formally expressed
as equations 1 and 2. Since spatial resolution is equivalent to the group of lines
and columns, the payload identifier also defines the resolution which is expressed
in equation 3.

resolution ↔ lines ∧ columns. (1)

payload identifier → lines ∧ columns ∧ frame rate. (2)

(payload identifier → lines ∧ columns ∧ frame rate) ∧
(lines ∧ columns ↔ resolution) →
(payload identifier → resolution) (3)

2.2 Queries

Expressing definition and equivalence relations between metadata properties en-
ables to infer information about interoperability between metadata properties.
The following three types of queries have been identified5. It holds for all types
of queries, that some queries may be answerable directly by the facts represented
in the ontology while others need inference.

1. Verify whether a given metadata property is defined by another given meta-
data property or not. For example, it should be verified if there exists an
definition relation between payload identifier and resolution (equation 4).
Since there is an inferred definition the response to this query is yes.

4 Such an property exists e.g. in the header of an MXF file.
5 Note that in the description of the queries “metadata property” stands for single

metadata properties as well as groups of metadata properties.



payload identifier → resolution ? (4)

2. Find all metadata properties that are defined by a given metadata property.
An example is the query in equation 5. Lines, columns, and frame rate are
direct results, while resolution is an inferred result to this query.

payload identifier → ? (5)

3. Find all metadata properties that define a given metadata property. As an
example all metadata properties which imply lines should be listed (cf. equa-
tion 6). In this case, payload identifier and resolution are the results.

? → lines. (6)

To simplify matters, in all of the examples above only single metadata prop-
erties have been used as query parameters. In addition, only single metadata
properties are listed as results. However, the result set could be expanded to
include groups of properties, e.g. the group (lines, columns) in addition to reso-
lution. When dealing with groups of metadata properties we can distinguish two
types: those explicitly defined in our ontology and those not explicitly defined
in the ontology but stated in the query or emerging from the result. For exam-
ple, equation 7 contains an explicitly defined group of metadata properties since
this group has been explicitly expressed in equation 1. On the other hand, the
metadata group contained in equation 8 is only created in the query.

payload identifier → (lines ∧ columns) (7)

payload identifier → (resolution ∧ frame rate) (8)

Additionally, query results can also contain groups of metadata properties
that are not explicitly defined. For example, valid results of the query in equa-
tion 5 are among others (lines ∧ columns) and (lines ∧ resolution).

3 Proposed Approach

In this section we propose an approach for expressing the required relations be-
tween metadata properties (as discussed in Section 2). As a proof of concept the
approach is applied to solve the verification query task (cf. equation 4). We pro-
pose the use of an ontology which is called meon6 for the formal representation of
metadata properties and the relations between them. Furthermore, logical rules
are applied to infer new knowledge.

OWL-DL [2], which is a subset of the Web Ontology Language, is used
to formally capture the semantics of the metadata properties and their rela-
tions. The class Concept models the general concept represented by a metadata

6 prefix meon: http://www.20203dmedia.eu/meon#



property in the ontology. Subclasses of class Concept are AtomicConcept and
CompoundConcept. Class AtomicConcept represents all single metadata prop-
erties, while class CompoundConcept describes groups of metadata properties
containing at least two metadata properties. Property contains describes that
an instance of class Concept is part of a group of metadata properties (i.e.
part of an instance of class CompoundConcept). In order to model the definition
relation between two metadata properties (or group of), the transitive prop-
erty defines is used. This property can be applied between instances of class
Concept. Since the equivalence relation is just the result of a bidirectional def-
inition relation, an appropriate usage of this property is expressive enough to
model also the equivalence relation. The metadata properties in the example
presented in Section 2 are represented by the ontology in Figure 17. In this on-
tology PayloadIdentifier, FrameRate, Lines, Columns, and Resolution are
instances of class AtomicConcept, CC 1 and CC 2 are anonymous instances of
class CompoundConcept. CC 1 represents a group of metadata properties con-
taining frame rate, lines, and columns. Additionally the metadata properties
lines and columns form another metadata group described by CC 2.

Resolution

Lines Columns

CC_2

Payload 
Identifier

FrameRate

CC_1defines

contains
contains contains

contains contains

defines

defines

Fig. 1. Example of an ontology for describing metadata properties and their relations
between.

In order to model the verification query task (cf. equation 4) as a proof of
concept of the proposed approach, we split groups of metadata properties into
all possible combinations and then infer new relations in the ontology. There-
fore logical rules have been created to semantically express the knowledge re-
quired to solve this task. These rules make implicit knowledge in the ontology
explicit by adding new instances and relations which enable the subsequent rea-

7 For the sake of simplicity, the meon namespace and rdf:type relations have been
omitted.



soning and querying steps. The Jena rules syntax8 is used for defining the rules.
One set of rules is responsible to split metadata groups into their combinations
and to establish definition relations between the parent metadata group and
they newly created ones. Another set of rules expresses the equivalence between
metadata groups. An important prerequisite for determining the equivalence be-
tween metadata groups is that it must be possible to express the number of
metadata properties contained in the group. Therefore an additional property
(countContains) is added to the ontology, and a rule containing a custom pro-
cedural builtin9 is used to compute the number of metadata properties for each
metadata properties group. An example rule for expressing the equivalence rela-
tion between two metadata groups containing two metadata properties is shown
in Figure 2. First, two ambiguous instances of class CompoundConcept (?cc1
and ?cc2) containing exactly two instances of class AtomicConcept are identi-
fied. Then it is verified whether in ?cc1 and ?cc2 the same instances of class
AtomicConcept (?ac1 and ?ac2) are included. In case that (?cc1 and ?cc2) are
equivalent, two new definition relations between them are added to the ontology.
Another rule expresses that the defines relation between an instance of class
CompoundConcept and a instance of class AtomicConcept also infers a defini-
tion relation (defines) between them. It is obvious that a metadata property is
equivalent to itself. This fact is also explicitly added by a rule.

@prefix meon: <http://www.20203dmedia.eu/meon#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

[equivalence_between_compound_concepts_containing_2_atomic_concepts:

(?cc1 meon:countContains "2"^^xsd:int),

(?cc2 meon:countContains "2"^^xsd:int),

notEqual(?cc1, ?cc2),

(?cc1 meon:contains ?ac1),

(?cc2 meon:contains ?ac1),

(?cc1 meon:contains ?ac2),

(?cc2 meon:contains ?ac2),

notEqual(?ac1, ?ac2),

->

(?cc1 meon:defines ?cc2),

(?cc2 meon:defines ?cc1)

]

Fig. 2. Rule for infering the equivalence between two metadata property groups con-
sisting of two metadata properties.

After applying the presented rules to the example ontology depicted in Fig-
ure 1, it can be derived that payload identifier defines resolution (cf. equation 3).

8 http://jena.sourceforge.net/inference/index.html#rules
9 http://jena.sourceforge.net/inference/index.html#RULEextensions



The extended example ontology after applying the rules is shown in Figure 3.
First a new anonymous instance CC 4 of class CompoundConcept, which is a
subgroup of CC 1, is added to the ontology by the according rule. Additional
subgroups of CC 1 are created as well but for simplicity they are not shown in
Figure 3. Then the equivalence between CC 4 and CC 2 is computed (cf. rule
shown in Figure 2). According to the transitive behavior of property defines

there is now a definition relation between the instances PayloadIdentifier and
Resolution.

Resolution

Lines Columns

CC_2

Payload 
Identifier

FrameRate

CC_1defines

contains
contains contains

contains contains

CC_4

contains
contains

defines

defines

defines

defines

defines
defines

Fig. 3. Extended ontology after applying rules to example ontology (shown in Figure 1)
in order to accomplish the verification query task.

4 Demo Application

To demonstrate our approach to solve the verification query task we have imple-
mented a web based demo application. As described in Section 3, the presented
Jena rules are applied to the ontology containing the metadata properties. Then
new definition relations are inferred. Although transitive reasoning is a basic
task for an OWL-DL reasoner10, this task is also performed by a Jena rule. The
reason for this design decision is that it would be the only usage of an OWL-DL
reasoner during the whole process, and due to performance considerations this
task has been moved to the rule reasoning block. The next step is to perform a
SPARQL11 select query to verify whether there is a definition relation between
the selected metadata properties or not. For example, the SPARQL select query
shown in Figure 4 is used to query for relations between the metadata properties

10 e.g. http://clarkparsia.com/pellet
11 http://www.w3.org/TR/rdf-sparql-query/



payload identifier and resolution. Finally it is checked if the definition relation,
represented using the property defines, is part of the SPARQL query result in
order to determine the result of a verification query task.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX meon: <http://www.20203dmedia.eu/meon#>

SELECT DISTINCT ?property WHERE

{ meon:PayloadIdentifier ?property meon:Resolution }

Fig. 4. SPARQL select query to verify equation 4.

The user interface of our web application12 is shown in Figure 5. The web
application has been created using the Google Web Toolkit (GWT)13 and is
deployed on Apache Tomcat 6.014. All OWL processing tasks (including rule
reasoning and executing SPARQL queries) are performed using Jena 2.6.015.
After loading an ontology all single metadata properties are displayed. The user
selects the metadata properties to be mapped and performs the verification.

5 Conclusion and Future Work

We have analyzed the problem of mapping metadata properties between stages of
the audiovisual media production process with possible (partly) different seman-
tics. Three basic types of queries have been identified. The proposed approach
consists of an ontology modeling simple as well as compound metadata prop-
erties as well as their relations. Jena rules are used to infer implicit knowledge
about the metadata properties. As a proof of concept, the approach has been
successfully applied to the verification query type, i.e. verifying whether a meta-
data property can be unambiguously derived from another. A web application
has been implemented as a demonstrator.

The next step is to also implement the other query types. In particular,
groups of metadata properties implicitly defined in the query (but not modeled
in the ontology) need to be supported. In addition, the ontology will be extended
to cover a wide range of metadata properties used in the audiovisual media
production process, as well as their relations. Furthermore, if we also describe
the relation between the metadata properties in our ontology and specific formats
and consider data type issues, the approach could be useful to enable automatic
conversion between metadata formats.

12 The application can be accessed from http://meon.joanneum.at.
13 http://code.google.com/webtoolkit/overview.html
14 http://tomcat.apache.org/index.html
15 http://jena.sourceforge.net/



Fig. 5. meon web application.

Acknowledgements

The research leading to this paper was partially supported by the European
Commission under the IST contract FP7-215475, “2020 3D Media: Spatial Sound
and Vision” (http://www.20203dmedia.eu).

References

1. Werner Bailer and Peter Schallauer. Metadata in the audiovisual media production
process. In Michael Granitzer, Mathias Lux, and Marc Spaniol, editors, Multime-
dia Semantics - The Role of Metadata, volume 101 of Studies in Computational
Intelligence, pages 65–84. Springer, Jun. 2008.

2. Mike Dean and Guus Schreiber. OWL Web Ontology Language: Reference. W3C
Recommendation, 10 February 2004. http://www.w3.org/TR/owl-ref/.

3. Material Exchange Format (MXF) - Descriptive Metadata Scheme-1. SMPTE
380M, 2004.

4. WonSuk Lee, Tobias Bürger, Felix Sasaki, Véronique Malaisé, and Florian
Stegmaier. Ontology for Media Resource 1.0. W3C Working Draft, June 2009.
Editor’s draft at
http://www.w3.org/2008/WebVideo/Annotations/drafts/ontology10/ First-
Draft/Overview.html, to appear at
http://www.w3.org/TR/mediaont-10.

5. Alistair Miles and Sean Bechhofer. SKOS Simple Knowledge Organization System
Reference. W3C Candidate Recommendation, 17 March 2009.



6. Information Technology - Multimedia Content Description Interface (MPEG-7).
ISO/IEC 15938, 2001.

7. Frank Nack, Jacco van Ossenbruggen, and Lynda Hardman. That Obscure Object
of Desire: Multimedia Metadata on the Web (Part II). IEEE Multimedia, 12(1),
2005.

8. Chun Ouyang, Marcello La Rosa, Arthur H.M. ter Hofstede, Marlon Dumas, and
Katherine Shortland. Toward web-scale workflows for film production. IEEE In-
ternet Computing, 12(5):53–61, 2008.

9. EBU P META 2.0 Metadata Library. EBU Tech 3295-v2, Jul. 2007.
10. Konstantin Schinas, Wolfgang Schmidt, Franz Höller, Herwig Zeiner, Werner

Bailer, and Michael Hausenblas. D3.2.1 Metadata in the Digital Cinema Work-
flow and its Standards. Public deliverable, IP-RACINE (IST-2-511316-IP), 2005.
http://www.ipracine.org/documents/Del 3 2 1 metadata.pdf.

11. Metadata dictionary registry of metadata element descriptions. SMPTE RP210.11,
2004.

12. W. M. P. van der Aalst, L. Aldred, M. Dumas, and Ter A. H. M. Hofstede. Design
and implementation of the YAWL system. Proceedings of the 16th International
Conference on Advanced Information Systems Engineering (CAiSE’04), 2004.


