
Visual Exploration, Query, and Debugging of RDF Graphs
Wolfgang Weiss

JOANNEUM RESEARCH
Forschungsgesellschaft mbH

Wolfgang.Weiss@joanneum.at

Michael Hausenblas
JOANNEUM RESEARCH

Forschungsgesellschaft mbH
Michael.Hausenblas@joanneum.at

Gerhard Sprung
FH JOANNEUM

University of Applied Sciences
Gerhard.Sprung@fh-

joanneum.at

ABSTRACT
Semantic Web engineers create and explore the content and
structure of RDF graphs in order to build Semantic Web
applications. Currently, some Semantic Web development
and visualisation tools for Semantic Web engineers are
available. However, the tasks of exploring, debugging, and
querying RDF graphs have been neglected in the past. This
paper evaluates a hybrid visualisation technique of RDF
graphs for Semantic Web engineers. A prototype has been
implemented representing RDF graphs in different textual
views and in a graph visualisation. To examine the
usefulness of our approach, a usability test, based on typical
use cases of Semantic Web engineers, has been done.

Author Keywords
RDF, visualisation, Semantic Web, Semantic Web
engineer, usability

ACM Classification Keywords
H.5.2 [Information interfaces and presentation (e.g., HCI)]:
Evaluation/methodology. D.2.2 [Software engineering]:
User interfaces. H3.3 [Information Storage and Retrieval]:
Information filtering. I.2.4. [Artificial Intelligence]:
Representations.

INTRODUCTION
The aim of our work is to examine appropriate visualisation
and user interface techniques of RDF graphs for Semantic
Web engineers, who develop applications for the Semantic
Web and have to explore, debug, and query the underlying
data model. This paper is based on our research done in [1]
and [2].

The Semantic Web extends the current Web, as it brings a
machine processible structure to the meaningful content of
Web pages. It provides a well defined meaning using
metadata represented in the Resource Description
Framework (RDF). The RDF model is a graph consisting of
nodes and links. Well defined meaning of the content is
achieved through using schema languages and ontologies.
Ontologies provide a common understanding of a particular
domain. They are necessary for the communication between
human beings, and to achieve interoperability among
different software systems.

The design process of Semantic Web content and
ontologies is long-winded and complex. The developers,

called Semantic Web engineers have to describe concepts
and relationships among the concepts. The task of authoring
RDF graphs and ontologies is supported by several tools,
which provide good editing capabilities. However, the tasks
of exploring, debugging, and querying unknown RDF
graphs have been neglected in the last years. Semantic Web
engineers have to understand the structure and the content
of RDF graphs and have to find errors in existing RDF
graphs and ontologies.

To enable Semantic Web engineers to build the long
anticipated “Semantic Web killer applications”, tools are
needed that support the developers in exploring, debugging,
and querying RDF graphs and ontologies. These tools have
to increase the cognitive support for the Semantic Web
engineers to enable a more effective and efficient
development cycle, resulting in a reduction of the
development costs and improving the quality of Semantic
Web applications.

Requirements
The basic requirements have been collected in the realm
according of our project experience over the last years. The
requirements include that (i) the application should be Web-
accessible to reduce the complexity of the software
distribution, (ii) it should combine textual and graphical
presentations of the RDF graph, and (iii) the graphical
presentation of the RDF graph should be easy to understand
and easy to handle, it should present the RDF graph as it is.
The textual views are necessary to navigate through the
RDF graph. However, it is not the aim to visualise the
entire graph at once, because this would result in a
cluttering and confusing visualisation, also known as big fat
graphs [15]. Moreover, we do not propose to develop a new
graph visualisation algorithm. The target users of this
application are Semantic Web engineers who create,
modify, validate, or even explore RDF graphs and RDF-
based ontologies.

The hypothesis according to the objectives and
requirements is as follows: “a graph-based visualisation in
combination with a textual representation of the RDF graph
meets the requirements of Semantic Web engineers for
effectively and efficiently developing, debugging, and
exploring RDF graphs and RDF-based ontologies”.

According to former research in our realm [3], three main
use cases were identified, representing the work of
Semantic Web engineers. These use cases will be used to
verify the hypothesis and to examine the usefulness and
improvement opportunities of the application.

1. Debugging: An inconsistency in an ontology has
been found by the Semantic Web engineer. The
Semantic Web engineer has to find the problem.

2. Expressiveness: An ontology for a new
requirement is needed. Therefore, the Semantic
Web engineer has to determine whether the
vocabulary of an existing ontology meets the
requirements and is expandable, or if the ontology
has to be engineered from scratch.

3. Semantic Web content: The Semantic Web
engineer has to embed an RDF graph into an
existing HTML Web site. This graph or an
existing Semantic Web content has to be validated
by the developer.

RELATED AND EXISTING WORK1
RDF [17] is a common framework for exchanging
information between applications without loss of meaning.
RDF presents metadata about Web resources and identifies
these resources by using Uniform Resource Identifiers
(URIs). The intention of RDF is to provide a simple way to
make statements about Web resources. A statement consists
of a resource, a property, and a value, also called an object-
attribute-value triple. The triples form the RDF data model,
which can be presented as a graph. RDF Schema [22]
(RDFS) defines further modelling primitives in RDF to
describe other resources. In contrast to RDF and RDF
Schema, OWL [23] provides much more expressiveness,
which is required for the Semantic Web.

Semantic Web engineers mainly work on the data model
level of the Semantic Web. They usually develop RDF
graphs and ontologies, but also explore and investigate the
structure of even large and unknown RDF graphs and
ontologies to build new Semantic Web applications. In
contrast to Semantic Web engineers, domain experts often
have little computer skills. They are experts in a certain
knowledge domain, e.g. a biologist, and therefore they also
have to develop ontologies.

Applications for Semantic Web Engineers
Denny [4] conducted a survey about current ontology
editors, covering tools with ontology editing capabilities
that can be used to build ontology schemas and instance
data. The author describes ontology building as “a not very
linear process”, because it is necessary to approach the task
from several perspectives at once. It is an iterative process,
using top-down and bottom-up techniques. In the survey the

1 Further research can be found in [1].

author asked each respondent about his or her desired future
enhancements. The most important enhancements are (i) a
higher level of abstraction for knowledge modelling, (ii) a
better visual and spatial navigation among different concept
trees or concept graphs as well a better understanding of the
ontology and (iii) the need for reasoning and problem
solving facilities.

Protégé2 is an open, platform independent environment for
creating and editing ontologies and knowledge bases for
Semantic Web engineers. The application is extensible by
its plug-in architecture which is categorised in backend
plug-ins, slot widget, and tab plug-ins. Jambalaya [5] is an
interactive plug-in for Protégé, with a suite of tools for
viewing ontologies with graph metaphors. It uses a “Simple
Hierarchical Multi-Perspective” (SHriMP) visualisation
technique which enhances people to browse, explore and
interact with complex information spaces. The visualisation
tool combines a hypertext following metaphor with
animated panning and zooming motions over nested graphs
to provide continuous orientation for the user. According to
Mutton and Golbeck [7] “this visualisation technique is full
of large boxes, overlapped edges, and obscuring much of
the associative structure”.

IsaViz3 is a visual tool for browsing and authoring of RDF
models. Resource nodes are represented by ellipses, literals
as rectangles and properties are displayed as lines with
arrows. The tool uses the GraphViz4 library. As described
in [5], the user interface has issues in its interactivity and it
is difficult to customise. Furthermore, the application has
performance problems in parsing and generating large
graphs. On the other hand, it offers facilities for styling the
graph by using a stylesheet concept and the capability for
exporting the graph into a Scalable Vector Graphics (SVG)
[15].

The Tabulator project5 [6] is a generic data browser for
RDF data on the Web, addressed to end-users and Semantic
Web engineers. The authors describe that a graph
visualisation with circles and arrows “is very intuitive for
humans and useful when trying to understand the structure
of data”, but “it is not an appropriate way to look at data
with many nodes and many different properties”. Therefore,
a tree visualisation, called “outliner mode”, is used.
Additionally Tabulator provides several other views, such
as a Map View, a Table View or a Calendar View as
different tabs. Results of queries can be used to visualise

2 Protégé: Ontology Editor and Knowledge Acquisition
System, http://protege.stanford.edu/
3 IsaViz: A Visual Authoring Tool for RDF,
http://www.w3.org/2001/11/IsaViz/
4 Graphviz: Graph Visualization Software,
http://www.graphviz.org
5 The Tabulator project: http://www.w3.org/2005/ajar/tab

geographical data in a map or temporal data in a calendar.
Providing a general view of arbitrary data in combination
with specific views for particular special data such as time
and space is a sweet spot between completely generic and
completely domain-specific applications. Although domain-
specific applications will always be important and will do
better at specific tasks than the general one.

Debugging Techniques
Error detecting and debugging is an important aspect when
developing ontologies. Different techniques for solving
errors of OWL ontologies are implemented in the
hypertextual ontology development environment Swoop6.
To diagnosing unsatisfiable concepts in OWL ontologies
two families of reasoner-based techniques are used: the so
called glass box and black box techniques [25]. The glass
box technique [27] extracts and presents information from
the internals of the reasoner. This debugging approach is
tightly integrated with the reasoning procedure and
provides precise results. This technique is used to find the
root cause of a contradiction or to determine the relevant
axioms that are responsible for the root cause. The black
box technique uses the reasoner as an oracle for a certain
set of question, such as satisfiability or subsumption in
standard inference. This approach helps to isolate the
problems, is independent from the reasoner and needs less
memory and computational cost than the glass box
technique. Debugging technologies are rather complex and
they have its limitations. Therefore, the authors point out
that it is necessary to provide manual editing and debugging
technologies to the user such as undo, redo, version history
or a comparator for ontology entities (cf. [25], [26], [27],
[28]).

Visualisation Techniques
A new visualisation technique for large hierarchical
ontologies, called CropCircles was introduced by [8] and
[9]. The inspiration for the visualisation technique comes
from Treemaps (cf. [10]) which is a space filling
visualisation. Changes were made in the representation and
layout. Circles represent nodes in a tree and every child
circle is nested inside its parent circle. The aim of this
visualisation technique is (i) to give a topology overview,
(ii) to quickly read labels of children, (iii) to easily detect
duplications and (iv) to encourage users to look at the data
and gain insights from the visualisation. An empirical
evaluation has shown that CropCircles performed well
against Treemaps and SpaceTrees (cf. [11]) in topological
tasks, like finding certain nodes in a class hierarchy.

The aim of the Cluster Map visualisation technique is it to
bridge the gap between complex semantic structures and the
simple, intuitive user-oriented presentation. Cluster Maps
are used to visualise instances of ontologies and its

6 SWOOP - Hypermedia-based OWL Ontology Browser
and Editor: http://www.mindswap.org/2004/SWOOP/

taxonomy. It is therefore appropriate for end-users.
Additionally, geometric closeness is related to semantic
closeness (cf. [12] p. 45-48).

OntoSphere 3D [13, 14] is a collection of three-dimensional
visualisation techniques; it is available as a plug-in for
Protégé for visualising ontologies. A novel approach was
developed for inspecting and editing ontologies in a three-
dimensional space, which is quite natural for humans. The
visualisation tool supports operations like zooming,
panning and rotating. Additionally it increases the
“dimensions” by using different colours, shapes and
transparency of nodes and edges. OntoSphere 3D is
scalable in visualising ontologies, but there are still open
issues in navigating through the visualisation. It is designed
to particularly meet the demands of domain experts who
have little technical skills in the field of Semantic Web.

The data model of RDF is a graph and the most popular
visualisation is a graph with nodes and edges. In [15] this
visualisation is called a “Big Fat Graph”. Using graph
visualisations of RDF data especially for end users has a
number of drawbacks. For example this visualisations are
flat and every node is treated as a primary node. Often,
users give too much weight to accidents of the graph layout
algorithm. Semantic Web engineers should use appropriate
user interface techniques for Semantic Web applications.
Though, graph visualisations have their place.

IMPLEMENTATION

Architecture
The prototype7 of this project was implemented as an Ajax
Web application using Java. It was deployed on the servlet
container Apache Tomcat. Ajax is a bundle of existing
technologies to make Web applications more interactive. To
get access to the prototype, the user needs a Web browser
with Scalable Vector Graphics (SVG) [16] support. The
SVG support of the browser has to provide at least
rendering, animation, and scripting of Scalable Vector
Graphics to be able to use all implemented features of this
prototype. A number of libraries and frameworks have been
used to implement the prototype. Figure 1 gives an
overview of the architecture.

7 The prototype is available at:
http://sw.joanneum.at:8080/visr/

Figure 1: Architecture of the Prototype

Jena8 is an open source framework for building Semantic
Web applications implemented in Java. The API of the
framework offers a statement-centric and a resource-centric
approach to access RDF [17]. The Jena Semantic Web
framework is used to read and process the RDF triples on
the server of an uploaded file. The Java Universal Network
/ Graph Framework (JUNG)9 is a graph visualisation
library, which provides a number of layout algorithms and
mechanisms to manipulate graphs. In the prototype, the
layout of the graph is generated with the “self-organising
map layout for graphs” (cf. [18]). An evaluation has shown
that this algorithm generates the best results for a graphical
representation that is used in this prototype. However, this
layout algorithm generates a different layout in every single
run. Therefore, it is necessary to animate the graph
visualisation for the user. The animation helps the user to
follow how the layout changed since the last run. The Batik
SVG Toolkit10 is an open source Apache project for Java
applications or applets that want to use images in the SVG
format. The project consists of several modules, which can
be used independently, or together to generate, view, or
convert SVG content. The Google Web Toolkit (GWT)11 is
an open source, Java-based development framework that
makes programming Ajax applications easier. It is used to

8 Jena: A Semantic Web Framework for Java,
http://jena.sourceforge.net/
9 JUNG - Java Universal Network / Graph Framework,
http://jung.sourceforge.net/
10 Batik SVG Toolkit, http://xmlgraphics.apache.org/batik/
11 Google Web Toolkit, http://code.google.com/webtoolkit/

implement the user interface and the services, which
exchange data between the client and the server.

USER INTERFACE
Visualising abstract information helps us to reveal patterns,
clusters, gaps, or outlier in statistical data, stock-market
trades, or document collections. Humans have remarkable
perceptual abilities to scan, recognise, and recall images
rapidly and are able to detect changes in size, colour, shape,
movement, or texture. This is the reason why visual
interfaces have appealing opportunities. Therefore,
Shneiderman [19] summarised the basic principles of
information visualisation as the Visual Information-Seeking
Mantra: “Overview first, zoom and filter, then details-on-
demand”. This Visual Information-Seeking Mantra was
also the starting point for designing our user interface.

The user interface provides functions to upload RDF files
and to visualise and investigate RDF data. The RDF data is
illustrated in a graph visualisation with nodes and edges,
and in different textual representation. The textual
visualisation allows the users to navigate and browse
through the graph. To avoid a cluttered visualisation, only
selected triples are visualised in the graphical view. The
graphical view helps the user to understand the RDF
content.

As illustrated in Figure 2, the application has a number of
control and display elements for user interaction. A status
bar (1) informs the user whether the application is busy or
ready to use. (2) is the upload widget to upload local files,
stored on the hard disk of the user, or to select remote files,
for example with the HTTP protocol. The application
accepts RDF/XML files. The user has the choice of three
different textual representations (3). The triple table extracts
the triples in a table. The triple tree creates a hierarchical
view of the graph and the resource tree extracts URI Refs,
blank nodes, literals, and properties from the graph. The 4th
tab of this widget allows the user to set options of the
visualisation. Finally, (4) shows the graphical
representation of the graph. This visualisation represents the
RDF graph as it is - without abstracting or obscuring
information.

Triple Table
The screenshot of Figure 3 illustrates the triple table. This
table shows the RDF triples (subject, property, and object).
It loads only a certain number of triples from the server and
displays it. The number of visible triples can be increased
and decreased by (1). This feature is useful when the RDF
graph contains more than 100 triples. If the graph contains
more triples than can be displayed in a single view the
triples are split up in several pages. The user has the
possibility to switch (2) between the pages. The number of
currently available triples and pages is displayed in the
header (3) of the table. To find the right information, it is
possible to “filter” (cf. [19]) the triples by simply using the
text boxes (4) of the subject, property, or object. The user

can select any triple by clicking the check-box of a triple
(5) to visualise it in the graphical view. The buttons of (6)
clear the selection of selected triples or redraw the graph in
the graphical view. Additionally, when the user moves the
mouse over an item of the triple, detailed information is
displayed in a tool tip (7).

Figure 3: Screenshot of the triple table widget.

Triple Tree
The triple tree, illustrated in Figure 4, is a hierarchical
representation of the RDF graph. Users can browse through
the graph just like in a tree of a file browser. This
representation loads the whole RDF graph at once. It is

ideal for small compact hierarchies which can be
represented on a single screen without having to scroll (cf.
[10] p. 3). The triple tree is currently in an experimental
stage. It was designed to find out which textual
representation best fits the needs of Semantic Web
engineers.

Figure 2: Screenshot of the Prototype

Figure 4: Screenshot of the triple tree widget.

Resource Tree
Also the resource tree (see Figure 5) of the prototype is an
experimental view and was designed to find out the needs
of Semantic Web engineers. It splits the RDF graph up into
URI references, blank nodes, literals, and properties.
Properties are also URI references, but, they are displayed
separately. This view loads the whole RDF graph at once,
but in contrast to the triple tree, it has a text box to search
and filter inside the RDF graph.

Figure 5: Screenshot of the resource tree widget.

Graphical Representation
The graphical representation, a SVG, includes graphical
entities, such as nodes and edges, as well as animation and
scripting. The scripting of the SVG provides user
interactions on the graphics. For example, the user gets
detailed information when the mouse pointer is moved over
an edge or a node (see Figure 6), which is also known as
“details on demand”. Furthermore, the corresponding
nodes or edges are highlighted in the textual representation
at the same time, which is also known to “relate” items (cf.
[19]). When the user moves the mouse over a triple or a
resource in the textual representation, the corresponding

resources are highlighted in the graphical representation
(illustrated by Figure 7). The used visualisation algorithm
produces a new layout at each run. Therefore, it is
necessary to animate the transition of the graph when the
visualisation is reloaded.

Figure 6: Details on demand and highlighting corresponding
resources of the textual and graphical representation.

Figure 7: Highlighting corresponding resources of the textual
and graphical representation.

USABILITY TEST
The aim of usability testing is to get feedback from actual
users performing real tasks. The process of usability testing
is sometimes called “usability engineering”. This relates to
the term in the concept and to the importance to software
engineering and it is a critical part of product development.

Usability Test Setup
The aim of this usability test is to verify the hypothesis and
to examine the usefulness of the combination of a graphical
and a textual representation of RDF graphs for Semantic
Web engineers, according to the previously defined use
cases. The evaluation was separated in four parts: (i)
introduction, (ii) user tasks including observation, (iii) user
tasks including measurement of time and task completion,
and (iiii) a questionnaire. It was carried out with seven
participants. Each subject has experience in RDF and RDF
Schema. As illustrated in the Table 1, the average skill level
/ experience of the participants is 3.5, according to a self
assessment of the part four of the usability test.

Min Max Average Median
3 4 3.5 3.5

Table 1: Self-assessment of each participant about their skill
level of RDF(S), on a scale between 1 (low) and 5 (excellent).

Each usability test lasted approximately 1 hour and 20
minutes. The setup of this usability test is partly based on a
mixture of expert interviews and user interviews (cf. [20]
pp. 5-44). The users are Semantic Web engineers, who are
the focus group of the application. The Semantic Web

engineers are also software engineers and experts in
designing user interfaces for applications.

Part 1
The introduction covered a refresh of RDF and RDFS, and
an explanation of the application, how the application
works and the functionality of each widget.

Part 2
The second part of the usability test was the user tasks
including the observation of the participant where any
specific behaviour was noted. Additionally a screen movie
of all tasks done by the users on the computer, including the
voice of the users, was recorded to analyse the behaviour of
the users and the usability of the application after the test.

The users had to do following tasks: Do simple tasks, such
as uploading a file and visualising certain triples. The
participants had to describe the property “implements” of a
description of a project12 (DOAP) file from the Apache
Jackrabbit13 project. Then the users had to find an error in
this RDF graph, in which the date of the latest version had
an error. The problem of this RDF graph was that the
property “created” in the latest version was wrong (see also
Listing 1).

The next task was to find out the expressiveness of two
ontologies. The first ontology was a schema for metadata
for photos14, similar to Exif [24] data. The users had to find
out whether it is possible to represent geographical

12 Description of a Project: http://usefulinc.com/doap/
13 Apache Jackrabbit - RDF DOAP file:
http://jackrabbit.apache.org/doap_Jackrabbit.rdf
14 Photography Vocabulary:
http://purl.org/net/vocab/2003/11/photo.rdf

information with this schema. The answer was: “no”. Then,
the users got another schema for representing geographical
information15, where the participants hat to find out how to
use this schema in an RDF document.

Part 3
The third part of the usability test covered again user tasks
but the task completion and duration to complete the each
task was measured. These user tasks consisted of 13 tasks
where each subject had to answer to “multiple choice” and
“fill-in blank” questions (Questions: 2.1, 3.2, 5.1, 6.1) such
as:

• Which “rdf:Properties” are defined in this RDF Schema?
o Answer 1: trackList
o Answer 2: Satus
o Answer 3: releaseType
o Answer 4: trackNum

• Complete following sentences: The resource
“madeFrom” is of “rdf:type” ________ it has a
“rdfs:domain” of ________ and it has a “rdfs:range” of
________.

and to open questions (Questions: 1.1, 1.2, 2.2, 3.1, 4.1, 5.2,
6.2, 7.1, 7.2), where the participants had to answer in short
sentences.

• This is a simple RDF Schema, describe all
“rdf:Properties”.

• This RDF file describes some institutions and their
location. Find out the geographic location of the resource
“Joanneum-Research”.

• This is an ontology about music instruments and its
players. Describe the resource “m:Contrabass” and its
super classes.

To perform the test RDF files, RDF Schemas and OWL
ontologies containing 12 - 1600 Triples were used.

Part 4
The last part of the usability test covered the feedback
questionnaire, which was adapted from “Questionnaire for
User Interaction Satisfaction” [21] pp. 172–182 and it
contained 15 questions. Each subject had to answer to
questions about the:

1. User interface
• The readability, concerning the characters and signs on

the screen.
• The helpfulness of tooltips and emphasis of certain

elements.
• The simultaneously visible information.

15 Basic Geo Vocabulary:
http://www.w3.org/2003/01/geo/wgs84_pos.rdf

Listing 1: Excerpt of the used DOAP File.

@prefix :
<http://usefulinc.com/ns/doap#> .

:release

 [a :Version;

 :name "Apache Jackrabbit 1.2.1";

 :created "2006-01-23"@en;

 :revision "1.2.1"@en

];

:release

 [a :Version;

 :name "Apache Jackrabbit 1.2.2";

 :onDate "2007-02-21"@en;

 :revision "1.2.2"@en

];

• Order of elements on the screen.

2. Functionality
• The combination of textual and graphical representation

of RDF data.
• Missed features.

3. Scalability and Responsiveness
• Reaction time of the system.

4. Learnability
• Whether the usage of the system easy to learn.
• Whether it is possible that domain experts use this

application.

5. Other
• Level of difficulty of the tests.
The questionnaire also included the paper prototype. The
users had to assess whether a facet oriented view, also
known as mulit-pane browsing, would be more useful than
the currently available views for the RDF graph. The facet
oriented view provides a “browsing through the graph”
metaphor.

Figure 8: Paper Prototype.

Results

Results of the Part 3
All participants were able to solve all questions of the part 3
of the usability test correctly. Figure 9 illustrates the needed
time to complete each question. The skill level and
experience of each participant was different and some
participants had problems in understanding some questions.
This fact explains the great variation of the time to
complete some tasks, especially of question 5.1.

0

50

100

150

200

250

300

350

1.1 1.2 2.1 2.2 3.1 3.2 4.1 5.1 5.2 6.1 6.2 7.1 7.2

number of question

se
co

nd
s

Upper
Quartile
Max

Median

Min

Lower
Quartile

Figure 9: Duration to complete each question

Results of the Parts 2 and 4
According to the questionnaires and the observations during
the second part of the usability test, following results were
identified:

1. Usability (Readability, design of the user interface,
details on demand, arrangement of the components)

• The results have shown that the combination of a textual
and a graph-based visualisation of RDF graphs are useful
for Semantic Web engineers.

o It is easier for the users to understand
what a certain RDF graph expresses.

o The visualisation is the hub of different
textual representations of the RDF graph.

• All information on the screen is clear and easy to read.
The components, also known as widgets, are easy to
access.

• All participants agreed that tooltips, which give
information on demand, are helpful.

• The users agreed that the amount of simultaneously
visible information and the order of the widgets are
suitable.

• The visualisation algorithm should work more precisely,
since it sometimes produces overlapping nodes.

2. Functionality

• Users who are familiar with the SPARQL query language
claimed to use it in the application.

• The “resource tree” should extract more information of
the RDF graph.

• Users want to sort the results in the “triple table” and
claimed to use better filtering functionality, such as
regular expressions.

3. Scalability and Responsiveness

• The reaction time of the application is in general
adequate. However, the time until the trees are generated
could be a bit faster.

4. Learnability

• The application is easy to learn and intuitive to use.
• The users agreed that the application would be useful for

domain experts, if they have enough experience in RDF.
In conclusion, the usability test has shown that the
combination of a graph visualisation and different textual
representations of the RDF graph is helpful for users who
want to explore or find an error in an RDF graph. Some
users used the graph visualisation extensively others used it
only to “memorise” certain nodes, but both user groups
agreed that the graph visualisation is helpful. The basic
functions are easy to use and well arranged. The triple table
was very helpful to find the error in the RDF graph in the
usability test and the users appreciated the filter functions
of this widget. The triple tree was useful to explore
ontologies and schemas. The resource tree widget was not
helpful for the users; it should extract more or other
information. The participants had different opinions about
the facet-oriented view of the paper prototype. They believe
that it is easier to use, but not better than the “triple tree”
which has already been implemented in the application.
However, it would make sense to additionally use a facet-
oriented view.

CONCLUSION
The Semantic Web builds on RDF and statements form the
RDF data model which is a graph. Information provided by
RDF is intended to be processed by applications rather than
being only displayed to people. This is one reason that
makes developing Semantic Web applications for Semantic
Web engineers that difficult.

The Semantic Web engineers mainly work on the data
model level of RDF. They usually develop RDF graphs and
ontologies, but also explore and investigate the structure of
large RDF graphs and ontologies to build Semantic Web
application. Currently, several good applications for
authoring and editing RDF graphs and ontologies exist.
However, the tasks of exploring, debugging, and querying
unknown RDF graphs have been neglected in the past.
Therefore, new tools for Semantic Web engineers are
needed to explore and investigate the structures of large
RDF graphs and ontologies and to more easily share
common concepts over different development groups.
Special attention is paid to the cognitive support of the
users to enable a more effective and efficient development
cycle.

A prototype16 has been implemented to examine appropriate
visualisation and user interface techniques for Semantic
Web engineers. The aim of this prototype is to support the
users in understanding the structure and content of RDF
graphs as well as to find errors in RDF graphs. The

16 The prototype is available at:
http://sw.joanneum.at:8080/visr/

prototype has been implemented as a Web application. It
contains three different textual presentations of RDF graphs
as tables and trees and a graphical presentation of the RDF
graph. The visualisation presents the RDF graph as it is -
without abstracting the graph or obscuring information. A
usability test has been carried out to examine the usefulness
of these presentations. The usability test has shown that the
combination of a graph visualisation and different textual
presentations of the RDF graph is helpful for users who
want to explore or find an error of an RDF graph. The
different views, especially the graph visualisation, of the
RDF graph makes it easier for the users to understand what
a certain RDF graph expresses and the visualisation is the
hub of different textual representations of the prototype.

However, this paper illustrates only one aspect of Semantic
Web development tools; such a tool should also support the
reasoning and querying of RDF graphs and provide more
abstract views on RDF graphs and ontologies.

ACKNOWLEDGMENTS
Parts of the research presented herein were carried out in
the “Understanding Advertising” (UAd)17 project, funded
by the Austrian FIT-IT Programme.

REFERENCES
1. Wolfgang Weiss. (2007). Visual Exploration, Query,

and Debugging of RDF Graphs. Master Thesis, FH
JOANNEUM, University of applied sciences.

2. Michael Hausenblas, Wolfgang Weiss. (2007). The
Needs of Semantic Web Engineers. Position Statement,
SWUI 2007.

3. Michael Hausenblas, Herwig Rehatschek. (2007). mle:
Enhancing the Exploration of Mailing List Archives
Through Making Semantics Explicit. In Proc. ISWC,
Semantic Web Challenge 2007, Busan, South Korea,
November 13th, 2007.

4. Michael Denny. (2004). Ontology Tools Survey.
http://www.xml.com/pub/a/2004/07/14/onto.html

5. Neil A. Ernst, Margaret-Anne Storey and Polly Allen.
(2004). Cognitive Support for Ontology Modeling.
International Journal of Human-Computer Studies,
Volume 62, Issue 5, May 2005, Pages: 553 – 577,
ISSN:1071-5819

6. Tim Berners-Lee, Yuhsin Chen, Lydia Chilton, Dan
Connolly, Ruth Dhanaraj, James Hollenbach, Adam
Lerer, and David Sheets. (2006). Tabulator: Exploring
and Analyzing linked data on the Semantic Web. SWUI
Workshop at ISWC 2006, Athens, Georgia, November
5-9, 2006.

17 Understanding Advertising:
http://www.sembase.at/index.php/UAd

7. Paul Mutton and Jennifer Golbeck. (2003). Visualization
of Semantic Metadata and Ontologies. In Proc. InfoVis
2003, Seattle, WA, USA, 20-21 October 2003.

8. Bijan Parsia, Taowei Wang, and Jennifer Golbeck.
(2005). Visualizing Web Ontologies with CropCircles.
In Proc. ISWC 2005, Workshop on End User Semantic
Web Interaction, Galway, Ireland, November 7, 2005.

9. Taowei David Wang and Bijan Parsia. (2006). Crop
Circles: Topology Sensitive Visualization of OWL Class
Hierarchies. In Proc. ISWC 2006, Athens, Georgia,
November 5-9, 2006, Pages: 695 – 708.

10.Keith Andrews. (2002). Visualising Information
Structures: Aspects of Information Visualisation.
Professorial Thesis, IICM, University of Technology,
Graz, Austria, November 2002.

11.Catherine Plaisant, Jesse Grosjean, and Benjamin B.
Bederson. (2002). Space-Tree: Supporting Exploration
in Large Node Link Tree, Design Evolution and
Empirical Evaluation. In Proc InfoVis 2002, Boston,
MA, 27 October - 1 November 2002, IEEE, 57-64.

12.Vladimir Geroimenko and Chaomei Chen. (2005).
Visualizing the Semantic Web: XML-based Internet and
Information Visualization. Springer; 2nd edition, ISBN
1852339764

13.Alessio Bosca, Dario Bonino, and Paolo Pellegrino.
(2005). OntoSphere: more than a 3D ontology
visualization tool. In Proc. Italian Semantic Web
Workshop, University of Trento, Italy, 14 – 16
December 2005.

14.Alessio Bosca and Dario Bonino. (2006).
OntoSphere3D: a multidimensional visualization tool
for ontologies. DEXA 2006, Andrzej Frycz Modrzewski
Cracow College, Krakow, Poland, 4 - 8 September
2006, ISBN: 0-7695-2641-1, Pages: 339 – 343.

15.David Karger, M.C Shraefel. (2006). The Pathetic
Fallacy of RDF. SWUI Workshop at ISWC 2006,
Athens, Georgia.

16.Jon Ferraiolo, Fujisawa Jun, and Dean Jackson. (2003).
Scalable Vector Graphics (SVG) 1.1 Specification.
http://www.w3.org/TR/2003/REC-SVG11-20030114/

17.Graham Klyne and Jeremy J. Carroll. (2004). Resource
Description Framework (RDF): Concepts and Abstract.
Syntax, http://www.w3.org/TR/2004/REC-rdf-concepts-
20040210/

18.Bernd Meyer. (1998). Self-Organizing Graphs - A
Neural Network Perspective of Graph Layout. In Proc.
Graph Drawing 1998, Montréal, Canada, August 1998,
ISBN: 978-3-540-65473-5, Pages: 246 - 262.

19.Ben Shneiderman. (1996). The Eyes Have It: A Task by
Data Type Taxonomy for Information Visualizations. vl,
p. 336, IEEE Symposium on Visual Languages, 1996,
Pages: 336 – 343.

20.Carol M. Barnum. (2002). Usability Testing and
Research. Pearson Education. ISBN 0205315194, 2002.

21.Ben Shneiderman. (2002). User Interface Design. Third
Edition. ISBN 3826607538, 2002.

22.Dan Brickley and R.V. Guha. (2004). RDF Vocabulary
Description Language 1.0: RDF Schema.
http://www.w3.org/TR/2004/REC-rdf-schema-
20040210/

23.Michael K. Smith, Chris Welty, and Deborah L.
McGuinness. (2004). OWL Web Ontology Language
Guide. http://www.w3.org/TR/2004/REC-owl-guide-
20040210/

24.Standard of Japan Electronics and Information
Technology Industries Association. Exchangeable
image file format for digital still cameras: Exif Version
2.2. (2002).
http://www.digicamsoft.com/exif22/exif22/html/exif22_
1.htm

25.Bijan Parsia, Evren Sirin, and Aditya Kalyanpur.
(2005). Debugging OWL Ontologies. In Proc.
WWW2005, Chiba, Japan, May 2005.

26.Aditya Kalyanpur, Bijan Parsia, and Evren Sirin.
(2005). Black Box Techniques for Debugging
Unsatisfiable Concepts. In Proc. DL 2005, Edinburgh,
Scotland, UK, July 26–28, 2005.

27.Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and James
Hendler. (2006). Debugging Unsatisfiable Classes in
OWL Ontologies. Journal of Web Semantics, Volume 3
Issue 4, 2006.

28. Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and
Bernardo Cuenca-Grau. (2006). Repairing Unsatisfiable
Concepts in OWL Ontologies. In Proc. ESWC 2006,
Budva (Montenegro), 11 – 14 June, 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

