
Supporting Dynamic Service Composition
at Runtime based on End-user Requirements

Eduardo Silva, Luı́s Ferreira Pires, Marten van Sinderen

Centre for Telematics and Information Technology
University of Twente, The Netherlands

P.O. Box 217, 7500 AE Enschede
{e.m.g.silva, l.ferreirapires, m.j.vansinderen}@cs.utwente.nl

Abstract. Network-based software application services are receiving a lot of at-
tention in recent years, as observed in developments as Internet of Services, Soft-
ware as a Service and Cloud Computing. A service-oriented computing ecosys-
tem is being created where the end-user is having an increasingly more active role
in the service creation process. However, supporting end-users in the creation pro-
cess, at runtime, is a difficult undertaking. Users have different requirements and
preferences towards application services, use services in different situations and
expect highly abstract mechanisms in the creation process. Furthermore, there
are different types of end-users: some can deliver more detailed requirements or
can be provided with more advanced request interface, while others can not. To
tackle these issues and provide end-users with personalised service delivery, we
claim that runtime automated service composition mechanisms are required. In
this paper we present the DynamiCoS framework, which aims at supporting the
different phases required to provide end-users with automatic service discovery,
selection and composition process. In this paper we also present the developed
prototype and its evaluation.

1 Introduction

With the Internet becoming ubiquitous, the use of network-based application services is
being increasingly adopted and it is expected to grow in the upcoming years [1]. This is
being reflected in many technology developments and innovations, such as, for exam-
ple, the Internet of Services, Cloud Computing and Software as a Service (SaaS). This
is leading to the emergence of large sets of services in different domains. At the same
time the use of mobile devices with fast data connections is increasing quite rapidly. In
[2] it is reported that by 2013 more than 38% of the European population will access the
Internet on their mobile device, which is an increase of 300% compared to the current
situation.

These developments are allowing and pushing new, more adaptive and personalised
application services where the end-users play an active role in the process of service
creation. Supporting end-users in this kind of service creation process is a complex
undertaking. Different users have different preferences and request services in different
context situations, which requires different actions to be taken. Furthermore, end-users
expect a high-level of abstraction in the service creation process, they are not able to use

very technical and complex tools. Given this, automation has to be provided to support
the end-user in the service creation process. We claim that this can be achieved by using
semantic-based service composition approaches. Semantic information enables the use
of computer agents, which can automatically reason on the services and user specified
requirements. This alleviates the end-user from the burden of some of the details and
the complexity in the composition process. We define the problem of automatic service
composition based on user requirements as dynamic service composition. To cope with
this problem we propose a framework for dynamic service composition provisioning,
called DynamiCoS.

The aim of the DynamiCoS framework is to support end-users’ automated runtime
service composition. To achieve this automated support, DynamiCoS defines ontolo-
gies (domain conceptualisations). The framework allows different service developers to
publish their semantically annotated services in the framework. These semantic descrip-
tions have to refer to the framework’s ontologies. End-users may have different domain
or technical knowledge, which implies that their service request interfaces have to be
defined accordingly. DynamiCoS tackles this problem by defining a service request that
supports different user interfaces. A service request consists of a specification of goals
the user wants the service to achieve. A goal is likewise used to describe services, speci-
fying the activities (or operations) the services can perform. Goals of users and services
are specified according to the framework ontologies (representation of the domain of
knowledge), this allows matchings to be found, whenever a service realises the user
goals.

This paper is further organised as follows: Section 2 characterises different types
of end-users based on their knowledge; Section 3 presents DynamiCoS, a framework to
support end-users in the composition process; Section 4 provides an overview of related
work; and Section 5 provides our conclusions and directions for future work.

2 End-users Knowledge

An end-users denotes a person that makes use of some functionality of a system. In
the context of service composition, we consider that an end-user is a person without
advanced development skills. End-users may have different characteristics according to
their knowledge in the composition process. In this work we group end-users according
their knowledge in the domain of the service being composed and on their technical
knowledge on the tooling supporting the service composition process. An end-user may
play two roles in our context, creating and/or executing service compositions.

2.1 Domain Knowledge

In the process of service composition the user has to have some knowledge or idea
of the service he wants i.e., what does a service do, who provides it, etc. We refer
to this knowledge as domain knowledge. Domain knowledge is obtained by learning,
advertisement, interaction with the service providers, etc. End-users may have this type
of knowledge when they want to use a service in a given application domain, but most of

the times they have limited knowledge and require some interaction with the application
domain(s) to acquire further knowledge to be able to make a decision.

For semantic services, the domain knowledge is explicitly defined, via domain con-
ceptualisation, by domain experts in ontologies and consequently used to describe the
services in the domain and to find them.

For example, if a user wants to buy a phone online, he usually has an idea of what
type of phone and the market, i.e., phone type/brands, price, stores providing it, etc. The
application domain may be described as telephone stores, and they describe resources
(phones, phone stores, etc) and actions (search phone, buy phone, etc) the user can take.
At the end the end-user knowledge of the domain will allow him to decide what decision
to take, and possibly compose actions (or services) to realise it.

2.2 Technical Knowledge

Service composition is being used in different domains and applications nowadays,
mainly by professional users or developers, which can handle complex tooling and un-
derstand the composition process, and details associated with it. For example, many
companies nowadays use Web services technology, and apply WSDL (Web Service
Description Language) to describe services in the company, and BPEL (Business Pro-
cess Execution Language) to compose and coordinate services. However, end-users are
not expected to know these technical details. A service composition environment for
end-users has to provide higher level of abstraction to their users, so that a these users
without technical background can make use of them.

For example, if the end-user wants to find a phone and then buy it, this may consists
of two services (find and buy services). The supporting tooling has to allow the end-user
to find suitable services and then help him on the composition process, by automating
such process or by suggesting the user possible directions of action. The supporting
tooling may depend on the type of domain application. For example, if the application
domain is on e-health where a care taker decides a sequence of activities a given patient
has to be delivered with (e.g., measure blood pressure and if it is to high send a message
to the patient’s doctor), the care giver will have knowledge on the domain, i.e., knows
the services that are available in the domain. On the other hand, in the example provided
above, where an end-user wants to buy a phone, the user may not know the domain, i.e.,
the composition environment has to deliver the necessary suggestions and support to
guide the user towards the creation of the service (composition) he wants.

2.3 Types of End-user

Table 1 defines a possible classification of types of users, based on their domain and
technical knowledge.

A Layman is a user who does not know in detail the application domain, neither has
knowledge on the tooling supporting the composition process. A Domain Expert is a
user who knows the application domain but does not have knowledge on the technical
tooling that supports the service composition process. A Technical Expert is a user
who has knowledge on a service composition tool, but does not know the details of the
application domain. An Advanced end-user is a user who has technical knowledge on

Type of End-user Domain Knowledge Technical Knowledge
Layman No No

Domain Expert Yes No
Technical Expert No Yes

Advanced Yes Yes
Table 1. Types of Users

the tooling supporting the composition process, and furthermore knows the application
domain.

By acknowledging these different types of end-users we believe that we can cre-
ate environments that better suite the requirements of the end-users in a composition
process. We expect that alternative end-users types will be identified, being placed in
between the types we identifies so far. However, these types already gives us some in-
formation that we can use to shape, positions and evaluate composition environments.

At the moment, DynamiCoS addresses mainly the users that have some knowledge
about the application domain, i.e., Domain Experts and Advanced users.

3 DynamiCoS framework

DynamiCoS1 (Dynamic Composition of Services) supports all the phases and stake-
holders of the dynamic service composition life-cycle, as discussed in previous work
[3]. Fig. 1 shows the DynamiCoS framework architecture. It also indicates (between
parenthesis) the technologies used in the implementation of the different framework
components in our prototype platform.

Given the complexity of the dynamic service composition life-cycle and its stake-
holders’ heterogeneity, we have made the core components of the framework technology-
independent. In the framework, a service and a service composition are represented
as a tuple and a graph, respectively. A service is represented as a seven-tuple s =<
ID, I,O, P, E,G, NF >, where ID is the service identifier, I is the set of service
inputs, O is the set of service outputs, P is the set of service preconditions, E is the
set of service effects, G is the set of goals the service realises, NF is the set of service
non-functional properties and constraint values. We assume in this work that services
are of type request-response, i.e., they consist of one activity or operation. A service
composition is represented as a directed graph G = (N, E). Graph nodes N represent
services, i.e., each node ni ∈ N represents a discovered service si. A node can have
multiple ingoing and outgoing edges. Graph edges E represent the coupling between a
service output/effect (or a user input for the services) and a service input/precondition,
i.e., ei→j = ni

O/E → nj
I/P , where i 6= j (a service cannot be coupled with itself).

3.1 DynamiCoS modules

DynamiCoS consists of the following modules:

1 http://dynamicos.sourceforge.net

Fig. 1. DynamiCoS framework

Service creation The creation of a new service “from scratch” by a service developer
is performed outside the DynamiCoS framework. However, to comply with the capabil-
ities of the DynamiCoS framework, the services have to be semantically described, in
terms of inputs, outputs, preconditions, effects (IOPE), goals (G) and non-functional
properties (NF), using the framework domain ontologies’ semantic concepts.

Service publication To support the publication of services described in different lan-
guages, the DynamiCoS framework has a two-step publication mechanism. First, there
should be an interpreter for each supported service description language. The interpreter
reads the service description document and extracts the necessary information for pub-
lication (ID, I, O, P, E,G, NF). This makes the service representation in the frame-
work language-independent. Second, the extracted service information is published in
the service registry using the DynamiCoS generic service publication mechanism. The
service registry allows one to publish, store and discover semantic services.

Service request The user interface to define the service request may have different
forms, as long as it gathers the user goals, the expected outputs/effects. Optionally it can
also gather the inputs/preconditions the user can provide and non-functional properties
he expects for the service. The number of parameters defined on the service request may
depend on the type of end-user expertise. If the end-user has technical knowledge and
domain knowledge all the parameters (G, IOPE,NF) may be used. However, if the
end-user has no technical knowledge, a simpler request may be created, for example,
only based on the goals the user wants to achieve and expected service outputs. The
service request parameters are defined as references to semantic concepts available in
the framework ontologies. Therefore, the service request consists of a set of semantic
annotations (I , O, P , E, G, NF) that describe declaratively the desired service prop-
erties.

Service discovery The discovery of candidate component services is performed be-
fore the service composition phase. Service discovery is based on the service request
parameters. The service discovery process consists of querying the service registry for
all the services that semantically match the defined service request parameters. Since
DynamiCoS uses a semantics-based service discovery and composition, it discovers ex-
act matches with the service request G and IOPE semantic concepts, but also other
service with partial semantic matches, e.g., services with parameters that are semanti-
cally subsumed by the service request parameter concepts, i.e., RequestedConcept w
DiscoveredConcept.

Service composition To perform service composition, DynamiCoS first processes the
set of discovered services and organises them in a so called Causal Link Matrix (CLM)
[4]. The CLM stores all possible semantic connections, or causal links, between the
discovered services input and output concepts. CLM rows (Equation 1) represent the
discovered services input concepts (DiscServsI). CLM columns (Equation 2) repre-
sent service inputs concepts plus requested service outputs (ServReqO).

CLMrows = DiscServsI (1)
CLMcolu = DiscServsI + ServReqO \ (DiscServsI ∩ ServReqO) (2)

We place a service s in the row i and column j position if the service has an input
semantically related with the input i of the CLM and an output semantically related with
the semantic concept on column j. Furthermore, we store the semantic similarity of the
service output with the column semantic concept and the non-functional properties of
the service.

Provided with the CLM, the composition algorithm has to find a composition of ser-
vices that fulfil the service request. Our service composition algorithm is graph-based.
Algorithm 1 presents the algorithm in simplified pseudo code. The composition pro-
cess starts by analysing the CLM matrix, checking if it contains the requested IOPE.
After this, the CLM is inspected for services that provide the service request outputs.
If there are services that provide the service request outputs, the algorithm starts by
creating the initial matching nodes, otherwise it stops. If the service request outputs
can be provided by the discovered services, the algorithm proceeds with a backwards
composition strategy towards the service requested inputs, and/or the realisation of all
the requested goals. An open (or not yet composed) input of the graph is resolved at
each algorithm iteration. The algorithm matches the open inputs of the services in the
graph with the output concepts of services from the CLM matrix, or column concepts.
If multiple services exist that match a given service input, a new composition graph is
created, representing an alternative service composition behaviour. The algorithm fin-
ishes when all requested inputs, preconditions and goals from all the alternative service
compositions are resolved.

3.2 Prototype

In our prototype we have used a language called Spatel [5], which has been created
in the European IST-SPICE project [6], where the DynamiCoS framework was partly

Algorithm 1: Graph Composition Algorithm
Input: CLM , ServReq
Result: V alidComps

// Variables
activeG; // Graph that is active in the algorithm iteration1
activeN ; // Node that is active in the algorithm iteration2
openG; // Set of open graphs3
validG; // Set of completed and valid graphs4
// Initialisation
if CLMrows∪colu ⊇ ServReqI,O then5

// Create new graph instantiating the initial Node
activeG← createNewGraph(ServReq);6
createInitialNodes();7
openG← activeG;8

else9
// Discovered services cannot fulfil the service request
Stop;10

// Graph construction cycle
while |openG| > 0 do11

// Close graph if it matches ServReqI,G

if activeGI,G ⊇ ServReqI,G then12
validG← activeG;13
openG← openG \ activeG;14
activeG← openG0;15
activeN ← activeGopenN0 ;16
break; // Goes to next openG17

// Checks CLM for services that match open inputs
foreach semCon ∈ activeNI do18

if CLMcolu ⊇ semCon then19
activeN ← CLMmatchingNode;20

else21
openG← openG \ activeG;22
break; // No possible composition, goes to next open graph23

// Check if graph NF props comply with requested NF props
if activeGNF ∩ ServReqNF = ∅ then24

openG← openG\activeG;25
break; // If Not, composition is not possible26

// prepare next cycle
openN ← openN \ activeN ;27

developed. The ontologies used in the framework are described in OWL [7]. We used
four ontologies: Goals.owl, which contains the services’ supported goals and also goals
that the user can specify in the service request; NonFunctional.owl, which defines
framework non-functional properties for services; Core.owl and IOTypes.owl, which
are used to describe services’ IOPE parameters. However, the framework is general
enough to support the use of other ontologies to define other application domains.

For service publication we have implemented a Spatel interpreter. The interpreter
imports the Spatel service description by using a Java API generated from the Spatel
Ecore model with the Eclipse Modelling Framework (EMF). The service is then pub-
lished in a UDDI-based service registry that has been extended with semantic support.
We use jUDDI [8] as service registry implementation, which is a Java-based implemen-
tation of the UDDI specification for Web services. jUDDI offers an API for publication
and discovery of services. We have extended the basic jUDDI with a set of UDDI mod-

els (tModels) to store the set of semantic annotations (I, O, P, E,G, NF) that describe
a service in our framework.

We have created two interfaces to specify the service request: one is a simple Java-
based graphical interface, and another is a web-based interface, which allows to ex-
periment with DynamiCoS more easily. Both allow the specification of the different
parameters (IOPE, G, NF) of the service request. The information introduced by the
end-user is then transformed to an XML-based document that represents the desired
service and sent to the composition framework.

The service discovery is performed based on the service request XML document.
The IOPE and G annotations are extracted from this document and the service registry
is queried through the jUDDI API Inquiry function. To specify and discover semanti-
cally related concepts/services we use the OWL-API [9] and Pellet [10].

The CLM matrix is constructed by using the OWL-API [9], which allows one to
handle and perform semantic inference in OWL ontologies by using a semantic rea-
soner, in our case Pellet [10]. The service composition algorithm is implemented in
Java.

In the project website (http://dynamicos.sourceforge.net) we provide more informa-
tion about the framework and prototype. Furthermore, we provide a web interface for
DynamiCoS, where service requests can be issued and the resulting service composi-
tions printed. We provide also some use cases to show the DynamiCoS.

3.3 Evaluation and Validation

In a forthcoming publication we present details on the evaluation and validation of Dy-
namiCoS. The performed evaluations focus mainly on performance and feasibility of
the dynamic service composition process. We have concluded that the service com-
position process can be automated in several phases, by using semantic descriptions.
However, semantic reasoning is expensive in terms of processing time. Despite that, we
consider that such expensive processing times are realistic to support end-users in the
creation of new service compositions on demand at runtime, since in other situations,
mainly manual composition is used to tackle this problem, i.e., the user has to spend
normally much more time performing a service composition, and we expect manual
composition, even with intuitive interfaces, to be too complex for most of the types of
end-users.

4 Related work

Dynamic service composition has received a lot of attention lately. We refer to [11] for
an overview of some existing approaches. These approaches focus on only some of the
dynamic service composition life-cycle phases, mainly the discovery and composition
phases. However, some approaches cover most of the phases of the dynamic service
composition life-cycle, as, e.g., METEOR-S [12]. METEOR-S provides mechanisms
for semantic annotation of existing services, service discovery, and service composition.
METEOR-S focuses mainly on design-time creation of service compositions, by devel-
oping templates that can have dynamic bindings at runtime. Our approach, as many

other ones, has been inspired by METEOR-S, but we target an on demand runtime ser-
vice composition creation, to support end-users at runtime. Kona et al. [13] propose
an approach oriented to automatic composition of semantic web services. Similarly to
DynamiCoS, they propose a graph-based service composition algorithm. The composi-
tion process is performed using a multi-step narrowing algorithm. The user specifies a
service request, or a query service, specifying the IOPE for the desired service. The
composition problem is then addressed as a discovery problem.

Recently new approaches have emerged to support specifically end-users in the ser-
vice composition process. These approaches, for example [14] [15] [16] [17], mainly fo-
cus on using techniques for mashup, with intuitive graphical representations that allow
end-users to create their own services. We argue that these approaches are applicable
for some type of users. If the user of the composition environment has some technical
knowledge on the composition environment, has a clear idea of the service he wants
and knows the application domain, these environments may be appropriate. However,
if the end-user does not have a clear idea of the service he wants, but only some vague
ideas about goals that he wants to be fulfilled by the service, an approach similar to
DynamiCoS may be more appropriate.

5 Final Remarks

In this paper we start with an overview of possible existing types of end-users. End-
users may have different knowledge on the application domain, and also on the techni-
cal tooling supporting the service composition process. Given this, we claim that dif-
ferent types of supporting environments have to be created or adapted, according the
type of end-user and his knowledge/expertise. We propose DynamiCoS, which is an
approach that is mainly targeted to users with application domain knowledge, i.e., Do-
main Experts and Advanced users. To achieve automation in the composition process,
DynamiCoS is based on semantic services. DynamiCoS is neutral with respect to the
service description languages used by the service developers. DynamiCoS supports ser-
vice creation and publication by service developers at design-time, which populate the
universe of available services; and automatic service composition by end-users at run-
time. We have experimented with DynamiCoS, showing the it is capable of providing
real-time service delivery, and we observed that semantic reasoning is still an expensive
task in terms of processing time. However, these expenses may be worth to pay for, in
case automated support of end-users in the creation of their own services is enabled.

In the future we will investigate how the user context and preferences can be used on
the optimisation and personalisation to the composition process. Furthermore, we will
improve the user interface for service composition, namely by offering to end-users
require mechanisms to guide them though the process of specification of the service
composition behaviour. This will enable the support to all the types of users presented
in Section 2.3, specially the ones without domain knowledge neither technical knowl-
edge. This process will require several interactions between the platform and the user
and a dynamic negotiation to match the user interests with a composition created out of
the available services. The generated service compositions need to be translated to an
executable formalism, enabling a full runtime environment to be built. We will address

the translation of service composition representation to an executable language, such
as, e.g., WS-BPEL. We plan to support other service description languages, such as,
for example, SAWSDL and OWL-S, to create more elaborate service composition sce-
narios. This will allow us to perform empirical studies on dynamic service composition
based on end-users’ requirements.

References

1. Gartner: Gartner highlights key predictions for it organisations and users in 2008 and beyond
(January 2008)

2. Forrester: European mobile forecast: 2008 to 2013 (March 2008)
3. Silva, E., López, J.M., Ferreira Pires, L., van Sinderen, M.J.: Defining and prototyping a

life-cycle for dynamic service composition. In: International Workshop on Architectures,
Concepts and Technologies for Service Oriented Computing, Portugal (July 2008) 79–90

4. Lécué, F., Léger, A.: A formal model for semantic web service composition. In: International
Semantic Web Conference. LNCS, vol. 4273 (2006) 385–398

5. Almeida, J.P., Baravaglio, A., Belaunde, M., Falcarin, P., Kovacs, E.: Service creation in
the SPICE service platform. In: Wireless World Research Forum meeting on ”Serving and
Managing users in a heterogeneous environment”. (November 2006)

6. Cordier, C., Carrez, F., van Kranenburg, H., Licciardi, C., van der Meer, J., Spedalieri, A.,
Rouzic, J.P.L.: Addressing the challenges of beyond 3G service delivery: the SPICE plat-
form. In: International Workshop on Applications and Services in Wireless Networks. (2006)

7. Smith, M.K., McGuiness, D., Volz, R., Welty, C.: Web Ontology Language (OWL) guide,
version 1.0. W3C. (2002)

8. Apache: Apache juddi. http://ws.apache.org/juddi/
9. Bechhofer, S., Volz, R., Lord, P.: Cooking the semantic web with the owl api. In: Interna-

tional Semantic Web Conference. (October 2003) 659–675
10. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical owl-dl reasoner.

Web Semantics: Science, Services and Agents on the World Wide Web 5(2) (June 2007)
51–53

11. Rao, J., Su, X.: A survey of automated web service composition methods. In: International
Workshop on Semantic Web Services and Web Process Composition. (2005) 43–54

12. Verma, K., Gomadam, K., Sheth, A.P., Miller, J.A., Wu, Z.: The meteor-s approach for
configuring and executing dynamic web processes. Technical report, University of Georgia,
Athens (June 2005)

13. Kona, S., Bansal, A., Gupta, G.: Automatic composition of semanticweb services. In: Inter-
national Conference on Web Services. (2007) 150–158

14. Liu, X., Huang, G., Mei, H.: A user-oriented approach to automated service composition. In:
Web Services, 2008. ICWS ’08. IEEE International Conference on. (Sept. 2008) 773–776

15. Yelmo, J.C., Trapero, R., Álamo, J.M., Sienel, J., Drewniok, M., Ordás, I., Mccallum, K.:
User-driven service lifecycle management — adopting internet paradigms in telecom ser-
vices. In: ICSOC ’07: Proceedings of the 5th international conference on Service-Oriented
Computing, Berlin, Heidelberg, Springer-Verlag (2007) 342–352

16. Ro, A., Xia, L.S.Y., Paik, H.Y., Chon, C.H.: Bill organiser portal: A case study on end-
user composition. In: WISE ’08: Proceedings of the 2008 international workshops on Web
Information Systems Engineering, Berlin, Heidelberg, Springer-Verlag (2008) 152–161

17. Nestler, T.: Towards a mashup-driven end-user programming of soa-based applications. In:
iiWAS ’08: Proceedings of the 10th International Conference on Information Integration and
Web-based Applications & Services, New York, NY, USA, ACM (2008) 551–554

