
A Preference Meta-Model for Logic Programs
with Possibilistic Ordered Disjunction

Roberto Confalonieri, Juan Carlos Nieves, and Javier Vázquez-Salceda

Universitat Politècnica de Catalunya
Dept. Llenguatges i Sistemes Informàtics

C/ Jordi Girona Salgado 1-3
E - 08034 Barcelona

{confalonieri,jcnieves,jvazquez}@lsi.upc.edu

Abstract This paper presents an approach for specifying user prefer-
ences related to services by means of a preference meta-model, which
is mapped to logic programs with possibilistic ordered disjunction fol-
lowing a Model-Driven Methodology (MDM). MDM allows to specify
problem domains by means of meta-models which can be converted to in-
stance models or other meta-models through transformation functions. In
particular we propose a preference meta-model that defines an abstract
preference specification language allowing users to specify preferences in
a more friendly way using models. We also present a meta-model for
logic programs with possibilistic order disjunction. Then we show how
we conceptually map the preference meta-model to logic programs with
possibilistic ordered disjunction by means of a mapping function.

1 Introduction

Recently with the adoption of both Service-Oriented Architectures (SOA) and
Web services as growing trend for building distributed applications, services can
be world-widely advertised and accessed. In this context, service discovery and
selection play an important role w.r.t. the search and selection of the most suit-
able services users are looking for. With the rapidly growing number of services
that are becoming available, users will be offered in fact with a choice of function-
ally similar services, which increase the need of enhancing traditional discovery
and selection processes with the possibility for the users to express preferences
about and relevant to certain services.

On the other hand, expressing and reasoning about user preferences is a com-
plex and challenging task, as preferences cannot be generally explicitly expressed
because of the large number of possible alternatives. Nonmonotonic logics have
shown to be a potent knowledge representation formalism to reason about prefer-
ences [4]. Several extensions of the basic formalism of Answer Set Programming
(ASP) have been proposed to model preferences [6], showing how nonmonotonic
logics constitute an effective way of resolving indeterminate solutions, reasoning
in terms of preferred answer sets of a logic program. Unfortunately, nonmono-
tonic logics by themselves are not flexible enough and not well designed for mod-

eling orderings on belief sets specified in terms of preferences on their elements
[4].

Logic programs with ordered disjunction (or LPODs) offer one way to over-
come this problem as they permit to explicitly represent preference information
directly into head rules [2]. In this way, the language can capture user qualitative
preferences by means of disjunction rules, represent choices among different al-
ternatives and specify a preference order between the answer sets through some
comparison criteria. However, in some scenarios the preference information can
be subject to uncertainty and preference-aware reasoning methods that can han-
dle uncertainty are needed [5]. For this reason in [5] the authors have proposed
an extension of the semantics of logic programs with ordered disjunction in order
to cope with the degree of uncertainty in the reasoning process. In particular,
they have defined a possibilistic semantics for capturing logic programs with pos-
sibilistic ordered disjunction (or LPPODs) which is close to the proof theory of
possibilistic logic and answer set semantics.

ASP has become quite popular in knowledge representation problems as it
is based on solid theoretical foundation, it is expressively rich, and its semantics
and computational properties well understood today. Moreover many efficient
ASP solvers such as dlv [8] and smodels [14] are available. As such ASP has
called the attention from the industry, and points out to be a promising knowl-
edge representation method in many application areas. Nevertheless, ASP has
not been applied to Service-Oriented Architectures yet. One of the main obsta-
cles towards the adoption of nonmonotonic preference representation methods
is determined by the lack of an ASP programming environment. Writing correct
and efficient ASP programs is in fact a difficult task and users are required to
have the sufficient expertise to encode real problems in ASP. For this reason one
of the open issues of ASP is the development of ASP programming environments
and friendly interfaces [10].

In this paper we propose an approach for specifying user preferences related
to services by means of a preference meta-model which we map to LPPODs
following a Model-Driven Methodology (MDM). MDM allows to specify problem
domains by means of meta-models which can be converted to instance models or
other meta-models through transformation functions. We propose a preference
meta-model that defines an abstract preference specification language allowing
the users to specify preferences about services in a more friendly way using
models. We also present a meta-model for logic programs with possibilistic order
disjunction showing how we conceptually map the preference meta-model to the
model of LPPODs by means of a mapping function.

The paper is organised as follows. In Section 2 the syntax and semantics of
logic programs with possibilistic ordered disjunction are presented and the main
characteristics of the MDM approach are described. In Section 3 we propose a
model-driven framework for capturing preferences in SOA and a preference meta-
model is described. In Section 4 we present the meta-model for logic programs
with possibilistic ordered disjunction and a conceptual mapping. In Section 5 we
describe how MDM can be applied in the modeling of a simple user preference

20 R. Confalonieri, J. C. Nieves, and J. Vázquez-Salceda

scenario. Finally in Section 6 we discuss our approach, draw some conclusions
and outline future work.

2 Background

In this section we introduce the reader with some basic concepts w.r.t. the syntax
and semantics of logic programs with possibilistic ordered disjunction and Model-
Driven Methodology.

2.1 Logic Programs with Possibilistic Ordered Disjunction

Logic programs with possibilistic ordered disjunction (LPPODs) are logic pro-
grams with ordered disjunction with possibilistic values added to each rule [5].
The syntax of a logic program with possibilistic ordered disjunction is based on
the syntax of ordered disjunction rules [2] and of possibilistic logic [7].

LPPODs Syntax: A signature L is a finite set of elements called atoms. Atoms
negated by ¬ will be called extended atoms. The concept of atom will be used
without paying attention if it is an extended atom or not. A possibilistic atom is
a pair p = (a, q) ∈ A×Q where A is a set of atoms and (Q,≤) a finite lattice1.
The projection ∗ to any possibilistic atom p is defined as follows: p∗ = a. Given
a set of possibilistic atoms M , the generalization of ∗ over M is defined as:
M∗ = {p∗ | p ∈ M}. Given a lattice (Q,≤), a possibilistic ordered disjunction
rule r is of the form:

α : c1 × . . .× cn ← b1, . . . , bm, not bm+1 . . . , not bm+k

where α ∈ Q and ci(1 ≤ i ≤ n), bj(1 ≤ j ≤ m + k) are atoms. Sometimes a pos-
sibilistic ordered disjunction clause is denoted as: α : c1× . . .×cn ← B+, not B−
where B+ = {b1, . . . , bm} and B− = {bm+1, . . . , bm+k}. The projection ∗ for a
possibilistic ordered disjunction rule r, is r∗ = c1 × . . . × cn ← B+, not B−. It
can be observed that the ordered disjunction clause r∗ is an ordered disjunction
clause as was defined in [2]. n(r) = α is a necessity degree representing the cer-
tainty level of the information described by r. A possibilistic constraint C is of
the form T OPQ :← B+, not B−, where T OPQ is the top of the lattice (Q,≤)
and ← B+, not B− is a constraint as in standard ASP [1]. Please notice that
any possibilistic constraint must have the top of the lattice (Q,≤). This restric-
tion is motivated by the fact that, like constraints in standard Answer Set Pro-
gramming, the purpose of the possibilistic constraint is to eliminate possibilistic
models. Hence, it is assumed that there is no uncertainty about the informa-
tion captured by a possibilistic constraint. As in possibilistic ordered disjunction
rules, the projection ∗ for a possibilistic constraint C is C∗ =← B+, not B−.

A logic program with possibilistic ordered disjunction (LPPOD) is a tuple of
the form P := 〈(Q,≤), N〉 such that N is a finite set of possibilistic ordered
1 Only finite lattices are considered.

A Preference Meta-Model for Possibilistic Ordered Disjunction 21

disjunction rules and possibilistic constraints. The generalization of ∗ over P is
defined as follows: P ∗ := {r∗ | r ∈ N}. Notice that P ∗ is an ordered disjunction
logic program.

LPPODs Semantics: Before defining the possibilistic semantics for capturing
LPPODs, basic operations between sets of possibilistic atoms and a relation of
order between them are introduced.

Definition 1. Given A a finite set of atoms and (Q,≤) a lattice, PS = 2A×Q

is considered as the finite set of all the possibilistic atom sets induced by A and
Q. Let A,B ∈ PS, the operators u, t and v can be defined as follows:

A uB = {(x,GLB{q1, q2})|(x, q1) ∈ A ∧ (x, q2) ∈ B}
A tB = {(x, q)|(x, q) ∈ A and x /∈ B∗} ∪ {(x, q)|x /∈ A∗ and (x, q) ∈ B} ∪

{(x, LUB{q1, q2})|(x, q1) ∈ A and (x, q2) ∈ B}.
A v B ⇐⇒ A∗ ⊆ B∗, and ∀x, q1, q2, (x, q1) ∈ A ∧ (x, q2) ∈ B then q1 ≤ q2.

The semantics of LPPODs is close to the proof theory of possibilistic logic
and answer set semantics. As in answer set semantics definition, the possibilistic
semantics is defined based on a syntactic reduction.

Definition 2 (Reduction rM
×). Let r = α : c1 × . . . × cn ← B+, not B−

be a possibilistic ordered disjunction clause and M be a set of atoms. The ×-
possibilistic reduct rM

× is defined as follows:

rM
× := {α : ci ← B+|ci ∈M and M ∩ ({c1, . . . , ci−1} ∪ B−) = ∅}

Definition 3 (Reduction PM
×). Let P = 〈(Q,≤), N〉 be a LPPOD and M be

a set of atoms. The ×-possibilistic reduct PM
× is defined as follows:

PM
× =

⋃
r∈N

rM
×

Observe that the program PM
× is a possibilistic positive extended logic pro-

gram.2 Once a LPPOD P has been reduced by a set of possibilistic atoms M , it
is possible to test whether M is a possibilistic answer set of the program P by
considering the following definition.3

Definition 4 (Possibilistic answer set). Let P = 〈(Q,≤), N〉 be a LPPOD
and M be a set of possibilistic atoms such that M∗ is an answer set of (PM∗

×)∗.
M is a possibilistic answer set of P if and only if PM∗

× `PL M and @M ′ ∈ PS
such that M ′ 6= M , P

(M ′)∗
× `PL M ′ and M vM ′.

By the original (no possibilistic) ordered disjunction rule definition, it is
possible to represent preferences among possibilistic answer sets by considering
degrees of satisfaction denoted as degM (r) and defined by the following defini-
tion.
2 A positive program is a program without negation as failure atoms.
3 `PL denotes the inference under possibilistic logic.

22 R. Confalonieri, J. C. Nieves, and J. Vázquez-Salceda

Definition 5 (Rule Satisfaction Degree). Let M be a possibilistic answer
set of a LPPOD P . Then M satisfies the rule r

α : c1 × . . .× cn ← b1, . . . , bm, not bm+1 . . . , not bm+k

– to degree 1 if bj 6∈ M∗ for some j (1 ≤ j ≤ m), or bi ∈ M∗ for some i
(m + 1 ≤ i ≤ m + k),

– to degree j (1 ≤ j ≤ n) if all bl ∈ M∗ (1 ≤ l ≤ m), bi /∈ M∗ (m + 1 ≤ i ≤
m + k), and j = min{r | cr ∈M∗, 1 ≤ r ≤ n}.
To distinguish between preferred possibilistic answer sets, the satisfaction

degree of a possibilistic answer set M w.r.t. a rule, denoted by degM (r), provides
a ranking of the possibilistic answer sets of a LPPOD, and a preference order on
the possibilistic answer sets can be obtained by means of a comparison criteria.
In [5] the authors have proposed three criteria for comparing possibilistic answer
sets, respectively possibilistic cardinality, possibilistic inclusion and possibilistic
Pareto, which are the possibilistic version of the original criteria of [2].
The set of possibilistic atoms M satisfying a degree i is defined as follows:

Definition 6. Let M be a set of possibilistic atoms and P be a LPPOD. Then
M i,α(P) = {r ∈ P | degM (r) = i and n(r) ≥ α}.

Given a set of possibilistic atoms M , n(M) is defined as min{α | (a, α) ∈M}.
Three preference relations can be defined. The possibilistic version of cardinality-
based preference can be defined as follows:

Definition 7. Let M1 and M2 be possibilistic answer sets of a LPPOD P .
M1 is possibilistic cardinality-preferred to M2, (M1 >pc M2) iff ∃ i such that
| M i,α

1 (P) |>| M i,α
2 (P) | and ∀j < i, | M j,α

1 (P) |=| M j,α
2 (P) |, where α =

min{n(M1), n(M2)}.
The inclusion-based preference is defined as:

Definition 8. Let M1 and M2 be possibilistic answer sets of a LPPOD P . M1 is
possibilistic inclusion-preferred to M2, (M1 >pi M2) iff ∃ k such that Mk,α

2 (P) ⊂
Mk,α

1 (P) and ∀ j < k, M j,α
1 (P) = M j,α

2 (P), where α = min{n(M1), n(M2)}.
Lastly, the possibilistic Pareto-based preference is:

Definition 9. Let M1 and M2 be possibilistic answer sets of a LPPOD P . M1

is possibilistic pareto-preferred to M2, (M1 >pp M2) iff ∃ r ∈ P such that
degM1(r) < degM2(r), and @r′ ∈ P such that degM1(r

′) > degM2(r
′), and

n(r) ≥ min{n(M1), n(M2)}.
One interesting characteristic of LPPODs is that they provide a mean to rep-

resent preferences among problem solutions and allow to represent preferences
which can depend on incomplete knowledge. As LPPODs are based on extended
nonmonotonic logic, incomplete information can be expressed by means of de-
fault negation.

A Preference Meta-Model for Possibilistic Ordered Disjunction 23

2.2 Model-Driven Methodology

Model-Driven Engineering (MDE) refers to the systematic use of models as pri-
mary artefacts throughout the Software Engineering (SE) development process.
The defining characteristic of MDE is the use of models to represent the im-
portant artefacts in a system [13]. Each of the models in a MDE system is
constructed from a language specified in a meta-model, which captures the con-
cepts and relationships of the language in a structured and regular form. In
relation to these meta-models, the models can then be stored, manipulated and
transformed to other models, and to implementation artefacts.

A Model-Driven Methodology (MDM) to development is generally based on
the Model Driven Architecture (MDA) [19], an initiative by the Object Manage-
ment Group (OMG)4 which specifies a framework of open standards and related
technologies. The framework is built upon the metamodel foundation in order
to enable a standard specification and interoperability mechanism for tools. So
systems and applications are formalized with metamodel descriptions and are
visualized by models as metamodel instantiations. Actual code implementations
are created automatically by applying predefined transformations from source
models to target models and implementation languages.

In the context of this paper, MDD specifies the user preference meta-model
(Section 3.3) upon which a user preference editor can be created, allowing the
modeling and instantiation of corresponding models. By the specification of a
meta-model for logic programs with possibilistic ordered disjunction (Section 4.1)
and a transformations function it is possible to (semi-)automatically translate
the user preference abstract representation to the formalism of logic programs
with possibilistic ordered disjunction (Section 4.2).

3 Preferences in Service-Oriented Architectures

The use of nonmonotonic reasoning about preferences in Service-Oriented Ar-
chitectures is a new and unexplored field. We believe that the applicability of
preference and reasoning methods to the services’ domain can enhance the ser-
vice discovery and selection processes and assist the user in services’ searches. In
order to reuse existing works about service oriented technologies and nonmono-
tonic preference handling methods for preference representation and reasoning
we propose a model-driven framework that attempts to glue these approaches
together.

3.1 Model-Driven Framework

Figure 1 shows the model-driven framework we are proposing. The diagram
depicts the main components of the framework, and shows the relations between
user preferences and services. The meta-model provides a domain independent
and technology independent representation of user preferences about services.
4 http://www.omg.org/

24 R. Confalonieri, J. C. Nieves, and J. Vázquez-Salceda

Figure 1. Model-Driven Framework for User Preferences in SOA

The framework is inspired by the Web Service Modeling Framework [9] which
has been recently adopted in WSMO [15], although we introduce new concepts
covering the relation between user preferences and services. The main component
of the framework are: goals user preferences, services, ontologies, and adaptors:

– Services offer specific functionalities to users, and are described by func-
tional and non-functional properties. Functional descriptions of services con-
sist in service input and output and pre and post-conditions. Non-functional
properties are usually related to service usage or domain dependent proper-
ties. Services are semantically described through an ontology.

– Goals and User Preferences: a goal is the user-centered view of a service
usage. Normally users have specific tasks they want to accomplish and goals
are specifications of a desired state of outcomes. Goals are accompanied by
a preference list which represents the user preferences for the service. Such
preferences request functional and non-functional properties. For instance let
us imagine a user is interested in getting a map of restaurants, and she has
a set of preferences about the type of restaurants, the map and the cost.
Her goal could be to get a service that takes as input an object of type
Restaurant and as output type Map, while preferences could be ”I prefer a
high resolution map than a low resolution” or ”I prefer to spend 1 euro than
2 euros, if the service response is fast”. A goal usually consists of a functional
description of the objectives users want to achieve using a Web service. In
this sense a user goal is a hard-constraint w.r.t. a service functionality. User
preferences are requirements the user wants over achieving a goal. They may
include Quality of Services (QoS) metrics or domain dependent properties.
From this point of view preferences are soft-constraints w.r.t. the properties
ot the service that fulfills a certain goal.

A Preference Meta-Model for Possibilistic Ordered Disjunction 25

Figure 2. Service Properties Meta-model

– Service Adaptors address the handling of heterogeneities occurring be-
tween elements that shall interoperate by resolving mismatches between dif-
ferent used terminologies (data level), on communicative behavior between
services (protocol level), and on the business process level.

– Ontologies provide the formal semantics for the terminology used within
all other framework components. We expect to have a framework ontology
which will consist in a service ontology and domain ontologies specific for
domain applications.

In order to express preferences about and relevant to services, we need to
consider the properties requested by the user and the properties offered by the
service.

3.2 Service Properties Meta-Model

From a provider perspective a service can expose different offered properties
associated with the same functionality to address different business requirements
(e.g. speedy and slow service at different price). We assume that functional
descriptions are provided in terms of input and output. Pre- and post-condition
are constraints about input and output respectively. Offered properties consist in
a set of non-functional properties which can be qualitative and quantitative whose
values are defined in a domain ontology (Figure 2). Non-functional properties can
be seen as a kind of service configuration which the provider offers for the service
usage.

3.3 User Preference Meta-Model

Figure 3 shows the user preference meta-model. From a user perspective, required
properties can be considered as a set of constraints on the requested services. To

26 R. Confalonieri, J. C. Nieves, and J. Vázquez-Salceda

Figure 3. User Preference Meta-model

collect sets of preferences we consider a preference list to associate a goal with a
set of preferences. A goal is described by input and output which specify strong
constraints w.r.t. a service that fullfills that goal. A preference list is an ordered
list of preferences specified by the user, where such order represents a preference
order between sets of desired properties. Desired properties can be viewed along
two dimensions: functional and non-functional. Functional properties are prefer-
ences about input and output of the goal, while non-functional preferences are
related to service usage.

To manage qualitative and quantitative properties (e.g. Restaurant and Cost),
two classes of properties are introduced, quantitative and qualitative properties
respectively. All the properties’ values are concepts of the domain ontology (e.g.
Restaurant, Map) or data types (String, Integer etc). Preferences may be as-
sociated with a degree of relevance w.r.t. the preference rules or non-functional
properties of a service. A Preference has a preference relation to be able to specify
a preference order (e.g. ”I prefer a map with higher resolution to a lower one”),
and a conditional preference relation to be able to capture conditional prefer-
ences between properties e.g. (”if the cost of the service is not high I prefer a
high map resolution”).

4 Model Transformations

As we do not want to stick to a particular formalism, language or technology
during the solution specification, we have defined a meta-model describing how
user preferences and service properties should be specified in a general way. The
advantage to have a meta-model is to have a specification general enough which
can be then translated to other meta-models and models (representing target
languages or formalism) through transformations [18].

Generally speaking, a model transformation takes as input a model conform-
ing to a given meta-model and produces as output another model conforming to

A Preference Meta-Model for Possibilistic Ordered Disjunction 27

Figure 4. Meta-Model for Logic Programs with Possibilistic Ordered Disjunction

a given meta-model. The process of translating a model to another is specified
by a mapping algorithm. The main advantage of this approach is that, from
the same meta-model specification, several mappings to different models can be
done through different mapping functions [12].

We define a transformation t of a preference model M1 according to the
preference meta-model P MM to a LPPOD model M2 according to the LPPODs
meta-model LPPOD MM as

t : M1P MM
→M2LP P OD MM

To be able to (informally) define a the transformation function t we first need
a meta-model which describes the formalism of LPPODs.

4.1 Meta-Model for LPPODs

A proposal of a meta-model for this class of logic programs is shown in Figure
4. A possibilistic LPOD program consists of a finite set of possibilistic LPOD
rules associated with a possibilistic degree. Each rule has a head and a body,
where in the body a preference relation is specified by means of the logical
connector × (times). Outcomes of LPPOD are possibilistic answer sets and a
relation order between them can be obtained applying the comparison criteria
defined in Section 2.1.

4.2 A Mapping to LPPODs

According to MDD the preference meta-model P MM and LPPOD meta-model
LPPOD MM dependencies are formulated with model driven mappings (re-
lations). The mappings are specified with a transformation language, among
the corresponding elements of the P MM and LPPOD MM meta-models shown
in Figure 3 and Figure 4 respectively. As illustrative example the mappings
preferenceListToLPPOD and preferenceToPossibilisticLPODRule have been
specified.

28 R. Confalonieri, J. C. Nieves, and J. Vázquez-Salceda

The transformation process can be initiated from the preferenceListToLPPOD
mapping that converts user preferences in a LPPOD. The rule in turn applies a
mapping between preference and preference rules of a LPPOD.

mapping preferenceListToLPPOD(in pl:P_MM::PreferenceList,
inout lppod:LPPOD_MM::PossibilisticLPOD) {
var preferenceRules := pl.preference -> collect(p|map
preferenceToPossibilisticLPODRule(p,pl,preferenceRules));
lppod.possibilisticLPODrule := preferenceRules;
}
mapping preferenceToPossibilisticLPODRule(in p:P_MM::Preference,
in: pl:P_MM::PreferenceList,
inout: pr:LPPOD_MM::PossibilisticLPODrule) {

pr.possibilisticDegree := p.relevance;
pr.head := p.functionalProperties -> collect(fp|map
functionalPropertiesToHead(fp,p.preferenceOrder));
pr.body := p.NFproperties -> collect(nfp|map
nfPropertiesToBody(nfp));

}
mapping functionalPropertiesToHead(in fp:P_MM::functionalProperty,
in po:P_MM:PreferenceRelation) {
...

}
mapping nfPropertiesToBody(in nfp:P_MM::NFPropertyPreference) {
....

}

5 Applying Model-Driven Methodology to User
Preference Modeling

The preference meta-model presented in Section 3.3 can be instantiated to differ-
ent domain problems and used for expressing user preferences about services in
an abstract way. In particular it can be generated by means of a preference editor.
The meta-model in fact can be specified by the Eclipse Ecore specification. Once
the meta-model is available, a preference editor can be implemented using the
EMF tools of the Eclipse Platform.5 The model generated by the editor can be
mapped to an instantiated model of a LPPOD by means of the transformation
function t (Figure 5).

For example let us consider a user looking for a recommendation service, that
takes as input restaurants and returns a map. She can have a goal where Restau-
rant is the Input and Map is the Output. She can have preferred values about the
input and output of the goal, be undecided about the type of restaurants, and
be looking for specific non-functional properties such as the cost of the service
5 http://www.eclipse.org/modeling/emf

A Preference Meta-Model for Possibilistic Ordered Disjunction 29

LPPOD_MMP_MM

M1
Preferences about

Restaurant Services

M2
LPPOD about

Restaurant Services

Meta-Model Layer:

Model Layer:

mapping t

Meta-MetaModel Layer: Ecore

instance-ofinstance-of

instance-of instance-of

Figure 5. MDD applied to User Preference Modeling

and the map resolution. The request of a personalized service according to her
preferences can be expressed as a list of preference such as:

– she prefers Italian to Mexican restaurants
– she prefers a higher map resolution to a lower one if the cost of the service

is not > 2 euros (high) and the time of response is not ≥ 0.5 sec (slow).
– she prefers a lower map resolution if the service cost is > 2 euros (high) and

time of response is ≥ 0.5 sec (slow).

Let us imagine we have the model M1 for the scenario described above. By
the transformation function t we can then generate the model of a LPPOD M2.
A further step (not shown here) is represented by a code generation function
that converts M2 to the syntax of LPPODs. The code generation results in the
LPPOD code shown in the following example.

Example 1. Let P = 〈(Q,≤), N〉 be a LPPOD expressing the user preferences
about restaurant maps. First of all we define the lattice (Q,≤) to specify an
ordered set of relevance degrees. We consider the lattice Q = ({0, 0.1, 0.2, . . . , 1},
≤), and ≤ the standard relation between rational numbers. Let N be the set
of possibilistic ordered disjunction rules expressing the user preferences about
restaurant maps generated by the transformation function t. One possible way
to encode the user preferences in the syntax of a LPPOD is:6

r1 = 1 : rest(italian)× rest(mexican).
r2 = 1 : map(high)×map(low)← not cost(, high), not response(, slow).
r3 = 1 : map(low)×map(high)← cost(, high).
r4 = 1 : map(low)×map(high)← response(, slow).
r5 = 1 : ← map(low),map(high).

Please notice that whenever the α values are equal to 1, the LPPOD behaves
like an ordered disjunction program where the possibilistic values of the atoms

6 The predicates cost(,high) and response(,slow) are qualitative predicates for the
quantitative value w.r.t. the cost and the response time. Such predicates can be built
by specific rules in the logic program.

30 R. Confalonieri, J. C. Nieves, and J. Vázquez-Salceda

in the answer sets are the top of the lattice. Therefore we can see that there are
four possibilistic answer sets satisfying the program,

M1 = {(rest(italian), 1), (map(high), 1)}
M2 = {(rest(italian), 1), (map(low), 1)}
M3 = {(rest(mexican), 1), (map(high), 1)}
M4 = {(rest(mexican), 1), (map(low), 1)}
and according to their satisfaction degrees they have the following preference or-
der: M1 >pp M2, M1 >pp M3, M2 and M3 are equally preferred and M3 >pp M4.
Such a order can be exploited to select the best service that accomplish the user
goal. Each of the possibilistic answer set in fact can be used to build a service
search where the atoms are used as input parameters for a matchmaker.7 The
matchmaking process returns a list of candidate services w.r.t. the possibilistic
answer sets used. Non-functional service properties can be converted as a set of
possibilistic facts PF i, where the necessity-value degrees corrispond to normal-
ized non-functional properties values (e.g. 0.5 : cost(s1, high)) and added to a
new LPPOD Pi, such that Pi = P ∪ PF i ∪Ci.8 The possibilistic answer sets of
the new generated LPPODs Pi (one for each original Mi) are candidate service
solutions where the possibilistic values drawn the selection of the best service
w.r.t. the user preferences.

6 Conclusions

In this paper we have presented an approach for assisting the user in expressing
preferences about services’ searches following the Model-Driven Methodology.
We have defined a preference meta-model which allows to represent user pref-
erences about services without being bound to a specific implementation tech-
nology. We have conceptually shown how it is possibile to translate preference
models to the model of LPPODs. The advantage of having a model for LPPODs
is that LPPODs’ code can be (semi-)automatically generated by means of a
transformation function t.

The proposed preference meta-model provides in fact a flexible way to cap-
ture user preferences and represents the basic artefact through which different
problem domains can be instantiated. The preference meta-model representation
can ease the development of a preference editor which allows users to express
preferences relevant to services in a friendly way. This abstract representation
can be mapped to LPPODs which, based on ordered disjunction programs, are
a flexible way to represent and reason about user preferences.

Concerning related works on user preference representation about services, in
most of the existing approaches preferences have been studied in the context of

7 The matchmaker is a component which is able to perform a syntactic or semantic
matching of a user goal against service descriptions.

8 Ci is a possibilistic constraint that forces the solutions of each Pi to be relevant only
w.r.t. Mi.

A Preference Meta-Model for Possibilistic Ordered Disjunction 31

Web services composition [11,17,16]. For instance, in [16] user preferences spec-
ified using Conditional Preference Networks (CP-Nets) are used to improve the
quality of generated compositions. In [11,17] an augmented version of the logic
programming language Golog is used to specify and to integrate user prefer-
ences into Web service composition. Although the use of user preferences related
to services is not new, our proposed work differs with the cited works on at
least two aspects: a) we use a preference-aware and uncertainty-aware prefer-
ence representation language as part of the user preference selection process; b)
we incorporate the use of this language as part of a MDD methodology according
to which implementation details will be trasparent to the user. The meta-models
we are proposing in fact can improve the time of development of LPPODs and
the preference meta-model represents the first step towards a preference editor
implementation. Our approach can be generalised to be used in other ASP-based
formalisms in order to ease the knowledge modeling and the reuse of existing
knowledge. Moreover relations between the original formalism of logic programs
with ordered disjunction (LPODs) and other preference handling methods such
as CP-Nets have been already explored in [3] showing that a further mapping is
feasible.

Interesting issues for future work are the refinement of the preference and
LPPODs meta-models and the specification of the transformation function t
in a more formal way using the ATL transformation language.9 Currently we
are implementing our approach using the Eclipse Platform and the tools of the
Ecore framework. As soon as we have the Ecore meta-models we can start the
implementation of the preference editor to model practical domain problems.
Although not related to the paper itself, it is worthy to mention that we are also
studying the implementation of the solver for LPPODs.

Acknowledgements This work has been funded mainly by the European Com-
mission Framework 7 funded project ALIVE (FP7-215890). Javier Vázquez-
Salceda’s work has been also partially funded by the Ramón y Cajal program
of the Spanish Ministry of Education and Science. The opinions of the authors
do not reflect the opinions of the European Commission. We thank anonymous
referees for the valuable comments.

References

1. C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, 2003.

2. G. Brewka, I. Niemelä, and T. Syrjänen. Logic Programs with Ordered Disjunction.
Computational Intelligence, 20(2):333–357, 2004.

3. G. Brewka, I. Niemelä, and M. Truszczyński. Answer Set Optimization. In Pro-
ceedings of the 18th International Joint Conference on Artificial Intelligence, pages
867–872. Morgan Kaufmann Publishers, 2003.

9 http://www.eclipse.org/m2m/atl/

32 R. Confalonieri, J. C. Nieves, and J. Vázquez-Salceda

4. G. Brewka, I. Niemelä, and M. Truszczyński. Preferences and Nonmonotonic Rea-
soning. AI Magazine, 29(4):69–78, 2008.

5. R. Confalonieri, J. C. Nieves, and J. Vázquez-Salceda. Logic Programs with Possi-
bilistic Ordered Disjunction. Technical Report LSI-09-19-R, Universitat Politècnica
de Catalunya - LSI, 2009.

6. J. Delgrande, T. Schaub, H. Tompits, and K. Wang. A classification and Survey
of Preference Handling Approaches in Nonmonotonic Reasoning. Computational
Intelligence, 20(2):308–334, 2004.

7. D. Dubois, J. Lang, and H. Prade. Possibilistic Logic. In D. Gabbay, C. J. Hogger,
and J. A. Robinson, editors, Handbook of Logic in Artificial Intelligence and Logic
Programming Volume 3: Nonmonotonic Reasoning and Uncertain Reasoning, pages
439–513. Oxford University Press, Oxford, 1994.

8. T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. The KR System dlv:
Progress Report, Comparisons and Benchmarks. In L. S. A.G. Cohn and S. Shapiro,
editors, Proceedings Sixth International Conference on Principles of Knowledge
Representation and Reasoning, pages 406–417. Morgan Kaufmann, 1998.

9. D. Fensel and C. Bussler. The Web Service Modeling Framework WSMF. Elec-
tronic Commerce Research and Applications, 1(2):113–137, 2002.

10. N. Leone. Logic Programming and Nonmonotonic Reasoning: From Theory to
Systems and Applications. In Proceedings of 9th International Conference on Logic
Programming and Nonmonotonic Reasoning, page 1, 2007.

11. S. Mcilraith and T. C. Son. Adapting Golog for Programming the Semantic Web.
In In Fifth International Symposium on Logical Formalizations of Commonsense
Reasoning, pages 195–202, 2001.

12. A. Metzger. Model-Driven Software Development, chapter A Systematic Look at
Model Transformations, pages 19–33. Computer Science. Springer Berlin Heidel-
berg, 2005.

13. J. B. Nicolas, N. Farcet, J. M. Jézéquel, B. Langlois, and D. Pollet. Reflective
Model Driven Engineering. In Proceedings of the 6th International Conference on
the Unified Modeling Language, LNCS, pages 175–189. Springer, 2003.

14. I. Niemelä and P. Simons. Smodels - An Implementation of the Stable Model
and Well-Founded Semantics for Normal LP. In Proceedings of the 4th Inter-
national Conference on Logic Programming and Nonmonotonic Reasoning (LP-
NMR97), pages 421–430. Springer-Verlag, 1997.

15. D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg, A. Polleres,
C. Feier, C. Bussler, and D. Fensel. Web Service Modeling Ontology. Applied
Ontology, 1(1), 2005.

16. G. Santhanam, S. Basu, and V. Honavar. On Utilizing Qualitative Preferences
in Web Service Composition: A CP-net Based Approach. In IEEE Congress on
Services - Part I, pages 538–544, July 2008.

17. S. Sohrabi, N. Prokoshyna, and S. A. McIlraith. Web Service Composition Via
Generic Procedures and Customizing User Preferences. In International Semantic
Web Conference, volume 4273 of LNCS, pages 597–611. Springer, 2006.

18. A. U. Stephen Mellor, Kendall Scott and D. Weise. MDA Distilled: Principles of
Model-Driven Architecture. Addison Wesley, 2004.

19. T. Weis, A. Ulbrich, and K. Geihs. Model Metamorphosis. IEEE Software,
20(5):46–51, 2003.

A Preference Meta-Model for Possibilistic Ordered Disjunction 33

