
 1

NITELIGHT: A Graphical Tool for Semantic Query
Construction

Alistair Russell

School of Electronics and

Computer Science

University of Southampton

Southampton

SO17 1BJ, UK

ar5@ecs.soton.ac.uk

Paul R. Smart

School of Electronics and

Computer Science

University of Southampton

Southampton

SO17 1BJ, UK

ps02v@ecs.soton.ac.uk

Dave Braines

Emerging Technology Services

IBM United Kingdom Ltd,

Hursley Park, Winchester,

Hampshire,

SO21 2JN, UK

dave_braines@uk.ibm.com

Nigel R. Shadbolt

School of Electronics and Computer Science

University of Southampton

Southampton

SO17 1BJ, UK

nrs@ecs.soton.ac.uk

ABSTRACT

Query formulation is a key aspect of information retrieval,

contributing to both the efficiency and usability of many

semantic applications. A number of query languages, such

as SPARQL, have been developed for the Semantic Web;

however, there are, as yet, few tools to support end users

with respect to the creation and editing of semantic queries.

In this paper we introduce a graphical tool for semantic

query construction (NITELIGHT) that is based on the

SPARQL query language specification. The tool supports

end users by providing a set of graphical notations that

represent semantic query language constructs. This

language provides a visual query language counterpart to

SPARQL that we call vSPARQL. NITELIGHT also

provides an interactive graphical editing environment that

combines ontology navigation capabilities with graphical

query visualization techniques. This paper describes the

functionality and user interaction features of the

NITELIGHT tool based on our work to date. We also

present details of the vSPARQL constructs used to support

the graphical representation of SPARQL queries.

Author Keywords

sparql, visual query system, semantic web, graphical query

language, ontology, owl.

ACM Classification Keywords

graphical user interfaces, query formulation, query

languages

INTRODUCTION

Information retrieval is a key capability on the Semantic

Web, contributing to both the efficiency and usability of

many semantic applications. The availability of semantic

query languages such as SPARQL [20] is an important

element of information retrieval capabilities; however,

query developers are likely to benefit from the additional

availability of tools that assist them with respect to the

process of query formulation (i.e. the process of creating or

editing a query). Ideally, query formulation tools should

avail themselves of user interaction capabilities that

contribute to the efficient design of accurate queries while

maximally exploiting the power and expressivity provided

by the constructs of the target query language.

Most attempts to support the user with respect to query

formulation have focused on graphical or visual techniques

in the form of Visual Query Systems (VQSs) [7]. VQSs

provide a number of advantages relative to simple text

editors. Most obviously, such systems support the user in

developing syntactically valid queries: they serve to

constrain or guide editing actions so as to militate against

the risk of lexical or syntactic errors. Other potential

advantages include improved efficiency, understanding and

reduced training requirements.

In this paper we introduce a graphical tool for semantic

query construction based on the SPARQL language

specification [20]. SPARQL is one of a number of query

 2

languages that have been proposed for the Semantic Web.

Others include RQL [14] and RDQL [22], although only

SPARQL benefits from W3C endorsement. The tool we

present in this paper (called NITELIGHT) enables users to

create SPARQL queries using a set of graphical notations

and GUI-based editing actions. The tool is intended

primarily for users that already have some familiarity with

SPARQL; the close correspondence between the graphical

notations and query language constructs makes the tool

largely unsuitable for users who have no previous

experience with SPARQL.

The rest of this paper is organized as follows. We first

provide an overview of the SPARQL query language. The

purpose of this overview is to highlight the target set of

constructs that need to be supported by any (fully)

SPARQL-compliant Visual Query Language (VQL). The

following section (Graphical Query Editor) describes the

NITELIGHT tool we have developed to support graphical

query formulation. We first present the graphical notations

that comprise the elements of the VQL supported by

NITELIGHT (a language we refer to as vSPARQL); we

then go on to describe the tool itself, describing both its

general functionality and support for user interaction. Next

we present previous work in the area of graphical query

formulation, particularly in the context of the Semantic

Web. The emphasis in this section is, not surprisingly, on

graphical techniques, particularly those provided by Visual

Query Systems (VQSs); however, we also describe

approaches based on natural language interfaces. Finally,

we describe some directions for future work based on our

progress to date.

SPARQL QUERY SYNTAX

SPARQL [20] is a semantic query language that exploits

the triple-based structure of RDF to perform graph pattern

matching and contingent RDF triple assertion. In this sense

it is similar to RDQL [22]; however, SPARQL provides a

number of features that are not provided by RDQL [see 4

for a review]. These include:

 the ability to create new RDF graphs based on query

variable bindings (this is accomplished using the

SPARQL CONSTRUCT form)

 the ability to return descriptions of identified resources in

the form of an RDF graph (this is accomplished using the

SPARQL DESCRIBE form)

 the ability to specify optional query graph patterns (this

allows a user to specify that data should contribute to an

answer if it is present in the RDF model)

 the ability to test for the presence or absence of specific

triple or graph patterns via the SPARQL ASK query form

SPARQL includes facilities to filter result sets using

specific tests, e.g. to test whether or not a particular query

variable is bound or unbound. It also includes a number of

solution sequence modifiers (ORDER BY, DISTINCT,

OFFSET, LIMIT, etc.) that modify the sequence of query

solutions returned by a SPARQL query processor.

SPARQL is, in summary, a highly expressive semantic

query language that compares favorably with other RDF

query languages, such as RDQL and SeRQL [see 13].

Figure 1 and Figure 16 provide examples of SPARQL

queries.

GRAPHICAL QUERY EDITOR

The development of a graphical tool for SPARQL query

formulation necessarily entails the development of a set of

graphic notations that support the visual representation of

SPARQL query components. Following an analysis of the

SPARQL syntax specification [20], we developed a set of

graphical notations to support the representation of

SPARQL queries. These notations comprise the basis of a

SPARQL VQL that we refer to as vSPARQL. In the first

half of this section we present some features of this

language based on our work to date. The graphical query

designer, NITELIGHT, was designed to support the user

with respect to the formulation of SPARQL queries using

vSPARQL constructs. The second half of this section

describes the functionality and user interaction features of

the NITELIGHT editor.

Figure 1. SPARQL SELECT Query

Graphical Notations

Because SPARQL queries exploit the triple-based structure

of RDF models, graph-based representations comprising a

sequence of nodes and links can be used to represent the

core of most SPARQL queries, i.e. the basic triple patterns

that are matched against the RDF data model. The nodes in

this case correspond to the subject and object elements of

an RDF triple; the links correspond to RDF predicates.

Basic Triple Patterns

In terms of the vSPARQL language, nodes and links

correspond to URIs, literal values or variables (bound or

unbound). Nodes are represented graphically as a geometric

 3

object exploiting both color and shape to indicate the node

type (e.g. unbound variable). Nodes are also associated with

a label that indicates the URI, literal value or query variable

represented by the node (see Figure 2).

Links are represented as simple lines. They are also

associated with a label that indicates the predicate

represented by the link or the name of a query variable.

Directional arrows indicate which node represents the

subject and which node represents the object in a triple

pattern (see Figure 2).

Multiple Triple Patterns

The introduction of multiple triple patterns into a query is

represented by the addition of multiple nodes and links (see

Figure 3). If there are any shared variables or literal values

across the triple patterns, then these are represented using a

common graphical node with multiple link connections.

Figure 2. Basic Triple Pattern

Figure 3. Multiple Triple Patterns

Variable and Triple Ordering

For some SPARQL queries, the ordering of triple patterns

and bound variables is important. In order to support the

user with respect to the ordering of variables and triple

patterns, a numeric value is displayed in the top left corner

of both node and link labels (see Figure 4). Any nodes that

are duplicated across graph pattern groups will share the

same order indicator.

Figure 4. Variable and Triple Ordering

Graph Patterns

In SPARQL, a graph pattern consists of one or more triple

patterns that are matched against the entire RDF graph.

Graph patterns influence variable bindings because each

variable has local scope with respect to the graph pattern in

which it is contained. This means that the same variable

could be bound to different values in different graph

patterns. Using graph patterns means that the triples within

a graph pattern are matched against the entire RDF graph

and are not affected by any previous graph patterns.

Graphical support for the representation of graph patterns in

vSPARQL is accomplished by organizing node-link-node

collections into groups (see Figure 5).

Figure 5. Graph Patterns

When shared nodes appear in multiple graph patterns, the

nodes are duplicated graphically. Internally, however,

duplicated nodes are treated as the same node.

Optional Graph Patterns

The representation of optional graph patterns is

accomplished by visually highlighting the relevant triple

groups within the optional graph pattern (Figure 6).

Union Graph Patterns

The visual representation of union graph patterns (i.e. graph

patterns where either one of two graph patterns could be

considered as part of a query solution) is accomplished by

 4

linking two graph pattern groups with a union label

indicator (see Figure 7).

Figure 6. Optional Graph Patterns

Figure 7. Union Graph Patterns

Graph Specification

The specification of a default RDF graph, or the retrieval of

a graph as part of a query, is represented by assigning a

variable or literal value to a graph pattern group (see Figure

8).

Figure 8. Graph Specification

Result Ordering

SPARQL query results can be ordered by any variable,

bound or unbound. To represent this visually, a numerical

indicator, similar to the variable/triple pattern order number

indicator (see Figure 4), is used. In this case the numeric

value appears on the right-hand-side of the variable nodes.

The graphical indicator also provides information about the

sort order (i.e. ascending or descending) using a directional

arrow (see Figure 9). If no indicator is present, the variable

is not used for the purposes of ordering the query result set.

Figure 9. Result Ordering

Variable Filter

SPARQL filtering is used to restrict the result sets returned

by a query using numerical and regular expressions. The

visual representation of a filter expression is based on the

addition of a filter field box to the node or link that

participates in the filter expression (see Figure 10).

Figure 10. Filter Expressions

Distinct, Limit and Offset

SPARQL also provides functions for retrieving distinct

result sets, as well as limiting result sets to a specified

number of solutions. These functions are all global to the

current query, and can be viewed or changed using the

GQE.

Query Editor Prototype

To test and evaluate the features of vSPARQL, we

developed a Java-based prototype application, called

NITELIGHT, using a combination of Jena [19] and

Standard Widget Toolkit (SWT) components.

NITELIGHT (see Figure 11) provides 5 distinct

components, each of which works together to give the user

an intuitive interface for graphical query creation.

The centerpiece of the NITELIGHT tools is the Query

Design Canvas (see Figure 12). The functionality of this

component is supplemented by an Ontology Browser

component (see Figure 13), a SPARQL Syntax Viewer, a

Query Results Viewer and a Quick Toolbar.

 5

Figure 11. Query Editor Prototype Interface

Query Design Canvas

The Query Design Canvas (see Figure 12) is the centerpiece

for user interaction and query construction in the

NITELIGHT tool. It provides a canvas for the graphical

rendering of SPARQL queries using vSPARQL constructs.

It also includes a number of user interaction features that

allow users to create and refine semantic queries.

Figure 12. Query Design Canvas

Triples are drawn as two polygon nodes joined with a single

link. To allow for more complex queries, the polygon nodes

can be moved around the canvas freely, and the canvas

itself can be zoomed and panned to view the entire query at

different levels of visuo-spatial resolution.

Both the nodes and links are selectable objects that can be

edited using either the Quick Toolbar or a context menu.

Both the Quick Toolbar and the context menu allow users

to define filtering, ordering and grouping information for

the selected object. The support for defining filter

expressions is currently limited, consisting of a simple text

entry form. Our future development plans aim to provide

better support for filter expression definition, perhaps using

a wizard-like utility.

Ontology Browser

To facilitate the process of query formulation, and to

provide users with a starting point for query specification,

the NITELIGHT editor includes an Ontology Browser

component (see Figure 13). The first column of the

Ontology Browser is a persistent list of currently loaded

ontologies (the Source Ontologies Column). New

ontologies can be loaded into the browser, and the selection

of one of the loaded ontologies will result in the

enumeration of top-level classes (root classes) in the second

column of the Ontology Browser.

Figure 13. Ontology Browser

The Ontology Browser consists of a series of columns that

display the classes and subclasses of an ontology with more

abstract classes situated to the left. The column

immediately to the right of the Source Ontologies Column

is always populated with the root classes of the currently

selected ontology. Selecting a class from this column

causes an adjacent column to appear to the right of the root

classes column. This new column contains the subclasses of

the currently selected root class. The pattern of subclass

enumeration is repeated as the user progressively selects

classes from the right-most column.

The Ontology Browser also provides access to information

about the properties associated with each class. In this case,

the user can expand a class node in the Ontology Browser

to view a list of properties associated with the class.

The Ontology Browser enables a user to drag and drop

classes and properties onto the Query Design Canvas. A

new node can be created by dragging a class item from the

Ontology Browser onto the canvas. A new link can be

created by dragging a property from the Ontology Browser

and attaching it to a node on the canvas.

SPARQL Syntax Viewer

The SPARQL Syntax Viewer component provides a text-

based view of the query that is dynamically updated to

reflect any changes made using the Query Design Canvas.

At the present time, the SPARQL Syntax Viewer is read-

only, i.e. the user cannot edit the SPARQL syntax directly;

they must implement any changes to the query via the

Query Design Canvas. Future work could explore the

possibility of bi-directional translation capabilities in which

the user would be permitted to modify the graphical

representation of a SPARQL query by interacting directly

with the SPARQL Syntax Viewer. This would be of

 6

particular benefit to users who wanted to visualize existing

text-based SPARQL queries for the purposes of query

refinement or improved understanding.

Query Results Viewer

The Query Results Viewer allows a user to execute a

vSPARQL query against any SPARQL endpoint. In the

current version of the tool the results are presented in the

form of a simple table; however, one could imagine a

variety of alternative output formats that might be more

suited to the processing capabilities of human end-users.

Examples include map-based visualizations, timelines and

natural language serializations of query result sets. Since

these output formats are often tied to a particular

application context, we do not intend to explore the use of

these richer visualizations as part of the current

development effort.

Quick Toolbar

The Quick Toolbar provides access to commonly used tools

for manipulating the Query Design Canvas and its graphical

query contents. Example tools include pan and zoom

buttons, grouping functions and node editing utilities.

RELATED WORK

A number of approaches to query formulation have been

described in the literature. This section provides an

overview of some of the approaches that are related to the

work described in this paper, or that impact on future

extensions to the NITELIGHT query designer tool.

Visual Query Systems

Most attempts to support the user with respect to query

formulation have focused on graphical or visual techniques

in the form of VQSs [7]. VQSs are systems that use visual

representations to depict the domain of interest and express

related queries. Often they provide a language, a VQL,

which defines both a set of graphical notations to represent

query constructs and a compositional semantics for using

the notations in the context of query formulation.

Perhaps the best known example of a VQS is the Query-By

Example (QBE) system that was developed by IBM in the

1970s [23]. Since then many VQSs have been developed.

Catarci et al [7] present a classification scheme for VQSs

based on the kind of visual formalism (see [11]) used for

query representation. They identify 4 categories of VQSs:

1. form-based systems: these are systems that provide

structured representations corresponding to

conventional paper-based forms. The

aforementioned QBE system was one of the first

systems to adopt a form-based approach.

2. diagram-based systems: these are systems that

depict relationships between components using

simple geometrical figures, such as squares,

rectangles, circles, etc. Typically, a diagram-based

system will use visual components that have a one-

to-one correspondence with specific concepts, with

lines between the components representing logical

relationships between the concepts.

3. icon-based systems: these are systems that use

icons to represent the concepts defined in the

domain of discourse. Iconic representations have

the advantage that they serve as a pictorial or

metaphorical reminder of the concepts being

represented; however, VQSs often need to

represent entities that have no natural visual

counterpart, e.g. an action, command or design

specification.

4. hybrid systems: these are systems that comprise

two or more of the aforementioned categories.

Of these systems, diagram-based systems tend to be the

most popular. In fact, the tool we describe in this paper

belongs to this particular category of VQS.

There have been a number of previous attempts to support

graphical modes of query formulation in the context of the

Semantic Web. Notable examples include OntoVQL [9],

SEWASIE [8], SPARQLViz [6], and iSPARQL [2].

OntoVQL [9] is a graphical query language for OWL DL

ontologies that maps onto the query language supported by

the DL reasoner, Racer. One problem with OntoVQL

concerns its expressive power, which is somewhat limited

compared to conventional semantic query languages, such

as SPARQL. In addition, there is, as yet, no one-to-one

correspondence between the visual components of

OntoVQL and the elements of a textual query language.

This makes OntoVQL somewhat unsuitable as a graphical

representational language for SPARQL.

SEWASIE [8] is a graphical query generation environment

that co-opts natural language representations and graph-

based visualizations of the domain ontology. The user is

able to extend and customize an initial query by adding

property constraints to selected classes or by replacing

classes in the query with another compatible class, such as a

subclass or superclass. This process of query refinement is

accomplished by selecting terms in the sentential structure

of a text-based representation of the query, and then

interacting with a graphical visualization of a relevant part

of the ontology infrastructure. As the user selects different

parts of the query sentence, the graphical visualization of

the ontology fragment is updated to reflect the kinds of

editing actions that may be performed.

SPARQLViz [6] is a plugin for IsaViz [1] that provides a

GUI for the graphical construction of SPARQL queries.

SPARQLViz aims to support the user with respect to query

formulation, and its aims are therefore similar to those of

the work described herein. Significant differences emerge,

however, in terms of the approach to user interface design.

SPARQLViz relies on a wizard-like interface that presents

the user with a sequence of forms such as that presented in

Figure 14. This approach differs significantly from that

 7

adopted in the current paper. In terms of Catarci et al’s [7]

classification scheme SPARQLViz is an instance of a form-

based VQS; in contrast, NITELIGHT is an instance of a

diagram-based system that co-opts ontology browsing and

drag-and-drop functionality with a graph-based

visualization of query graph patterns. In the absence of any

empirical studies it is difficult to comment on the relative

merits of these two approaches (i.e. form-based vs.

diagram-based); however, comparisons between

SPARQLViz and NITELIGHT could (and should)

constitute the basis of future experimental studies.

Figure 14. SPARQLViz User Form

One tool that does bear much in common with NITELIGHT

is the visual query builder associated with the iSPARQL

framework [2] (see Figure 15). The iSPARQL Visual

Query Builder supports the user with respect to the

specification of all SPARQL query result forms (i.e.

SELECT, CONSTRUCT, etc.). It also supports the creation

of optional graph patterns as well as UNION combinations

of graph patterns in a manner similar to that described for

vSPARQL in the present paper. Despite these similarities,

differences do exist between the iSPARQL Visual Query

Builder and NITELIGHT. Firstly, the visual query language

described in this paper (i.e. vSPARQL) is somewhat richer

compared to the VQL supported by the iSPARQL Visual

Query Builder. vSPARQL supports filter expressions and

result ordering as an intrinsic part of its notational syntax,

but this information is not available from the set of

graphical notations used by iSPARQL (the information is

instead provided at the level of editor interface). A second

difference concerns the way in which the user is able to

access information about target ontologies. The iSPARQL

tool relies on a Treeview component that groups ontology

elements into ‘Concepts’ and ‘Properties’. NITELIGHT

similarly provides access to concepts and properties, but

does so using a columnar format that is sensitive to the

taxonomic structure of the ontology (see the Ontology

Browser section above).

In the absence of empirical studies it is difficult to comment

on the significance of the differences between iSPARQL

and NITELIGHT in terms of their impact on (e.g.) user

approval ratings and query formulation efficiency variables.

We would expect the notational differences of the two

VQLs to have a relatively minor impact on performance

metrics; however, the differences with respect to the tools

themselves (e.g. the different ways in which the content of

target ontologies is accessed and utilized) may be somewhat

more significant. In our experience, understanding the

structure of the target ontology as well as the intended

meaning of target ontology elements is often the hardest

part of the query formulation process.

Figure 15: iSPARQL Visual Query Builder

Many of the graphical tools encountered in the literature do

not aim to support an underlying text-based language.

OntoVQL, for example, does not aim to support query

formulation with regard to any specific textual query

language (although it does have a partial mapping to

nRQL). The tool we describe in this paper does aim to

support a specific query language and this motivates a

distinction between the current work and some previous

studies. We suggest the term Graphical Query Construction

System (GQCS) be used to selectively refer to systems that

support the visual construction of queries expressed in some

other, textual, query language. Systems of this type form a

subset of the systems described as VQSs by Catarci et al

[7].

Natural Language Query Interfaces

Natural language interfaces provide an alternative to

graphical methods of query formulation. These interfaces

enable a user to formulate a query using natural language

expressions, and they therefore obviate much of the

difficulty that novice users may have in terms of creating

syntactically valid semantic queries. There have been a

number of attempts in the database community to develop

systems that use natural language interfaces to support

information retrieval [3]. In the context of the Semantic

Web, Controlled English interfaces have been used to

support information retrieval from semantic repositories [5,

 8

15]. Other systems, such as Aqua-Log [17, 18], provide a

question-answering capability that takes queries expressed

in natural language and returns answers derived from query

execution against a domain ontology. In contrast to the

vSPARQL specification described above, natural language

interfaces may be more appropriate to users with little or no

familiarity with SPARQL.

Semantic Information Browsers

All VQSs aim to support the user with respect to the

deliberate creation of queries. The realization of a user’s

information retrieval goals need not, however, involve the

deliberate creation of queries. In some cases, queries can be

created and executed (invisibly) as part of an ongoing

sequence of goal-directed browsing actions. Systems, such

as mSpace [21], for example, support the retrieval of

information based on a set of relatively simple and intuitive

user interactions, none of which are specifically geared

towards query formulation. The question that arises with

respect to such systems is whether they undermine the need

for tools that explicitly support the query formulation

process: couldn’t all information retrieval goals be better

supported in a system that conflates query generation with

episodes of exploratory activity?

While it is certainty true that not every instance of

information retrieval necessitates deliberate query

formulation, there are, we suggest, cases were users will

want to specify information retrieval requests independent

of a user interaction context. This is the case when users

want to rapidly (re)use the query for information retrieval in

multiple contexts, or when they want to distribute a query

to other users of a system for the joint evaluation of

common result sets. Explicit query design is also required

in cases where the query is particularly complex, for

example, in cases involving the evaluation of (multiple)

variable bindings or disjunctive graph patterns.

FUTURE WORK

The tool described herein was developed as part of an

ongoing research program to support human end-users with

respect to information retrieval processes in a Semantic

Web context. Our future work in this area consists of three

activities: extensions to the current tool, development of

additional query formulation interfaces and user evaluation

studies.

Tool Extensions

The tool described in this paper represents an initial

prototype that does not fully support the SPARQL

specification. As part of our continued development efforts

we aim to extend the functionality of NITELIGHT to

include graphical support for all aspects of the SPARQL

query language. Of particular interest is the support we aim

to provide for the SPARQL CONSTRUCT form. This form

of SPARQL query can be viewed as a deductive rule

because the query is being used to derive new knowledge

from previously asserted facts (see Figure 16). Support for

the creation of SPARQL CONSTRUCT queries therefore

adds rule editing capabilities to what was originally a tool

intended solely for query formulation.

Figure 16. SPARQL CONSTRUCT Query

Another possibility for tool extension relates to use of

multiple visual formalisms to represent query elements. As

discussed earlier in the paper, Catarci et al [7] present a

classification scheme for VQSs that distinguishes between

form-based, diagram-based, icon-based and hybrid systems.

In its current form, NITELIGHT sits most comfortably in

the diagram-based category, although it also includes forms

to support query specification and refinement. Subsequent

development efforts could, however, extend the range of

visual formalisms to include icons (e.g. icons representing

types of objects contained in the ontology) and forms (e.g.

wizard-like capabilities similar to those described by Borsje

and Embregts [6]).

Further extensions and refinements to NITELIGHT include

support for creating filter expressions and an ability to

update vSPARQL graphical representations based on

changes to (text-based) SPARQL queries.

Additional Interfaces

As can be seen from our discussion of related work in this

area, there are multiple methods of supporting the human

end-user when it comes to query formulation. In addition to

the examples presented above (i.e. wizards, QBE systems,

graphical designers and natural language interfaces) we can

also envision systems providing a range of intellisense,

code-completion and syntax checking capabilities, similar

to those seen in conventional code-editing environments.

One potential direction for future work is therefore to

provide a syntax-editing capability that supports expert

SPARQL users with respect to the creation and

specification of textual queries.

Another type of interface is provided by the use of

Controlled English [5, 15] and natural language question-

answering systems [17, 18]. These types of systems might

be particularly beneficial for novice users who are

unfamiliar with semantic query languages. In terms of

 9

extending the capabilities of our current tool with respect to

these additional interfaces we aim to develop a natural

language query formulation system that implements a

similar functionality to that provided by systems such as

Aqua-Log [17, 18]. A key difference from the work

undertaken with respect to Aqua-Log relates to the

serialization of sentential query structures to valid SPARQL

queries. At present it is unclear how best to implement this

capability. One possibility is to constrain user input using

an ontology-specific query grammar; another is to adopt a

strategy similar to that seen in the SEWASIE [8] system,

wherein the user can progressively select terms in a natural

language query and substitute these terms with more

specific or general terms based on the domain ontology.

Finally, we could opt for a solution based on a subset of

natural English, such as Attempto Controlled English

(ACE) [10], in which a user is able to express information

retrieval requirements using familiar language constructs.

In this respect it is interesting to note that ACE can be

automatically translated into the N3-style semantic query

language PQL [16]. Moreover, a user evaluation of this

approach suggests that it promotes the design of good

queries with very good retrieval performance [5].

User Evaluation

At this stage we have not performed any user evaluation

studies; however, we aim to undertake such studies in the

near future. Specific focus areas for evaluation include the

general usability of the tool, the ability of the tool to

support users with regard to query formulation and

comparative analyses of the tool with other graphical [e.g.

8] and non-graphical [e.g. 5] query formulation interfaces.

Of particular interest are proposed comparisons between

NITELIGHT, SEWASIE [8], SPARQLViz [6], and

iSPARQL [2].

Clearly, there are a number of dependent variables that

might be assessed in the context of user evaluation studies.

These include:

 Syntactic Validity: the number of syntactic errors

made during query formulation.

 Query Accuracy: the extent to which the query

returns the right information.

 Query Comprehensibility: the level of

comprehension attained by a user about a specific

query.

 User Satisfaction: subjective ratings of the user’s

satisfaction with the tool.

 Query Formulation Efficiency: the amount of time

taken to formulate queries.

The initial evaluation of NITELIGHT will be based on our

target user community (viz., experienced SPARQL users).

CONCLUSION

This paper has presented a graphical editing environment

for the construction of semantic queries based on the

SPARQL language specification. The tool, called

NITELIGHT, is primarily intended for use by those with

previous experience of SPARQL (although it could also

potentially serve as a support tool for novice users who aim

to acquire SPARQL expertise). NITELIGHT is a type of

VQS that specifically supports an existing text-based query

language; namely SPARQL. In contrast to the

recommendations of some commentators [12] we do not

propose to develop a simplified query language for end-

users; rather we aim to support end-users with respect to the

creation of complex queries using supportive user interfaces

and user interaction mechanisms. Our tool is one of

growing number of VQSs that are being developed to

support information retrieval in the context of the Semantic

Web.

ACKNOWLEDGMENTS

This research was sponsored by the U.S. Army Research

Laboratory and the U.K.Ministry of Defence and was

accomplished under Agreement Number W911NF-06-3-

0001. The views and conclusions contained in this

document are those of the author(s) and should not be

interpreted as representing the official policies, either

expressed or implied, of the U.S. Army Research

Laboratory, the U.S. Government, the U.K. Ministry of

Defence or the U.K. Government. The U.S. and U.K.

Governments are authorized to reproduce and distribute

reprints for Government purposes notwithstanding any

copyright notation hereon.

REFERENCES

1 http://www.w3.org/2001/11/IsaViz/ - "IsaViz: A

Visual Authoring Tool for RDF"

2 http://demo.openlinksw.com/isparql/ - "OpenLink

iSPARQL"

3 Androutsopoulos, I., Ritchie, G. D., and Thanisch,

P. Natural Language Interfaces to Databases–An

Introduction. Natural Language Engineering 1, 1

(1995), 29-81.

4 Bailey, J., Bry, F., Furche, T., and Schaffert, S.,

"Web and Semantic Web Query Languages:

ASurvey," in Reasoning Web: First International

Summer School. Msida, Malta, 2005.

5 Bernstein, A., Kaufmann, E., Gohring, A., and

Kiefer, C. Querying ontologies: A controlled

english interface for end-users. Proc. 4th

International Semantic Web Conference (ISWC05)

(2005), 112–126.

6 Borsje, J., and Embregts, H., "Graphical Query

Composition and Natural Language Processing in

an RDF Visualization Interface," in Erasmus

School of Economics and Business Economics,

vol. Bachelor. Rotterdam: Erasmus University,

2006.

 10

7 Catarci, T., Costabile, M. F., Levialdi, S., and

Batini, C. Visual Query Systems for Databases: A

Survey. Journal of Visual Languages and

Computing 8, 2 (1997), 215-260.

8 Catarci, T., Dongilli, P., Mascio, T. D., Franconi,

E., Santucci, G., and Tessaris, S. An ontology

based visual tool for query formulation support. In

16th European Conference on Artificial

Intelligence (2004)

9 Fadhil, A., and Haarslev, V., "OntoVQL: A

Graphical Query Language for OWL Ontologies,"

in International Workshop on Description Logics

(DL-2007). Brixen-Bressanone, Italy, 2007.

10 Fuchs, N. E., and Schwitter, R., "Attempto

Controlled English (ACE)," in 1st International

Workshop on Controlled Language Applications

(CLAW 96) Leuven, Belgium, 1996.

11 Harel, D. On visual formalisms. Communications

of the ACM 31, 5 (1988), 514-530.

12 Hoang, H. H., and Tjoa, A. M., "The virtual query

language for information retrieval in the

semanticLIFE framework," in International

Workshop on Web Information Systems Modeling.

Trondheim, Norway 2006.

13 Hutt, K., "A Comparison of RDF Query

Languages," 2005.

14 Karvounarakis, G., Alexaki, S., Christophides, V.,

Plexousakis, D., and Scholl, M., "RQL: a

declarative query language for RDF," in 11th

International World Wide Web Conference.

Budapest, Hungary, 2002, pp. 592-603.

15 Kaufmann, E., and Bernstein, A., "How Useful are

Natural Language Interfaces to the Semantic Web

for Casual End-Users?," in 6th International

Symantic Web Conference (ISWC 2007). Busan,

Korea, 2007.

16 Klein, M., and Bernstein, A. Toward high-

precision service retrieval. Internet Computing,

IEEE 8, 1 (2004), 30-36.

17 Lopez, V., and Motta, E. Ontology-driven question

answering in AquaLog. In 9th International

Conference on Applications of Natural Language

to Information Systems (2004)

18 Lopez, V., Pasin, M., and Motta, E., "AquaLog:

An Ontology-portable Question Answering

System for the Semantic Web," in 2nd European

Semantic Web Conference (ESWC 2005).

Heraklion, Greece, 2005, pp. 546–562.

19 McBride, B. Jena: a Semantic Web toolkit.

Internet Computing, IEEE 6, 6 (2002), 55-59.

20 http://www.w3.org/2001/sw/DataAccess/rq23/ -

"SPARQL Query Language for RDF"

21 schraefel, m. c., Smith, D. A., Owens, A., Russell,

A., Harris, C., and Wilson, M. L. The evolving

mSpace platform: leveraging the Semantic Web on

the trail of the memex. In Hypertext 2005 (2005)

22 http://www.w3.org/Submission/2004/SUBM-

RDQL-20040109/ - "RDQL - A Query Language

for RDF"

23 Zloof, M. M. Query-by-Example: A Data Base

Language. IBM Systems Journal 16, 4 (1977), 324-

343.

