
On Building a Competitive Comformant Planner

Tran Cao Son

Department of Computer Science
New Mexico State University
tson@cs.nmsu.edu

1 Invited Abstract

In this talk, I will detail the development of CpA(H), a competitive conformant planner,
that won the Conformant Planning Category in the International Planning Competition
2006. Lessons learned and the influence of logic programming in our development of
the planner will also be discussed.

Conformant Planning with Disjunctive Initial States:
Design and Development of an Efficient Planner

D-V. Tran, H-K. Nguyen, E. Pontelli, T.C. Son

Department of Computer Science
New Mexico State University

vtran | knguyen | epontell | tson@cs.nmsu.edu

Abstract. The paper illustrates the design and development of a competitive con-
formant planner. The planner builds on the theoretical foundations of approximation-
based planning to enable a compact representation of the possible states. The
novelty of the proposed approach is the realization that the description of the
(incomplete) initial state is often based on constraints (e.g., expressed through
PDDL’s or and oneof clauses); the paper illustrates how such constraints can be
reasoned upon to reduce the size of the search space. The reasoning process is
implemented in the form of transformations of the problem specification within
the planner. This, along with approximations and the use of combined heuris-
tics, leads to enhanced efficiency and scalability, outperforming state-of-the-art
conformant planners on several benchmark suites.

1 Introduction and Motivation

Conformant planning is the problem of finding a sequence of actions that achieves the
goal from every possible initial state of the world [14]. One of the main difficulties
encountered in the process of determining a conformant plan is the high degree of un-
certainty, due to the potentially large number of possible initial states of the problems.

The Planning Domain Definition Language (PDDL) introduces two constructs to
express incomplete knowledge about the initial state of the world: mutual-exclusion
statements (expressed using oneof-clauses) and disjunctive statements (expressed us-
ing or-clauses). Frequently, oneof-clauses are used to specify the possible initial states
and or-clauses are used to eliminate infeasible states. Because of this, the number
of possible initial states depends mainly on the number and the size of the oneof-
clauses—and these are often exponential in the number of constants present in the prob-
lem instances. For example, three out of six domains in the 2006 planning competition
have this property (Table 1).

Instance # Cons/States Instance # Cons/States
comm-15 35/216 coins-20 17/9× 86

comm-20 85/221 coins-25 39/1020

comm-25 140226 coins-30 45/1025

sortnet-10 11/211 sortnet-15 216/16
Table 1. Number of Constants/Possible Initial States

4 Tran Cao Son

Effective methodologies and data structures are required to deal with the large
number of possible initial states. Some conformant planners, such as POND [6] and
KACMBP [7], employ a BDD representation of belief states, while others, such as
CFF [4], adopt a CNF representation. These types of encodings avoid dealing directly
with the exponential number of states, but they require extra work in determining the
truth value of certain fluents after the execution of a sequence of actions in the initial
belief state. For instance, CFF needs to make a call to a SAT-solver with the initial state
and the sequence of actions; other planners need to recompute the BDD representation,
which could also be an expensive operation. Observe that the problem of determining
the truth value of a proposition after the execution of a single action in a belief state is
co-NP complete [1].

An alternative approach to deal with the large number of possible initial states is
used by the planners cf2cs(ff) and CPA [12, 17], and further investigated in their
successors t0 and CPA+ [13, 16]. This approach relies on an approximation seman-
tics in reasoning with incomplete information [15]. The planners cf2cs(ff) and t0
reduce the number of possible initial states to one by introducing additional proposi-
tions, transforming the original problem to a classical planning problem, and using FF,
a classical planner [8], to find solutions. On the other hand, CPA and CPA+ reduce this
number by dividing them into groups and using the intersection of each group as its
representative during planning.

CPA+ and t0 implement the idea of approximations differently. While CPA+ could
be seen as a standard heuristic search forward planner, t0 follows a translational ap-
proach. The performance of CPA+ depends on its heuristic function and its ability to
approximate the initial belief state to a manageable set of partial states. On the other
hand, the performance of t0 largely depends on the performance of FF. t0 was the
winner of the 2006 planning competition.

In this paper, we describe the design and implementation of a competitive confor-
mant planner. The proposed planner1 expands the idea of approximation-based con-
formant planning, introducing novel techniques to significantly enhance efficiency and
scalability. We explore the problem of engineering an approximation-based planner that
can avail of modern data structures and heuristic functions. A cornerstone of our ap-
proach is viewing the description of the initial state not just as a passive characteriza-
tion of a collection of states, but as a collection of constraints; by reasoning on such
constraints, we discover ways to transforms the problem specification, enabling drastic
reductions in the size of the search space. The resulting planner outperforms the state-
of-the-art in conformant planning on large pool of benchmarks, including the problems
from the latest planning competition.

2 Problem Representation

Following the notation in [12], we describe a problem specification as a tuple P =
〈F,O, I,G〉, where F is a set of propositions, O is a set of actions, I and O describe
the initial state of the world and the goal respectively. A literal is either a proposition
p ∈ F or its negation ¬p. ¯̀ denotes the complement of a literal ` and is defined by

1 Named CPA(H) to recognize its roots in the CPA+ system.

On Building a Competitive Comformant Planner 5

¯̀= ¬` where ¬¬p=p for p∈F . For a set of literals L, L = {¯̀ | ` ∈ L}. A conjunction
of literals is often represented by a set.

A set of literals X is consistent if there exists no p ∈ F such that {p,¬p} ⊆ X .
A state s is a consistent and complete set of literals, i.e., s is consistent, and for each
p ∈ F , either p ∈ s or ¬p ∈ s. A belief state is a set of states. A partial state is a
consistent set of literals. A cs-state is a set of partial states. A set of literals X satisfies
a literal ` (resp. a set of literals Y) iff ` ∈ X (resp. Y ⊆ X).

Each action a in O is associated with a precondition φ (denoted by pre(a)) and a
set of conditional effects of the form ψ → ` (also denoted by a : ψ → `), where φ and
ψ are sets of literals and ` is a literal.

The initial state of the world is described by I = Id ∪ Io ∪ Ir where Id is a set
of literals, Io is a set of oneof-clauses—of the form oneof(φ1, . . . , φn)—and Ir is
a set of or-clauses of the form or(φ1, . . . , φn), where each φi is a set of literals. A
oneof-clause indicates that the φi’s are mutually exclusive, while an or-clause is a
disjunctive normal form (DNF) representation of a formula. A set of literals X satisfies
oneof(φ1, . . . , φn) if there exists some 1≤i≤n s.t. φi ⊆ X and for every j 6= i,
1≤j≤n, φj ∩ X 6=∅. X satisfies or(φ1, . . . , φn) if there exists some 1≤i≤n s.t. φi ⊆
X . ext(I) denotes the set of all states satisfying Id, every oneof-clause in Io, and
every or-clause in Ir. E.g., if F={g, f} and I={g, oneof(f,¬f)} then ext(I) =
{{g, f}, {g,¬f}}.

G can contain literals or or-clauses. Given a oneof-clause or an or-clause o, we
write L ∈ o to denote that L is an element of o and lit(o) =

⋃
L∈o(L ∪ L̄).

3 A Competitive Conformant Planner: Design

The planner, called CPA(H), is composed of two modules. The first module (Prepro-
cessor) is a static analyzer that performs a number of transformations of the problem
specification. Along with a grounder (which also applies standard simplifications, such
as forward reachability), the preprocessor applies some novel transformations (oneof-
clause combination and goal splitting) aimed at drastically reducing the size of the
search space. The second module (Planning engine) is a heuristic search engine imple-
menting forward planning.

3.1 Design of the Planning Engine

Theoretical Foundations Given a state s and an action a, a is executable in s if
pre(a) ⊆ s. The set of effects of a in s, denoted by ea(s), is defined by: ea(s) =
{l | ψ → l is an effect of a, ψ ⊆ s}. The execution of a in a state s results in a succes-
sor state succ(a, s) which is defined by: succ(a, s) = s∪ea(s)\ea(s) if a is executable
in s; and succ(a, s) = failed, otherwise.

succ is extended to define succ∗, which computes the result of the execution of an
action in a belief state, as follows.

succ∗(a, S) =

{succ(a, s) | s ∈ S}if a is executable in every s ∈ S
failed otherwise

(1)

6 Tran Cao Son

Finally, we can define the function ŝucc to compute the final belief state resulting from
the execution of a plan:
• ŝucc([a1, . . . , an], S) = S if n = 0, and
• ŝucc([a1, . . . , an], S)=succ∗(an, ŝucc([a1, . . . , an−1], S)) if n > 0.

Several heuristic search-based conformant planners (e.g. CFF, POND), employ ŝucc
in plan computation, using S0=ext(I) as the initial belief state. An action sequence α
is a solution of P iff ŝucc(α, S0) 6= failed and G is satisfied in every state belonging
to ŝucc(α, S0).

The notion of approximation used in CPA+, cf2cs(ff), and t0 has been origi-
nally proposed in [15]. The original intuition behind approximation is to approximate
sets of possible states by a single partial state—thus, reducing the complexity of reason-
ing w.r.t. using all possible states. It is characterized by a function (succA) that maps
an action and a partial state to a partial state. The possible effects of a in a partial state
δ are given by

pca(δ) = {l | ψ → l is an effect of a, ψ ∩ δ = ∅}. (2)

The successor partial state from the execution of a in δ is defined by succA(a, δ) =
(δ ∪ ea(δ)) \ pca(δ) if a is executable in δ; and succA(a, δ) = failed, otherwise.

Similarly to succ∗ and ŝucc, succA can be extended to define succ∗A (mapping cs-
states to cs-states) and ŝuccA for computing the result of the execution of an action
sequence starting from a cs-state. The notion of a solution of P w.r.t. the approximation
is extended accordingly. Our planner uses ŝucc∗A in its search for plans.

Observe that, in general, reasoning using approximations is incomplete. Complete-
ness can be gained by identifying appropriate partitions {∆1, . . . ,∆k} of ext(I) such
that

⋃k
i=1∆i = ext(I), ∆i∩∆j = ∅ for each i 6= j, and we have that for each formula

ϕ and sequence of actions α, ŝuccA(α, {δ1, . . . , δk}) entails ϕ iff ŝucc(α, ext(I)) en-
tails ϕ, where δi is the intersection of the states in ∆i. Research has been conducted to
provide sufficient syntactical conditions to identify valid partitions—based on the iden-
tification of fluents that should be explicitly distinguished in different partitions (see,
e.g., [16]).

Heuristic Search The succ∗A function is used in the context of a planning algorithm
which implements forward planning using a traditional best-first heuristic search.

The proposed planner enables the user to choose among different heuristics; as dis-
cussed in the experimental section, we observed that sustained better performance can
be achieved by using combinations of heuristics, improving the ability of discriminat-
ing between states in the priority queue (as employed in other systems as well [6]). The
basic heuristics employed are:
• The cardinality heuristic: we prefer belief states that have a smaller cardinality.

In other words, hcard(Σ) = |Σ| where Σ is a belief state. Note that we use this
heuristic in a forward fashion, and this is different from its use in [2, 5]. The intu-
ition behind this is that planning with complete information is “easier” than plan-
ning with incomplete information and a lower cardinality implies a lower degree of
uncertainty.

On Building a Competitive Comformant Planner 7

• The relaxed graphplan heuristic: for a belief stateΣ, we define hrgp(Σ) =
∑
δ∈Σ d(δ),

where d(δ) is the well-known sum heuristic value given that the initial state is
δ ∪ {¬p | p ∈ F, p 6∈ δ, ¬p 6∈ δ} [11].

• The number of satisfied subgoals: denoted by hgc(Σ).
We investigate the following combination of these heuristics: hcss(Σ) = (hcard(Σ), hgc(Σ), hrgp(Σ));
heuristic measures are compared according to their lexicographic order.

3.2 Design of the Preprocessor

Standard Transformations Key to our analysis is the notion of dependence between
actions and propositions—similar to the notion of dependence between actions and
literals explored in [16]. We denote with P a planning problem.

Definition 1. An action a depends on a literal ` if

1. ` ∈ pre(a), or
2. there exists an effect a : φ→ h in P and ` ∈ φ, or
3. there exits an action b that depends on ` and a depends on some of the effects of b,

i.e., b depends on ` and there exists b : φ→ h such that a depends on h.

By preact(`) we denote the set of actions depending on `.

Intuitively, the fact that a depends on ` indicates that the truth value of ` could influence
the result of the execution of a. For a set of literals L, preact(L) =

⋃
`∈L preact(`).

Definition 2. Two literals ` and `′ are distinguishable if ` 6= `′ and there is no action
that depends on both ` and `′, i.e., preact(`) ∩ preact(`′) = ∅.
Obviously, the distinguishable relation is symmetric and irreflexive. Two set of literals
L1 and L2 are distinguishable if preact(L1) ∩ preact(L2) = ∅.

The dependence between a literal and an action, often used in reachability analysis,
is defined next.

Definition 3. A literal ` depends on an action a if (1) a : ψ → ` is in P ; or (2) there
exists an action b such that b : ψ → ` is in P and there exists some `′ in ψ or in pre(b)
s.t. `′ depends on a. We denote with deps(a) the set of literals that depend on a.

Intuitively, ` depends on a implies that ` may be achieved by executing a. postact(`)
denotes the set of actions which ` depends on, i.e., postact(`)={a | `∈deps(a)}.
Definition 4. Two literals ` and `′ are independent if ` 6= `′ and there exists no action
that both ` and `′ depend on, i.e., postact(`) ∩ postact(`′) = ∅.

The preprocessor starts its operations with a number of basic normalization steps,
aimed at reducing the number of propositions and the number of actions present in
the problem specification. In particular, it implements a traditional forward reachability
simplification (to detect propositions whose value cannot be changed and actions that
cannot be triggered w.r.t. the initial state) and a symmetrical goal relevance (removing
actions that cannot contribute to the goal).

8 Tran Cao Son

Combination of oneof-clauses The idea of this technique is based on the non-interaction
between actions and propositions in different sub-problems of a conformant planning
problem. We illustrate this idea in the next example.

Example 1. LetP = 〈{f, g, h, p, i, j}, O, I,G〉where I = {oneof(f, g), oneof(h, p),¬i,¬j},
G = i ∧ j, and O =

{
a : f → i c : h→ j b : g → i d : p→ j

}
. It is easy to see that

the sequence α = [a, b, c, d] is a solution of P . Furthermore, the search should start
from the initial belief state consisting of the four states:

{f,¬g, h,¬p,¬i,¬j} {¬f, g, h,¬p,¬i,¬j}
{f,¬g,¬h, p,¬i,¬j} {¬f, g,¬h, p,¬i,¬j}

Let P ′ be the problem obtained from P by replacing I with I ′, where I ′ = {oneof(f ∧
h, g ∧ p),¬i,¬j}.

We can see that α is also a solution of P ′. Furthermore, each solution of P ′ is
also a solution of P . This transformation in interesting since the initial belief state now
consists only of two states: {f,¬g, h,¬p,¬i,¬j} and {¬f, g,¬h, p,¬i,¬j}. I.e., the
number of states in the initial belief state that a conformant planner has to consider in
P ′ is 2, while it is 4 in P . This transformation is possible because the set of actions that
are “activated” by f and g is disjoint from the set of actions that are “activated” by h
and p, i.e., preact({f, g}) ∩ preact({h, p}) = ∅.

The above example shows that different oneof-clause can be combined into a single
oneof-clause, which effectively reduces the size of the initial state that a planner needs
to consider in its search for a solution. Theoretically, if the size of the two oneof-clauses
in consideration is m and n, then it is possible to achieve a reduction in the number of
possible partial states from m × n to max(m,n). Since in many problems the size
of the oneof-clauses increases with the number of objects, being able to combine the
oneof-clauses could provide a significant advantage for the planner.

Definition 5. Let P = 〈F,O, I,G〉 be a planning problem. Two oneof-clauses o1

and o2 are combinable if (i) lit(o1) ∩ lit(o2) = ∅; and (ii) lit(o1) is distinguishable
from lit(o2). where lit(o) denote the union of the set of literals occurring in o and its
complements

For example, the oneof-clauses in Ex. 1 are combinable. Let o1 = oneof(L1, . . . , Ln)ando2 =
oneof(S1, . . . , Sm). Assume that n ≥ m. A combination of o1 and o2, denoted by
o1 ⊕ o2 (or o2 ⊕ o1) is the clause

oneof(L1 ∧ S1, . . . , Lm ∧ Sm, Lm+1 ∧ S1, . . . , Ln ∧ S1)
Intuitively, a combination of o1 and o2 is a oneof-clause whose elements are pairs
obtained by composing one element of o1 with exactly one element of o2.

Proposition 1. Let P = 〈F,O, I,G〉 be a planning problem, where G is a conjunc-
tion of literals and o1 and o2 are two combinable oneof-clauses in P . Let P ′ =
〈F,O, I ′, G〉, where I ′ is obtained from I by replacing o1 and o2 by o1 ⊕ o2. Every
solution of P ′ is also a solution of P and vice versa.

Observe that the above proposition may not hold if P contains disjunctive goals, as
shown next.

On Building a Competitive Comformant Planner 9

Example 2. Let P = 〈{q, g, h, p, i, j}, O, I,G〉 where

I = {oneof(h, g), oneof(p, q),¬i,¬j} and G = or(i, j)

and O consists of a : p,¬q → i, c : p, q → i, b : g,¬h→ j, and d : g,¬h→ j.
It is easy to check that oneof(h, g) and oneof(q, p) are combinable. Let P ′ be the

problem obtained from P by replacing I with I ′ = {oneof(g∧q, h∧p),¬i,¬j}. Then,
[a, b] is a solution of P ′ but not a solution of P .

The combinable notion can be generalized as follows.

Definition 6. A set of oneof-clauses {o1, . . . , ok} is combinable if oi and oj are com-
binable for each 1 ≤ i 6= j ≤ k.

Let ⊕(o1, . . . , ok) be the shorthand for (((o1 ⊕ o2)⊕ . . .)⊕ ok). Proposition 1 can be
generalized as follows.

Proposition 2. Let P = 〈F,O, I,G〉 be a planning problem, where G is a conjunc-
tion of literals. Let {o1, . . . , ok} be a combinable set of oneof-clauses in P . Let P ′ =
〈F,O, I ′, G〉, where I ′ is obtained from I by replacing {o1, . . . , ok}with⊕(o1, . . . , ok).
We have that each solution of P ′ is a solution of P and vice versa.

We implemented a greedy algorithm, whose running time is polynomial in the size
of P , for detecting sets of combinable oneof-clauses and replacing them with their
corresponding combination. This is possible since testing if ` and `′ are distinguishable
can be done in polynomial time in the size of P , and the number of pairs that need this
test is quadratic in the number of propositions.

Goal Splitting Reducing the size of the initial state only helps the planner to start the
search. It does not necessarily imply that the planner can find a solution. In this section,
we present another technique, called goal-splitting, which can be used in conjunction
with the combination of oneof to deal with large planning problems. This technique
can be seen as a variation of the goal ordering technique in [9] and it relies on the
notion of dependence proposed in Def. 4. The key idea is that if a problem P contains
a subgoal whose truth value cannot be negated by the actions used to reach the other
goals, then the problem can be decomposed into smaller problems with different goals,
whose solutions can be combined to create a solution of the original problem. This is
illustrated in the following example.

Example 3. Consider the problem P of Example 1. It is easy to see that the two goals i
and j are independent andP can be decomposed into two sub-problemsP1 = 〈F,O1, I, i〉
and P2 = 〈F,O2, I2, j〉 where O1 = {a : f → i, b : g → i} and O2 = {c : h →
j, d : p → j} with the following property: if α is a solution of P1 and β is a solution
of P2 where I2 = ŝuccA(α, I1), then α;β is a solution of P .2

Let us start with a definition capturing the condition that allows the splitting of
goals.

2 α;β denotes the concatenation of two sequences of actions.

10 Tran Cao Son

Definition 7. Let P = 〈F,O, I,G〉 be a planning problem and let ` ∈ G. We say that
` is G-separable if, for each `′ ∈ G \ {`} we have that ¯̀and `′ are independent.

Proposition 3. Let P = 〈F,O, I,G〉 be a planning problem and let ` be G-separable.
Let P` = 〈F, postact(`), I, `〉 and α be a solution of P`. Let PG\{`} = 〈F, postact(G\
{`}), I ′, G \ {`}〉, where I ′ = ŝuccA(α, I), and β be a solution of PG\{`}. Then, α;β
is a solution of P .

The proof is trivial, since postact(G \ {`}) does not contain any action that can make
¯̀ true.

On the other hand, it is easy to see that not every plan of P can be split into two
parts α and β such that α is a solution of P` and β is a solution of PG\{`}. We can prove,
however, that for each plan γ of P , there is a plan α for P` and a plan β for PG\{`} such
that γ is a permutation of α;β. This provides a weak form of completeness.

We note that the splitting proposed in Prop. 3 can be improved by also splitting the
propositions and initial states into different theories. We have implemented a general-
ized version of Prop. 3 to split a problem into a sequence of problems. This implemen-
tation runs in polynomial time in the size of P .

4 Implementation Considerations

The preprocessor has been implemented as a Prolog program. The program maps the
input PDDL theory to a collection of Prolog clauses. This mapping nicely avoids the
need of explicitly grounding the problem specification a priori. The transformations are
implemented as fixpoint computations on the Prolog clauses representing the problem
specification.

The planning engine has been implemented as a C++ program, running on a Linux
(Athlon 64, 4Ghz), gcc 4.2.1 version, with STL library. A partial state is implemented
as a set (a basic data structure in STL) of literals.

The engine implements a best first search over the search space of cs-states. Each
cs-state is a data structure consisting of a set of partial states, a plan to reach that cs-
state, and the heuristic values: hcard, hgc, and hrpg . A modified version of the algorithm
presented in [10] is implemented to compute hrpg .

succ∗A is used to compute the next cs-state. A hash table (resp. priority queue) is
used to store the visited (resp. unvisited) cs-states. A special module is developed to
compute the initial cs-state, which consists of the set of initial partial states. Each initial
partial state δ satisfies the following conditions: a) {p,¬p}∩δ 6= ∅ for each proposition
p appears in I; b) Id ⊆ δ; c) for each oneof(φ1, . . . , φn) ∈ Io, there exists an i such
that φi ⊆ δ and for all j 6= i, φj ∩ δ 6= ∅; d) for each or(φ1, . . . , φn) ∈ Ir, there exists
an i such that φi ⊆ δ; e) δ is consistent. Choosing to implement the initial cs-state as a
set (of the set of initial partial states) makes the computation of the successor cs-state
(the result of succ∗A) easier. The main disadvantage of this choice is that the size of the
initial cs-state can be exponential in the size of the number of object constants in the
problem. This is the reason why reducing the size of the initial cs-state is critical to our
planner.

On Building a Competitive Comformant Planner 11

5 Experimental Evaluation

The experimental evaluation has been performed using several benchmark suites—i.e.,
problems from the IPC-5 (or I5) and the IPC-6 (I6) planning competitions, challeng-
ing (C) problems proposed in [13], and several other domains from previous planning
competitions. The benchmark suite for each domain is listed in Table 5. Due to lack of
space, we omit the detailed description of the actual benchmarks, that have been drawn
from the existing literature. We also report only a subset of the complete experimental
results due to limited space (full results will be made available through a linked tech-
nical report). Time is in seconds, TO denotes time-out (30 min), AB denotes out of
memory, and BM denotes benchmark suite.

Table 2 summarizes some results aimed at evaluating the impact of the transforma-
tions; the three columns indicate execution times and the length of the first plan found;
we can observe that the improvement in performance is often significant; it occasionally
comes at the price of a longer plan.

Problem NoTransf. oneof goal-splitting
coins-05 0.02/13 0.024/19 0.03/14
coins-10 1.33/35 0.66/129 1.52/43
coins-15 /AB 13.54/391 /AB
coins-20 /AB 33.39/621 /AB
comm-05 0.90/48 0.31/60 0.20/35
comm-10 61.14/87 3.98/190 22.40/65
comm-15 /AB 15.82/327 /AB
uts-05 34.43/115 34.43/115 1.06/43
uts-10 36.14/130 36.14/130 21.21/87
uts-20 53.88/286 53.88/286 35.91/138
uts-30 152.07/177 152.07/177 18.06/74
dispose-4-2 1.30/72 0.395/59 0.78/76
dispose-4-3 43.00/93 0.36/78 19.14/111
dispose-8-2 412.70/272 10./234 368.03/284
dispose-8-3 /AB 487.28/1187 /AB
push-4-2 1.11/58 1.00/133 1.84/96
push-4-3 34.66/265 2.04/251 46.68/141
push-8-2 282.55/444 128.21/979 /AB
push-8-3 /AB 454.80/1811 /AB

Table 2. Impact of oneof-combination and goal-splitting

Table 3 reports the execution times of the planner using different heuristics. The
column tS indicates the time for preprocessing. Although the results are mixed for
small instances, hcss(Σ) comes ahead for large instances.

Table 4 compares the execution times and plan lengths for the proposed planner and
other three state-of-the-art systems for conformant planning (t0, CFF, and POND,
all run with default parameters according to their documentation). Table 5 reports the
number of instances each planner can solve.

6 Discussion

We now discuss the question of whether the proposed techniques can be applied to other
planning systems.

Observe that a combination of several oneof-clauses is a oneof-clause, whose ele-
ments are conjunctions of literals, which can be represented by a set of oneof-clauses

12 Tran Cao Son

Problem tS CPA(H) CPA(H) CPA(H) CPA(H)
hcard hgc hrgp hcss(Σ)

bwl-02 0.13 0.262/26 /TO 0.064/33 0.217/41
bwl-03 0.18 7.668/198 /TO 2.219/145 73.188/312
coins-15 0.49 7.449/423 15.874/551 0.387/191 5.920/329
coins-20 0.66 25.51/756 24.413/722 0.902/195 20.239/481
comm-15 3.64 0.496/96 0.148/95 0.094/95 0.124/95
comm-20 141 2.739/240 0.993/239 0.994/239 0.976/239
comm-25 1081 18.74/389 3.355/389 3.674/389 3.249/389
sortnet-05 0.11 0.054/13 16.35/13 0.036/12 0.023/12
sortnet-10 0.24 12.537/39 /TO 3.270/39 4.205/39
sortnet-15 0.52 /TO /TO /TO 313.044/65
uts-10 0.93 21.21/87 /TO 17.567/89 9.602/80
uts-20 0.89 35.91/138 /TO 12.596/150 36.314 /125
uts-30 0.86 18.06/74 /TO 346.467/103 31.609/94
d-4-3 .61 . 3.94/288 4.83/369 0.95/314 3.80/288
d-8-1 47.3 1.95/143 124.71/1229 24.12/725 1.86/137
d-8-2/C 53.6 386.68/1328 600.77/2298 135.8/1494 391.44/1328
d-10-1 285 7.65/213 /AB 148.7/1489 7.69/213
push-4-3 .65 40.45/1176 340.23/959 1.0/225 288.21/847
push-8-1/C 52.4 3.824/184 /AB 27.25/468 3.97/184
push-10/C 304 23.04/414 /AB /AB 23.48/414
1-d-4-3 .69 24.8/64 /AB 81.57/108 25.12/64
1-d-8-1 47.9 9.91/340 /AB /AB 9.22/340
1-d-10-1 288 36/568 /AB /AB 33.81/568
lng-8-1-1 50.4 2.45/94 284.73/5547 /AB 1.78/94
lng-8-2-1 57.8 0.97/94 31.79/563 68.45/287 0.97/94
lng-8-1-2 59.5 73.14/125 /AB /AB 72.65/125

Table 3. Comparison between heuristics

and a set of disjunctions eliminating the unwanted combinations. We tested the effec-
tiveness of the oneof-simplification on POND and CFF. Table 6 shows the results
of our experiment with the planner POND in the comm and coins domains where
the oneof-combination is applicable. As we can see, the performance of POND im-
proves in these problems, and the improvement is more significant when the size of
the problem is large. This technique helps POND to scale up but its impact is not as
great as in CPA(H): POND can solve more problems in the comm domain. The prob-
lems comm-16.0 and comm-16.1 have more objects than comm-16 but less than
comm-17. For CFF, we did not observe improvements using the modified problems.

We also experimented with using the preprocessor to perform goal splitting and
produce modified PDDL files that can be processed by other planners. For example,
CFF is unable to solve the problems from p21 to p30 of the coins domain. The diffi-
culty in this domain lies in the large number of elevators and coins. The goal-splitting
technique divides the problem into a sequence of sub-problems, each dealing with one
coin but still has all elevators, enabling CFF to solve these problems. We observed that
CFF spent most of the time finding the solution for the first problem. This is reason-
able, since the location of the elevators is initially unknown, and some locations will be
known at the end of the first solution. The planning time of CFF for coins p21, p25 and
p30 is 24.48 2.13 and 68.09 (secs) accordingly.

These initial experiments show that the proposed techniques could be useful for
other planners.

7 Conclusions

In this paper, we presented the complete design and implementation of an efficient con-
formant planner, called CPA(H). The planner builds on recently developed techniques
for conformant planning using approximations; it introduces several novelties, includ-
ing a preprocessing module to transform the problem specification, leading to signifi-
cantly reduced search spaces, and the ability to explore the search space with different

On Building a Competitive Comformant Planner 13

Problem tS CPA(H) t0 CFF POND
hcss(Σ)

block-03 0.13 0.22/41 /NA /AB 1.02/26
block-04 0.18 73.19/312 /NA /AB 1379/111
coins-10 0.18 0.14/81 0.09/26 1.02/38 5.26/28
coins-15 0.49 5.92/329 0.26/81 7.35/79 /TO
coins-20 0.66 20.24/481 0.32/108 38.19/143 /TO
comm-15 3.64 0.12/95 0.19/110 0.22/95 1662/110
comm-20 141 0.98/239 0.86/278 13.33/239 / TO
comm-25 1081 3.25/389 3.99/453 109.49/389 / TO
sortnet-10 0.24 4.21/39 NA NA /TO
sortnet-15 0.52 313.04/65 NA NA /TO
adder-01 8.2 1.29/3 /NA /AB /AB
UTS-cycle-03 0.17 1.08/3 /NA /NA 1.99/3
UTS-cycle-04 0.29 23.88/6 /NA /NA 48.19/6
forest-02 2.4 23/84 0.37/12 0.03/17 1.33/15
forest-04 7.7 /TO 1.58/60 /TO 71.17/62
Rao-keys-02 0.22 0.04/32 /NA 0.08/33 0.29/21
Rao-keys-03 0.37 3.84/152 /NA 25.09/101 4.51/68
dispose-8-1 47.3 1.86/137 27.85/291 423.25/226 /AB
dispose-8-2 53.6 391/1328 118.46/422 /AB /AB
dispose-10-1 285 7.69/213 275.08/474 /AB /AB

Table 4. Comparison between systems (NA: not applicable)

Domain/BM # of CPA(H) t0 CFF POND
instances hcss(Σ)

block/I6 4 3 0 1 3
adder/I5 4 1 0 0 0
coins/I5 30 20 20 20 10
comm/I5 25 25 25 25 16
sortnet/I5 15 15 0 0 6
uts/I5 30 30 30 30 24
UTS-cycle/I6 27 2 0 0 2
forest/I6 9 1 8 1 2
Rao-keys/I6 29 2 0 2 2
dispose/C 90 62 50 41 8
push/C 90 29 33 27 12
1-dispose/C 90 24 7 1 8
look-n-grab/C 81 63 20 21 9

Table 5. Number of problems solved in different domains

heuristic functions. The result is a conformant planner that has been shown to be highly
competitive with the state-of-the-art in the field. In particular, CPA(H) outperforms all
existing systems on the problems from the latest International Planning Competition.

The results presented in this paper confirm the strength of using approximations for
conformant planning, the possibility of implementing approximation-based planning in
an efficient and scalable system, and the scope for improvement that can be achieved
via transformation of problem specifications.

Problem Orig/Modified Problem Orig/Modified
comm-15 1662/4.89 coins-5 0.52/0.51
comm-16 TO/57.93 coins-10 5.54/1.63
comm-16.0 TO/124.05 coins-15 17.13/17.95
comm-16.1 TO/267.39 coins-10 143/126

Table 6. Impact of oneof-Combination on POND (Orig/ Modified: Time for solving the origi-
nal/modified problem)

14 Tran Cao Son

The future developments of this project include exploring whether alternative meth-
ods for the internal implementation of cs-states (e.g., OBDD) can further enhance per-
formance. We also plan to expand the reasoning component of the preprocessor, to ob-
tain additional simplifications of the problem specifications (e.g., detecting symmetries
between fluents).

Acknowledgement

The authors are partially supported by the NSF grants IIS-0812267, CBET-0754525,
CNS-0220590, and CREST-0420407.

References

1. C. Baral et al. Computational complexity of planning and approximate planning in the pres-
ence of incompleteness. AIJ, 122:241–267, 2000.

2. P. Bertoli et al. Heuristic search + symbolic model checking = efficient conformant planning.
IJCAI, pages 467–472, 2001.

3. B. Bonet and B. Givan. Results of the conformant track of the 5th planning competition, 2006.
http://www.ldc.usb.ve/˜bonet/.

4. R. Brafman and J. Hoffmann. Conformant planning via heuristic forward search: A new
approach. ICAPS-04, pages 355–364, 2004.

5. D. Bryce and S. Kambhampati. Heuristic Guidance Measures for Conformant Planning.
ICAPS-04, pages 365–375, 2004.

6. D. Bryce et al. Planning Graph Heuristics for Belief Space Search. JAIR, 26:35–99, 2006.
7. A. Cimatti et al. Conformant Planning via Symbolic Model Checking and Heuristic Search.

Artificial Intelligence Journal, 159:127–206, 2004.
8. J. Hoffmann and B. Nebel. The FF Planning System: Fast Plan Generation Through Heuristic

Search. JAIR, 14:253–302, 2001.
9. J. Hoffmann et al. Ordered landmarks in planning. JAIR, 22:215–278, 2004.
10. D. Long and M. Fox. . Efficient Implementation of the Plan Graph in STAN. JAIR, 10, 1999.
11. X.L Nguyen et al. Planning graph as the basis for deriving heuristics for plan synthesis by

state space and CSP search. AIJ, 135:73–123, 2002.
12. H. Palacios and H. Geffner. Compiling Uncertainty Away: Solving Conformant Planning

Problems Using a Classical Planner. AAAI, 2006.
13. H. Palacios and H. Geffner. From Conformant into Classical Planning: Efficient Translations

that may be Complete Too. ICAPS-07, 2007.
14. D.E. Smith and D.S. Weld. Conformant graphplan. AAAI, pages 889–896, 1998.
15. T.C. Son and C. Baral. Formalizing sensing actions - a transition function based approach.

Artificial Intelligence, 125(1-2):19–91, January 2001.
16. T.C. Son and P.H. Tu. On the Completeness of Approximation Based Reasoning and Plan-

ning in Action Theories with Incomplete Information. KRR, 2006.
17. T.C. Son, P.H. Tu, M. Gelfond, and R. Morales. Conformant Planning for Domains with

Constraints. AAAI, pages 1211–1216, 2005.

On Building a Competitive Comformant Planner 15

