
User-centric Composition of Service Front-ends at

the Presentation Layer

Tobias Nestler, Lars Dannecker, Andreas Pursche

SAP Research Center Dresden
Chemnitzer Str. 48, 01187 Dresden, Germany

{tobias.nestler,lars.dannecker,andreas.pursche}@sap.com

Abstract. The emerge of web services in Service-Oriented Architectures
(SOA) within companies or at the global internet o�ers new ways for the
creation of web applications. Even though the composition of services via
business processes are covered by existing tools and solutions, concepts
for a lightweight service consumption are still in a preliminary phase.
The complexity of state-of-the-art SOA technology prevents users with
limited IT skills getting easy access to web services and their o�ered
functionalities. This paper presents a user-centric design approach to
model and create simple service-based applications in a graphical way
without being necessary to write any code.

Key words: Service Composition at the Presentation Layer, UI Inte-
gration, Service Front-ends

1 Introduction

The introduction of Web 2.0 o�ers users the capability to take part in the devel-
opment of the WWW. Non-technical users are able to create web pages in form
of blogs or customize web pages such as iGoogle [1] to serve their daily needs.
The next steps towards a user centric design of web applications are mashups
that combine the philosophy of SOA and approaches of end user development [2].
This approach is dedicated to data aggregation and highly relies on computing
knowledge and skills of the end user. The graphical composition style facilitates
user empowerment by aggregating web feeds, web pages and web services from
di�erent sources using special builders. However, these existing approaches lack
several concepts to support a real end user driven application development [3].

The concepts presented in this paper follow the approach of service compo-
sition at the presentation layer enhanced by user interface (UI) related service
annotations [4]. We adopt the idea of integration at the presentation layer [5] to
compose services by combining their presentation front-ends, rather than their
application logic or data [6]. A design-time authoring tool, the ServFace Builder,
utilizes the mentioned concepts and aims to empower even non-programmers to
create their own service-based application. Following our preliminary investiga-
tions, this paper discusses the following contributions:



2 User-centric Composition of Service Front-ends at the Presentation Layer

� We propose a mechanism to already visualize the service front-ends during
the design time of the application development. An inference mechanism
uses the information gained from the original service description and the
attached annotations to create a UI for each service operation. In addition,
also common usability recommendations were formalized and integrated to
ensure the generation of usable UIs (see Sec. 3).

� We propose a graphical lightweight service composition approach in order
to model data- and control �ows at the UI level. The modeling of data-�ows
will be done by the graphical connection of single UI elements of the front-
ends. In addition, the paper presents two ways of de�ning a control �ow to
create multi-page applications (see Sec. 4).

� We integrate the mentioned concepts into our authoring environment and
evaluate their usability and acceptance in form of a user study (see Sec. 5).

2 Service Composition at the Presentation Layer

The general approach of service composition at the presentation layer has the
goal to support non-programmers in the design and creation of simple service-
based applications. The target user group refers to end users in general and to
knowledge workers and skilled web users in particular. The composition process
is fully integrated in a three step development methodology presented in [7].

The composition is based on annotated services that act as the foundation for
the designed applications. The annotations are reusable information fragments
attached to the service description (like WSDL or WADL), which are typically
not available for an application developer or service composer. They are created
by the service developer and stored in an annotation model based on a formally
de�ned meta-model. Annotations provide extensive additional information cov-
ering the visual appearance of a service, the behavior of UI-elements and relations
between services to further improve the visual appearance of resulting composite
applications. The following examples explain the use of annotations:

� Annotations de�ning visual appearance:

• Visual Property: This annotation adds information about the designated
visual appearance of a service element; e.g. if a parameter is a string that
represents a password, this parameter should be displayed obscured.

• Unit and Conversion: This annotation assigns a unit to a speci�c service
parameter. In addition, with a set of conversion rules it is possible to
o�er one value in di�erent units and convert between them.

� Annotations de�ning the behavior of UI-elements:

• Suggestion: This annotation assigns an external suggestion service to a
speci�c service element to provide a list of suggested values while typing.

• Validation: To proof the correctness of entered data, this annotation
de�nes rules entered data is checked up on.

� Annotations de�ning the relations between services

• Bundle: A set of disjunct services or service operations that bene�cially
work together, can be de�ned with this annotation.



User-centric Composition of Service Front-ends at the Presentation Layer 3

In general the 21 currently available annotations should thus be seen as a kind of
knowledge transfer from the service developer to the service composer, facilitate
the understanding and simplify the composition of web services.

During the design time the information gained from the service description
and the annotations are used to create a service front-end, which is a UI for a
speci�c service operation (detailed description in Sec. 3). The user, in his role as
a service composer and application designer, interacts with these front-ends only
to create the desired application in a kind of WYSIWYG (What you see is what
you get) principle. No technical knowledge about service composition is required
to build an application, so the user can model and layout his application in a
graphical way without being necessary to write any code. An application consists
of several pages that can be connected with each other to de�ne a navigation �ow
through the �nal application. Each page acts as a container for the front-ends and
represents a dialog visible on the screen. The complete design process including
the integration and composition of the front-ends (detailed description in Sec.
4) is supported by a web-based authoring tool, the ServFace Builder. Figure 1
shows a screenshot of the current prototype. The ServFace Builder supports the

Fig. 1. Screenshot of the ServFace Builder

user in the design of multi-page applications and the composition of the service
front-ends. An internal object model represents the current modeling state and
supports the generation of executable applications for di�erent target platforms.
This application model is constantly updated according to user changes and its
serialization serves as input to the model-to-code generation process.



4 User-centric Composition of Service Front-ends at the Presentation Layer

3 Generating Service-Front-ends

As mentioned above services and in particular the operations of those services
are represented by generated service front-ends. Number 1 and 2 of �gure 1 are
examples of service front-ends for service operations from a service called "�ight
booking service". A service front-end representing a service operation comprises
of a nested container structure including a root operation container and an in-
teraction container for the input and output parameters of a web service. Those
interaction containers comprehend the visualization of the operation parame-
ters that are the key elements to later invoke the service when using the �nal
composite application. Figure 2 illustrates the �ve step generation process:

Fig. 2. Generation process for service front-ends

1. Retrieve service elements and structure

Since a remote service repository manages the services, all available informa-
tion about a service need to be retrieved from the repository at �rst. To avoid
extensively communication a�ords the information about a service are stored
in a local data model. This model represents all information necessary for the
front-end generation process. All available services including their operations are
presented to the user within the Building Blocks browser (Fig. 1 No. 4).

2. Analysis of the services

To infer the structure and the elements of a service operation, an Inference

Engine parses the model that represents the service and analyses the particular
service operation. It generates UI elements for each service element that needs to
be displayed within this service-front-end. To infer which UI element should be
used for a speci�c service element the inference engine considers the following:

� parameter type (input or output)
� base data type
� data type enhancements and restrictions
� occurrence de�nitions

Complex data types need special consideration because they can be arbitrarily
nested or can contain recursions. The inference engine does not follow recursions
arbitrarily to avoid in�nite loops, but rather aborts further inspection after a
certain number of loops. For input parameters complex data types are repre-
sented by a nested structure, dividing the complex type into its child elements.



User-centric Composition of Service Front-ends at the Presentation Layer 5

For output parameters complex data types are presented by tables as standard
output format or lists. Depending on the depth of a nested complex type, the ta-
ble could contain a expand mode to show complex child elements. Minimum and
maximum occurrences are taken into consideration by redundantly displaying
the data type element or allowing multi-selection in the range of the occurrence.
As a result the inference engine creates model commands (4) that are executed by
the API of the underlying application model. The execution a�ects the current
state of the application model (5), e.g. by integrating new elements or changing
existing ones. The following example explains this process:

A simple �ight search operation needs two inputs to search available �ights. A
destination (data type: string) and a departure date (data type: date). The return
value is a complex type containing the data type elements "FlightNo.", "Airline",
"Price" that all are de�ned as string data types. Firstly, the inference engine
creates the container structure including an operation root group, an input group
and an output group. Secondly, both input parameters are inferred. Because
the destination parameter is de�ned as string a textbox is chosen, whereas the
departure date is a date type and therefore it is visualized by a calendar widget.
Thirdly, for the output parameter as a complex type a structured output e.g. a
table is chosen to display the results. Finally, an execution button is created to
invoke the web service in the resulting composite application.

3. Fetching additional e�ects

The particularity of this generation process is the consideration of additional
information provided by the ServFace service annotations. Furthermore, a con-
solidation of several HCI guidelines (e.g. provided by Apple or Microsoft) or
perceptions of usability experts like [8]) result in a set of formalized UI design rec-
ommendations, which improve the service front-end visualization. Whenever the
inference engine detects annotations attached upon a service element it requests
a description for each annotation, which speci�es the e�ects of this particular
annotation. Possible e�ects include e.g. the creation of additional UI elements,
the addition/change of UI element properties, the change of the appearance of
UI elements, the restriction to a set of valid values, etc. The annotation e�ect
determination component of the inference engine creates a description object for
the annotation. The inference engine analyses the description and includes the
e�ects of the annotation in its analysis process.

A continuation of the �ight search example above explains this process:
The parameter of the destination input �eld is de�ned as string. Without the
in�uence of annotations it is displayed as a standard textbox handling arbitrary
phrases. The addition of an Enumeration annotation de�nes a collection of valid
values e.g. a selection of all available destination airports. To avoid false inputs
the inference engine would not choose a textbox as representing UI element,
but rather a combobox to restrain the input possibilities. In addition a Feedback

annotation is added to all parameters de�ning a name readable for humans.
This causes the inference engine to not determine the parameter name from the
service description that does not necessarily provide an understandable name
for its elements, but to use the name provided by the Feedback annotation.



6 User-centric Composition of Service Front-ends at the Presentation Layer

The service inference engine as well as the annotation e�ect determination
take the formerly mentioned UI design recommendations into consideration.
These recommendations in�uence the choice which UI element is used to repre-
sent a service parameter, or change the con�guration of those UI elements. The
following example lists the consolidated UI recommendations for the Enumera-

tion annotation:

� Use a Radio-Button-Group whenever there is a choice between 2 or 3 values.
� Use a Drop-Down-List whenever there are more than three but under 20
valid values.

� Use a ComboBox (Drop-Down-List with search capability) whenever there
are more than 20 but under 200 valid values.

� Use a Textbox when there are more than 200 valid values.
� Show at least 8 items at the same time before a scrollbar appears whenever
a Drop-Down-List or ComboBox is used.

� Sort the items alphabetically whenever there are more than 12 items.

The generation of UIs for web services were also analyzed in former research
projects like WSGUI [9] or Dynvoker [10]. Both approaches also use additional
information to enhance the visualization result, in particular GUIDD [11]. Unlike
these approaches the presented concept not only focuses on the generation of UIs
to directly invoke services at run time, but to use those UIs already at design time
to allow the composition of several services (description in Sec. 4). Furthermore,
the used ServFace service annotations exceed the expressiveness of the GUIDD-
annotations and a consolidation of recommendations from several end user design
guidelines is used to further improve the ease of use of the generated front-ends.

4 UI-centric composition via Service Front-ends

Nowadays, there are already many mashup-editors available like Yahoo Pipes
[12] or IBM Mashup Center [13] (detailed overview provided by [14]), where
the majority focuses on the processing of data. A quite new area for mashups
is the de�nition of simple (business) processes as discussed in [15]. This kind
of mashup enables the user not only to aggregate data from di�erent sources
but also to combine the invocation of several service operations. Following the
previously introduced example, the user is now not only able to search for �ights
but rather can create an application to book them. To compose such a service-
based application, the user needs to de�ne the order of execution of the used
service operations and the data �ow among the operations.

The common visualizations of data �ows in mashups are ports (often dis-
played by little circles) for each variable and arrows from the source to the
target port. The activity of connecting those ports is called "Wiring" [14]. In
contrast to this approach, the main idea of our UI-centric composition is to di-
rectly use the input and output UI elements of the generated service front-ends.
To model a data �ow between two di�erent front-ends, the user has to click on
the target UI element that should be �lled with the data (see context menu in



User-centric Composition of Service Front-ends at the Presentation Layer 7

Fig. 1 No.5). To de�ne the source element he directly clicks on the UI element
that provides the designated data. Finally, the tool presents the connection in a
visual way (see 1 No.3). The selection of the connection point via UI elements
leads to a large target area for the mouse courser and makes it easy to hit (ac-
cording to Fitts' Law [16]). The direct use of UI elements for the composition
bene�ts from the fact, that form-based applications are well-known and most
users are familiar with them. Therefore, the barrier to use the editor is lower
than in tools, which require additional technical concepts like ports. In addition,
we assume that it is easier for an end user to handle the de�nition of data �ows
within the presentation layer.

For the de�nition of the order of execution we have two views o�ering di�erent
levels of expressiveness. Both use pages, which can contain front-ends for service
operations. The transition from one page to another will cause the invocation of
the corresponding web services. The �rst approach is intended for users who are
new to the tool and want to create applications simply and quickly. Therefore,
thumbnails of the pages are listed (Fig. 3 a) similar to the well-known slide
listing in Microsoft Powerpoint. The order of execution is de�ned by the order
of the pages in the list view. For example moving a page B before another page
A, means that the service operations associated with page B are executed before
the ones of page A. With this approach you can only de�ne a sequential order
without branches in the execution �ow, but this is suitable for many simple
processes and easy to use. The user has not to consider the details of the process
�ow. For an experienced user who wants to de�ne more complex processes we

(a) Sequen-
tial Page
View

(b) Page Flow View

Fig. 3. Di�erent Page Views



8 User-centric Composition of Service Front-ends at the Presentation Layer

provide a detailed �ow view showing the transitions between the pages (Fig. 3
b). In this view he is able to create his own transitions and to de�ne alternative
�ows for an application. We do not only use nodes in this view as it is known
from process diagrams, but also the thumbnails of the pages. The user can click
on a thumbnail and open it, to see the service front-ends contained by this page,
integrate new ones or connect UI elements as described above.

5 Evaluation

To evaluate the presented approaches a user study was accomplished. While for
the �rst study [17] only some mockups and a UI prototype were available, a fully
functional prototype could be used in course of this evaluation. The goals of the
evaluation were to evaluate the acceptance of the concepts, the ease of use of the
tool, the necessary period of vocational adjustment and other aspects regarding
the usability of the ServFace Builder.

Since the aspired end user should not necessarily have advanced IT-experience,
we ensured that the background knowledge of all participants was not related to
computer science. The main scope of the evaluation was divided into two parts.
The �rst part was an exploratory evaluation of the ServFace Builder with a du-
ration of approx. 15 minutes. The participants had the chance to try out the tool
without further tasks or guidance. They have not received extensive information
beforehand either. However the observers stood by to assist or answer questions
whenever necessary. As shown in �gure 4 most users stated that the bench of

Fig. 4. Evaluation results part one

the ServFace Builder is very clearly structured (92%) and the functionality is
self-explanatory (67%). This means that the usage of the tool should be eas-
ily understandable even without a previous tutorial or extensive explanations.
However many user (67%) had problems getting started right after they reached
the �rst tool screen. This leaves room for further optimizations regarding the
start-up process and the user guidance coordinating the �rst steps.

In the second part of the evaluation the users got the task to adopt the role
of a company worker who tries to ease the business travel booking process. They
had to create a composition that satis�es the requirements of the given scenario
description. A selection of the results of the second part is presented in �gure 5.



User-centric Composition of Service Front-ends at the Presentation Layer 9

As expected, the participants had less trouble to get started with the composition

Fig. 5. Evaluation results part two

process now (92%). Both, the participants and the observers had the impression
that in most cases the design process came more naturally to the participants.
This impression was con�rmed by the comments of the participants: 92% stated
that the design process of a multi-page composite application is straightforward
and all participants declared that the front-ends are self-explanatory (75%) or
at least understandable (25%). This points out that the users of the tool are
able to handle the composition process quite well with little familiarization. The
15 minutes exploratory try-out was su�cient to enable the participants to de-
sign the required application without further di�culty. Therefore the period of
vocational adjustment is rather short even for users without IT-background. In
contrast many users (67%) criticized the lack of guidance provided by the Serv-
Face Builder. In addition, the drag&drop concept to add the service operations
to the canvas was rated neither intuitive nor comfortable.

The �ow view (Fig. 3 b) was used as the central view showing the pages
during the user study. But only 25% of the participants asked for the possibility
to in�uence the order or to de�ne alternative �ows. The observers noticed that
most participants just added new pages and integrated service front-ends in the
linear order they had created the pages before. This motivates the modi�cation
of the ServFace Builder, the simple sequential view should be the standard view
on start-up and the �ow view should be available on demand.

6 Conclusion and Future Work

The paper presented two concepts supporting the approach of service compo-
sition at the presentation layer. The generation and composition of service front-
ends o�ers new ways in designing service-based applications for non-programmers.
An evaluation with a working prototype showed that most users handled the tool
without extensive di�culties after a short familiarization period. Most concepts
pointed out to be understood and accepted by the users. However there are
further �elds of improvement. An extended guidance and a better way to get
the composition process started are two important examples. In addition the
visualization process of the service front-ends could be enhanced by an extended



10 User-centric Composition of Service Front-ends at the Presentation Layer

support for di�erent platforms. An expert-based evaluation as well as a third
iteration of the user study are planned to estimate the recommended changes
gained from the presented evaluation.

7 Acknowledgment

This work is supported by the EU Research Project (FP7) ServFace. In addition,
we would like to thank the participants of the user study and the supervisors of
our theses Marius Feldmann (L. Dannecker) and Gerald Hübsch (A. Pursche).

References

1. iGoogle: http://www.google.de/ig?hl=de&source=iglk (2009)
2. Hoyer, V., Stanoevska-Slabeva, K.: The Changing Role of IT Departments in

Enterprise Mashup Environments. In 2nd International Workshop on "Web APIs
and Services Mashups" (2008)

3. Nestler, T.: Towards a Mashup-driven End-User Programming of SOA-based Ap-
plications. In 10th International Conference on Information Integration and Web-
based Applications & Services (2008)

4. Nestler, T., Feldmann, M., Preußner, A., Schill, A.: Service Composition at
the Presentation Layer using Web Service Annotations. In ComposableWeb'09
Workshop (ICWE) (2009)

5. Yu, J., Benatallah, B., Saint-Paul, R., Casati, F., Daniel, F., Matera, M.: A Frame-
work for Rapid Integration of Presentation Components. In WWW'07, Ban�,
Canada (May 2007)

6. Daniel, F., Yu, J., Benatallah, B., Casati, F., Matera, M., Saint-Paul, R.: Under-
standing UI Integration: A survey of problems, technologies, and opportunities.
IEEE Internet Computing (May/June 2007)

7. Feldmann, M., Janeiro, J., Nestler, T., Hübsch, G., Jugel, U., Preussner, A., Schill,
A.: An Integrated Approach for Creating Service-Based Interactive Applications.
In INTERACT 2009 (2009)

8. Krug, S.: Don't Make Me Think! A Common Sense Approach to Web Usability.
Volume 2. New Riders (2006)

9. Kasso�, M., Kato, D., Mohsin, W.: Creating GUIs for Web services. Volume 7. In
IEEE Internet Computing, CA, USA (2003)

10. Spillner, J., Feldmann, M., Braun, I., Springer, T., Schill, A.: Ad-hoc Usage of
Web Services with Dynvoker. Towards a Service-Based Internet, First European
Conference, ServiceWave 2008, Madrid, Spain (2008)

11. Kassof, M., Spillner, J.: GUIDD: Standard and Speci�cation. (2006)
12. Yahoo! Pipes: http://pipies.yahoo.com (2009)
13. IBM Mashup Center: http://ibm.com/software/info/mashup-center (2009)
14. Hoyer, V., Fischer, M.: Market Overview of Enterprise Mashup Tools. In ICSOC

2008 (2008)
15. de Vrieze, P., Xu, L., Bouguettayay, A., Yangz, J., Chenx, J.: Process-oriented

enterprise mashups. In: In Grid and Pervasive Computing Conference. (2009)
16. Fitts, P.M.: The information capacity of the human motor system in controlling

the amplitude of movement. In: Journal of experimental psychology. (1954)
17. Namoune, A., Nestler, T., Angeli, A.D.: End User Development of Service-based

Applications. In 2nd Workshop on HCI and Services at HCI 2009 (2009)


