
Experiences in Applying Arti�cial Intelligencewithin SIARAS ProjectSªawomir NowaczykKatedra Automatyki,Akademia Górniczo-Hutnicza,Slawomir.Nowaczyk@agh.edu.plAbstract. In this paper we present our experience in designing andbuilding knowledge base for the SIARAS project. This project aimed toproduce a tool, called Skill Server, supporting engineers during recon�g-uration of manufacturing systems. We mainly focus on the process of de-veloping knowledge representation used by Skill Server and discuss somelessons we have learned about applying Arti�cial Intelligence conceptsin practical applications within high-tech industry. We discuss severaltypes of knowledge that Skill Server needs to have access to, and howdi�erent KR solutions can be integrated together in a coherent system.1 IntroductionIn this paper we present our experience in designing and building knowledgebase for the SIARAS project, focusing especially on how the approaches we usedevolved as we gained more and more insight into the actual requirements of thesystem.SIARAS is an acronym of an EU-funded (FP6 - 017146) STREP-project�Skill-Based Inspection and Assembly for Recon�gurable Automation Systems,�running in the years 2006�2008. Its general aim was to support end users andengineers of manufacturing systems, including robotic ones, and to make pro-duction engineering easier (and thus cheaper) in several common circumstances.The primary goal of the project was to build an intelligent system, pro-visionally called Skill Server, that would be capable of supporting automaticand semi-automatic recon�guration of manufacturing processes in response tochanging requirements. The main issue during the design phase was to mergetwo, somewhat opposed, views on the recon�guration process: the top-down,AI-based approach and the bottom-up, engineering one.The top-down approach describes the recon�guration as a (re)planning prob-lem. We are given a new task, usually expressed as a goal condition, possiblybeing a modi�cation of an earlier, correct one. Given a set of skills available inthe system, understood as a description of the operations that might be per-formed by the devices available to the user, we are to �nd such a sequence ofoperations that will ensure that the task is correctly executed, i.e. to �nd a planthat achieves the goal.

In the bottom-up approach, the Skill Server is used only for recon�gurationof an existing, correct, properly modelled production line. The system is notexpected to propose novel solutions, nor to search for alternative ways of im-plementing the process. In particular, one should expect a detailed descriptionof the task: what is produced and how (i.e. what are the steps of the process).Moreover, for each step, it should be clear how does it contribute to the goal. Onthe other side, available devices must be described in terms of operations theyare able to perform (skills) and conditions under which they can operate. SkillServer needs to map task into skills and parametrise them appropriately.It is rather obvious that the top-down AI approach is both computation-ally infeasible and impossible to model su�ciently well, while the bottom-upreparametrisation approach lacks generality and risks ending up as a databaseof previously used parameter settings for a number of devices in a number ofscenarios. The main issue with this approach is guaranteeing scalability and ex-tendibility to new domains or to new kinds of devices. There is a risk of limitingthe approach to the previously considered cases and very similar ones only, thusprecluding a more open-ended solution.Taking this into account, we have settled for a layered approach, with recon-�guration level at the bottom and (re)planning level on top of it.2 Knowledge RepresentationInitially, we have identi�ed several types of knowledge Skill Server will use: skills,devices, tasks, workpieces and environment. Most of them can be speci�ed on, atleast, two levels of abstraction: simpli�ed, generic descriptions (like a universal�pickup skill�) and instantiated ones (the operation of gripper G1 picking thewindshield W1 in factory F , at time point tn and position pm). Throughoutthe project, however, we have been continuously investigating possibilities ofintroducing additional, intermediate levels of abstraction in between.Nevertheless, in addition to the symbolic knowledge, there exist a numberof domain-speci�c or device-speci�c procedures for calculating various aspects(e.g. trajectory planner, device calibration and reparametrisation procedures,etc.) which, in many contexts, should also be treated as knowledge. Despiteseveral attempts, however, we have not managed to �nd an acceptable and usefulway to put them into any kind of even semi-formal framework. This would bea very interesting research project in itself, but our experience shows that thisknowledge is simply too diverse to formalise in the timeframe we had. Therefore,Skill Server considers such procedures as, essentially, black boxes.The overall structure of the Skill Server is shown in Figures 1 and 2. Theydepict, from two di�erent points of view, how the �core� Skill Server is integratedwith various knowledge, reasoning and user interface modules and what kind ofinformation sources it has at its disposal.In e�ect, we have devoted most of our e�orts to designing symbolic knowledgerepresentation in a way that would be intuitive and useful in practice to ourindustrial partners (who, in general, have no background in AI) and, at the

control pgm

distributed library
HTTP access?

CAD sim pgm

skills
devices

instantiated skills

actual task

THE SKILL SERVER

representation

user interface for
task definition

skill server
main loop

plug−ins
registration?
interface?

operations virt
tasks virt

workpiece ???
visualisation

simulation

user interface for
device descriptions

ontology

UF #1 UF#2 UF#n

device library

device#1234

ontology

Fig. 1. Skill Server structuresame time, allow Skill Server to perform the reasoning tasks required. It turnedout to be a surprisingly di�cult task to agree upon a knowledge representationformalism within the consortium, however. In fact, while we (from the academiaside) were already aware that there are costs associated with formal approachesto KR, we have not anticipated how di�cult it will be to convince industrialpartners that the bene�ts outweigh those costs.In principle, the initial response was that any representation more advancedthan attribute-value pairs was deemed as unnecessarily complex and still notexpressive enough. Basically, the expectations seemed to be that we should useattribute-value pairs wherever appropriate, and full expressiveness of program-ming languages everywhere else. Finally, the consortium have eventually man-aged to agree upon using Ontology as a default knowledge representation for-malism, provided we create a simple and intuitive one, not use existing.

Time
optimisation

Grippability
analysis

Vendor
specific

Ontology

Database

Commercial

Custom
reasoner

Main

integrator

Open source
software

Commercial
software

optimisation

 loop

Energy

reasoner

System

planning
Path

provider
Device End user

reasoner
SIARAS

Utility function interfaces

(G)UI interfaces

R
easoner interfaces

S
im

ul
at

io
n/

vi
su

al
is

at
io

n
in

te
rf

ac
es

Fig. 2. Skill Server structureOne of the issues that caused the most discussions among the project part-ners was the contents and structure of the ontology. The latter question is mostlytechnical and amounts to �xing a representation which would make typical usesof the knowledge stored in the ontology as easy as possible. Still, during discus-sions, those two aspects seemed to be confused very often.However, the former issue, i.e. what should the contents of the ontology be,was of paramount importance. There was little doubt that it should containknowledge about skills and about devices providing them. What was not soobvious was the status of tasks: whether they should be present in the ontologyas a separate entities.There are strong arguments both for and against such solution. As tasks areone of the major concepts present in the basic idea of the Skill Server, they needto be included in the ontology (which serves as Skill Server's primary vocabulary)

as well. Without their existence, no reasoning about them would be possible andthus the Skill Server would not be able to perform some of its basic functions.However, on the most basic level, tasks necessarily have to correspond di-rectly, on the one-to-one basis, with the skills. Otherwise there would be nopossibility for the skill server to perform any kind of matching between them.Therefore, it is probably unwise to exactly duplicate the hierarchy of skills witha corresponding hierarchy of tasks. Moreover, the �lifetime� of tasks is also sig-ni�cantly di�erent than the rest of information within the Ontology: skills anddevices are almost eternal, in a sense that they can be input into the knowledgebase once and are useful for everybody any time in the future. Tasks, on theother hand, are de�ned within a very speci�c context and usually only usefulwithin a particular factory shop and for a limited time.The ontology contains knowledge about (abstract) skills and about devices.This is an area for which ontology is well-suited, so it is both easy and e�-cient to specify that, for example, a concept of �vacuum gripper� is a subconceptof �gripper�, which in turn is a subconcept of �device�. In a similar manner, a�vacuum-pickup� skill is a subconcept of �pickup� skill. Even though the expres-sive power of an ontology goes much further, we did in fact get most mileageout of it by treating it as little more than a glori�ed taxonomy. This part wasconsidered su�ciently easy and su�ciently useful by all partners within a con-sortium to make it universally accepted. In fact, in some regards the ontologyproved too successful, and there has been signi�cant pressure to put virtually allknowledge there, even the kinds for which it is clearly inappropriate.A useful feature of the ontology was that it allowed us to specify propertiesof each skill and device, with natural inheritance rules. Thus we were able toassociate �mass� property with the concept of �device� and �number of �ngers�with ��nger gripper�, to specify that �mass� can be expressed in �grams� or�pounds�, and that �max image resolution� makes sense only for cameras, and notfor robots. What we did not manage to do is to �nd a way to express the purposeof those properties in a way that would be accessible to the non-symbolic partsof knowledge, such as calibration procedure or specialised domain-dependentalgorithms. However, this has more to do with how unstructured this proceduralknowledge turned out to be and less with the ontology itself.Another issue we have been debating many times within the consortium butnever managed to reach a satisfactory conclusion was the concept of compounddevices. For example, when talking about robots, it often appears useful to spec-ify that a robot uses a gripper to perform some skill. It only seems natural toexpress that robot-with-a-gripper can perform more (or rather di�erent) actionsthan robot alone. However, doing it properly turned out to be outside the rep-resentational power of an ontology, at least in the form we had it in the project.3 Ontology StructureWe have decided to center knowledge representation around the concepts ofdevices (physical objects provided by their manufacturers) and skills (operations

that can be performed). Task descriptions exist only during problem solvingsessions, as dynamic structures, speci�c to a particular case. They can be seenas (arguably, quite complex) combinations of skills and parameters and thereforethere is no need to have them explicit in the vocabulary.The static part of the knowledge is represented in an ontology: a data struc-ture storing all the necessary relations between the terms used. While ontologiesare often used for classi�cation purposes, in our case the classi�cation is donewhen objects (skills or devices) are introduced in the structure. The main useof the ontology is to allow reasoning about skills matching particular tasks andabout devices being suitable for particular operations, as well as to standardisethe nomenclature used and the relationships of di�erent concepts.For the prototype of Skill Server, we have chosen the open source tool Protégéfor ontology creation and manipulation, together with reasoners such as Racer[1],Fact++[2], Algernon[3] and Pellet[4]. If Skill Server is ever to enter productionstage, a specialised user interface will need to be developed, since general purposetools we such as those are not appropriate for its intended end users. They worked�ne within the SIARAS project, however.The ontology contains three hierarchies: Devices, Skills and Properties. TheDevice hierarchy speci�es what types of devices do we intend Skill Server toreason about. We have provided device manufacturers with a rudimentary inter-face for introducing their products: they specify where in the hierarchy shoulda particular device reside and, depending on that, they are asked to �ll in val-ues of appropriate properties. Those devices are, at least conceptually, leaves(instances) of the Device hierarchy. However, since we expect no centralisedrepository of all devices to be available and assume that data will be organisedin a distributed manner (for example, downloadable from device manufacturers'web pages), we are actually storing all the devices in an SQL database.The second hierarchy is the Skill hierarchy, which mainly aims at providing acommon vocabulary between the device manufacturers (who specify which skillsdoes a device o�er) and the end users or systems integrators (who specify whate�ect do they want to achieve, or which task do they want performed). The Skillhierarchy is supposed to be a common ground where the capabilities o�ered bydevice manufacturers can be mapped into the requirements of the users. It per-formed satisfactorily during the project, including the demonstration stage, butit has by now became clear that we are missing a common understanding of anappropriate abstraction level for skills. For example, there was much discussionon whether there should be a �drill� skill, or if it should rather be modelled asa sequence of �start drill rotation�, �move�, �stop drill rotation� operations. Inthe end we have gone with the former approach, but we are not convinced thisis the best solution and would rather have a setup where di�erent abstractionlevels could be used as appropriate.There has been much debate about the need for complex (or composite) skills,but we do not think it is appropriate to represent them directly in an ontology.It would make more sense to provide a more expressive way of building them,using a language like Finite State Machines or Sequential Function Charts. The

skills in the ontology should be simple enough that it is possible to reason abouttheir constraints and e�ects of their application.Finally, the Properties hierarchy forms a link between Devices and Skills.It is, in a sense, the �rst � simplest � way of specifying the dependencies andinstantiating parameters (for example, that a particular gripper has a certainmaximum weight limit).Throughout the project we have kept our initial assumption that all the hi-erarchies will be de�ned by the SIARAS consortium and remain �xed, as themeaning of all the concepts used needs to be encoded into the reasoning mecha-nisms of the Skill Server. However, it has become apparent that this assumptionis a very constraining one, so it would be good to investigate ways to lift it.4 Knowledge Representation outside OntologyThe major part of knowledge representation we have decided to store outsidethe ontology are the tasks. Tasks can be thought of as generalisations of skillsalong (at least) two axes: �rst, they are time-ordered (or partially parallelised)sequences of skills (or rather of skill applications): for example, a �relocate� taskcan be seen as a sequence of �pickup�, �move� and �putdown� skills. Second, itmakes sense to have hierarchy of tasks, with �windshield �tting� task decompos-ing into ��nd windshield�, �position windshield� and ��x windshield� subtasks.In addition, tasks constitute means of achieving a particular goal, and SkillServer needs to have a representation of that goal, in particular to reason aboutrationale for each operation and about motivations why a particular device andparticular parameters were chosen. At the very least it requires a set of criteriawhich distinguish acceptable execution of this task from unacceptable ones, andpossibly ways to compare two solutions and determine when one of them is betterthan the other.The bottom level of tasks hierarchy are operations, which are a kind of asso-ciations of skills, devices, workpieces, factory �oor positions and time-line con-straints. Where tasks are especially useful is on a higher level, when de�ning aconcrete production process that will be the subject of recon�guration. There-fore the ontology does not need them, or putting it di�erently, the only tasksthat are available in the ontology are those that skills refer to.We have chosen Sequential Function Charts[5] to represent tasks, since itallows us to specify temporal ordering of operations in an intuitive and yet�exible way. We have used the open source tool JGrafchart for our prototype.Finally, we have implemented the core reasoning in Python programminglanguage, �gluing� together the knowledge from ontology, SFCs and device-dependent procedures provided in the form of plugins.In our approach the ontology is used for reasoning about skills matching par-ticular tasks (after some initial re/parametrisation) and devices o�ering thoseskills under certain conditions. A pure ontology may be used for retrieval, match-ing and simple classi�cation, while other forms of reasoning, like planning, opti-misations, consistency checks, etc., need to be done by reasoners, either general-

purpose ones, or specialised for the task. The generic tools that have been usedby in the project (Racer, Fact++, Algernon and Pellet) di�er in their reasoningpower and e�ciency, being able to handle either a restricted Description Logiclanguage [6] (like OWL-DL o�ered by Protégé) in an e�cient manner [7], or afull OWL [8] representation, but using exponential search algorithms. The userhas the possibility of choosing a di�erent reasoner depending on the questionasked, thus achieving �exibility and adaptability of the reasoning part of thesystem.We have also developed tools for storing and retrieving knowledge in appro-priate data structures, so that on one hand the ontology can be easily extendedby the system providers, while on the other hand it may bene�t from distribut-edness, letting some parts be completed and stored at the device manufacturer'ssite. Yet another set of requirements is put on the reasoning process by the listof optimisation tasks that may be requested by the user. Due to their compu-tational complexity, and to their speci�city to particular devices, they cannotbe implemented in a general-purpose manner but rather require their speci�creasoning blocks �tting the structure of the server.5 Related WorkThe research on knowledge representation has been extensively documented,both in general textbooks on arti�cial intelligence and in numerous books de-voted solely to this domain. One of the recent ones, and a very good overviewof the �eld, is by Brachman and Levesque [9].The work that originated discussions over semantic web and, in particular, onontologies, has an extensive library of published documents available for exampleat the W3Consortium's Semantic Web site [10]. In particular, the speci�cationsof the most popular KR formalisms, like OWL [8] or DAML-OIL [11], togetherwith available tools for using those formalisms, can be found there.Production planning is usually considered in AI to be a part of the auto-matic planning domain. However, besides the classical manufacturability anal-ysis, reported for example in [12], there is in principle no documented researchon using ontologies in automated production planning. However, there is an ex-tensive research aimed at supporting the engineering activities in productiondesign by providing modelling languages and tools allowing formal, automaticanalysis of the discussed process. Quite naturally, most of those formalisms andtools are heavily domain-dependent, with a small number of exceptions explic-itly stating goal of being general-purpose tools. We may name here the SensorModelling Language, or Sensor ML for short, o�ering a rich sensor ontology (seehttp://www.sensorml.org for an extensive documentation). A dual enterprise,not exactly �tting our point of view either, is the uni�ed robot modelling lan-guage, (URML), from the University of Karlsruhe, as URML does not providerepresentation facilities for the dynamic aspects of robot performance.Finally, an important attempt to formalise the language for speaking aboutproduction processes has been done at NIST which created the Process Speci�-

cation Language [13]. The language, and some of the associated tools, are servingas a reference point for the ontology developed within SIARAS.6 ConclusionsIn this paper we discuss the knowledge representation we use in the EU-fundedproject SIARAS, and present the most interesting points where real-life con-siderations clashed with our initial assumptions. We hope this overview will behelpful to other people designing knowledge bases for industry applications andwill allow them to avoid some of the pitfalls we have encountered.The main point of our discussion was the use of Ontology and what are thebene�ts and costs associated with representing knowledge in such structuredway. We have discussed situations where ontology turned out to be a rathercumbersome tool, and also those where it proved to be very helpful. We wish wewere able to o�er some kind of evaluation of the approach we have chosen andof the representation we have ended up with, but unfortunately we do not haveanything more concrete than our own re�ections.References1. Haarslev, V., Möller, R.: Racer: A core inference engine for the semantic web(2002)2. Horrocks, I.: FaCT and iFaCT. In: Proceedings of the Description Logics Work-shop, DL'99. (1999)3. Stoica, F., Pah, I.: Intelligent agents in ontology-based applications. In: 12thWSEAS International Conference on Computers. (2008) 274�2794. Sirin, E., Parsia, B.: Pellet: An OWL DL reasoner. In: Description Logics. Volume104 of CEUR Workshop Proceedings. (2004)5. Fernández, J.L., Sanz, R., Domonte, E.P., Alonso, C.: Using hierarchical binarypetri nets to build robust mobile robot applications: Robograph. In: InternationalConference on Robotics and Automation. (2008) 1372�13776. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.,eds.: The Description Logic Handbook. Cambridge University Press (2003)7. Buchheit, M., Donini, F.M., Schaerf, A.: Decidable reasoning in terminologicalknowledge representation systems. Journal of Arti�cial Intelligence Research 1(1)(1993) 109�1388. W3C: Semantic web (2003)9. Brachman, R.J., Levesque, H.J.: Knowledge Representation and Reasoning. Mor-gan Kaufmann (2004)10. W3C: Semantic web (2001)11. Fensel, D., Horrocks, I., van Harmelen, F., McGuinness, D.L., Patel-Schneider,P.F.: Oil: An ontology infrastructure for the semantic web. IEEE IntelligentSystems 16(2) (2001)12. Ghallab, M., Nau, D., Traverso, P.: Automated Planning, Theory and Practice.Morgan Kaufmann (2004)13. Schleno�, C., Gruninger, M., Tissot, F., Valois, J., Lubell, J., Lee, J.: The processspeci�cation language (PSL): Overview and version 1.0 speci�cation. Technicalreport, National Institute of Standards and Technology (NIST) (2000)

