
A Framework for Programming with Module
Consequences⋆

Wolfgang Faber1 and Stefan Woltran2

1 University of Calabria, Italy
wf@wfaber.com

2 Vienna University of Technology, Austria
woltran@dbai.tuwien.ac.at

Abstract. We present a framework which allows to combine answer-set pro-
grams in a way that consequences (rather than answer sets themselves) of pro-
grams can be used as input to other programs. Situations in which such a compo-
sition of programs is required appear in many practical application problems. So
far, to deal with such problems, multiple calls to answer-set solvers wereusually
indispensable, as a direct ASP encoding is often much less obvious. In addition,
we provide a technique for compiling such frameworks into a single ASP program
which consequently can be evaluated by a single call to an answer-set solver. Our
approach relies on the recently introduced concept of manifold programs which
make use of weak constraints to identify consequences of programs.

1 Introduction

In the last decade,Answer-Set Programming(ASP) [1, 2], also known as A-Prolog
[3, 4], has emerged as a declarative programming paradigm. ASP is well suited for
modelling and solving problems which involve common-sensereasoning, and has been
fruitfully applied to a wide variety of applications including diagnosis, data integration,
configuration, and many others. This development was fueledby the efficiency of the
latest tools for processing ASP programs (so-called ASP solvers) which reached a state
that makes ASP applicable for problems of practical importance [5]. The most frequent
use of ASP is to compute answer sets (usually stable models) of a logic program from
which the solutions of the problem encoded by the program canbe obtained.

A somewhat neglected aspect of ASP are its capabilities in terms of consequence
relations (or, more general, using queries over answer sets), which are firmly rooted in
the tradition of nonmonotonic reasoning. Different to classical settings, in nonmono-
tonic reasoning there is no canonical consequence relation—the two most studied ones
are brave and cautious consequence (sometimes also termed as brave and cautious rea-
soning); the former is also known as credulous or possible reasoning, the latter is also
referred to as skeptical or certain reasoning. In the context of ASP, one is usually inter-
ested in a subset of the atomic brave or cautious consequences, which corresponds to a

⋆ This work was supported by the Vienna Science and Technology Fund (WWTF), grant ICT08-
028, and by M.I.U.R. within the Italia-Austria internazionalization project “Sistemi basati sulla
logica per la rappresentazione di conoscenza: estensioni e tecniche di ottimizzazione”.

generalization of query answering for databases. In this sense, ASP can also be seen as
an evolution of Datalog, a logical database query language.

As an example scenario, let us consider a problem stemming from database systems.
A database is inconsistent, if a given database instance does not satisfy some of the
constraints imposed. One could argue that the creation of inconsistent databases should
be inhibited, but it is also obvious that this is not always possible: For instance, when
integrating data, that is, whenever only partitions of the data are maintained in a locally
consistent state (for example due to permissions or physical distribution), the merged
data is not guaranteed to be consistent. Still, one would like to work with such data.

An attractive approach to dealing with inconsistent data isto consider minimal re-
pairs, that is, considering minimal modifications of the data that establish a consis-
tent state. ASP has been successfully employed for specifying and computing mini-
mal repairs (see, e.g., [6]). In general, there is no unique minimal repair, and the usual
workaround is to take a conservative approach and consider those parts of the database
which hold in each minimal repair. In the ASP setting, this neatly corresponds to con-
sidering the cautious consequences of the program encodingthe database repairs.

However, as mentioned earlier, support for consequence relations is somewhat lim-
ited in current answer-set programming tools: Not all ASP systems support computing
atomic consequences directly, and even if they do, it is usually done as a final process-
ing step, in the sense that it is not possible to use the atomicconsequences in the same
run in order to do further reasoning. One could try to simulate this kind of reasoning
by adding additional rules to the program over which the consequences are computed.
However, the following simple example demonstrates the problems of this approach:
The program{a :- not b ; b :- not a} has two answer sets,{a} and{b}, and so its
brave atomic consequences area andb, while there is no cautious atomic consequence.
In order to represent the question whether at least one ofa or b is a consequence, one
could try to add{q :- a ; q :- b} to the program and check whetherq is an atomic
consequence. While this works correctly for brave consequences (a positive answer),
it does not for cautious consequences. The reason is thatq is indeed a cautious con-
sequence of the modified program thus yielding a positive answer to the query, while
neithera nor b is a cautious atomic consequence.

Actually, one would hope to be able to use as many language features that ASP
provides in order to reason with atomic consequences of a program, but as seen in the
simple example above, existing query interfaces are insufficient for this task. Indeed, if
one wants to employ recursion, a hypothetical method of endowing the original program
by additional rules is quite obviously inadequate in most cases.

In this work, we introduce a framework that overcomes the limitations outlined
above. In particular, we propose a language that encapsulates computing brave, cautious
or definite3 consequences of a program, which can then be utilized in a larger ASP
program.

We discuss properties and limitations of the language and describe techniques for
implementing a system supporting the language. In particular, we propose an extension
of manifold programs, that we have recently proposed as a method for compiling query
answering into ASP in [8]. In particular, a manifold programMP of an ASP program

3 An alternative notion proposed in [7].

A Framework for Programming with Module Consequences 35

P allows for identifying all consequences of a certain type (variants exist for brave,
cautious, and definite consequences) within a single answerset. The framework we
present here goes beyond the concept of a single manifold program which facilitates
query answering wrt. a single program. Our framework permits that the results (i.e.,
consequences of a certain type) of modules can serve as inputfor further modules which
compile different queries of their own, and so forth. A so-called base program finally
collects the result necessary for the overall task and computes its own answer sets.
These sets are identified as the answer sets of the entire framework.

However, there is a price to be paid for identifying program consequences by mani-
folding: WhileMP contains optimization constructs (in [8] weak constraintswere used,
cf. [9]), P should not contain any optimization constructs. There is also a reason for this:
While deciding whether one ground atom is a brave (respectively cautious) consequence
is NP-complete for normal ground programs andΣP

2 -complete for disjunctive ground
programs (respectivelyco-NP- and ΠP

2 -complete), enumerating brave (or cautious)
consequences is complete for the complexity classFPNP

|| for normal ground programs

and forFPΣP
2

|| for disjunctive ground programs. It follows that unless thepolynomial
hierarchy collapses, a program enumerating brave or cautious consequences without
optimization constructs does not exist. Moreover, in [9] the relevant decision problems
for programs with weak constraints (without different levels) have been shown to be
complete for the complexity classΘP

2 (ΘP
3 in the presence of disjunction), from which

the function complexityFPNP
|| (FPΣP

2
||) can be obtained. It follows that the presence of

weak constraints is necessary given our current knowledge on NP
?= P and also not

excessive.

2 Preliminaries

In this section, we review the basic syntax and semantics of ASP with weak constraints,
following [10], to which we refer for a more detailed definition.

An atomis an expressionp(t1, . . .,tn), wherep is apredicateof arity α(p) = n ≥ 0
and eachti is either a variable or a constant. Aliteral is either an atoma or its negation
not a. A (disjunctive) ruler is of the form

a1 ∨ · · · ∨ an :- b1, . . . , bk, not bk+1, . . . , not bm

with n ≥ 0, m ≥ k ≥ 0, n + m > 0, and wherea1, . . . , an, b1, . . . , bm are atoms.
Theheadof r is the setH(r) = {a1, . . . , an}, and thebodyof r is the setB(r) =

{b1, . . . , bk, not bk+1, . . . , not bm}. Furthermore,B+(r) = {b1, . . . , bk} andB−(r) =
{bk+1, . . . , bm}. We will sometimes denote a ruler asH(r) :-B(r).

A weak constraint[9] is an expressionwc of the form

:∼ b1, . . . , bk, not bk+1, . . . , not bm. [w : l]

wherem ≥ k ≥ 0 andb1, . . . , bm are literals, whileweight(wc) = w (the weight)
andl (the level) are positive integer constants or variables. For convenience,w and/or
l may be omitted and are set to 1 in this case. The setsB(wc), B+(wc), andB−(wc)
are defined as for rules. We will sometimes denote a weak constraintwc as:∼ B(wc).

36 W. Faber and S. Woltran

A programP is a finite set of rules and weak constraints.Rules(P) denotes the
set of rules andWC(P) the set of weak constraints inP . wP

max andlPmax denote the
maximum weight and maximum level overWC(P), respectively. A program (rule,
atom) ispropositionalor ground if it does not contain variables. A program is called
strongif WC(P) = ∅, andweakotherwise.

For any programP , let UP be the set of all constants appearing inP (if no constant
appears inP , an arbitrary constant is added toUP); let HBP be the set of all ground
literals constructible from the predicate symbols appearing in P and the constants of
UP ; and letGround(P) be the set of rules and weak constraints obtained by applying,
to each rule and weak constraint inP all possible substitutions from the variables in
P to elements ofUP . UP is usually called theHerbrand Universeof P andHBP the
Herbrand Baseof P .

A ground ruler is satisfiedby a setI of ground atoms iffH(r) ∩ I 6= ∅ whenever
B+(r) ⊆ I andB−(r) ∩ I = ∅. I satisfies a ground programP , if eachr ∈ P is
satisfied byI. For non-groundP , I satisfiesP iff I satisfiesRules(Ground(P)). A
ground weak constraintwc is violatedby I, iff B+(wc) ⊆ I andB−(wc)∩ I = ∅; it is
satisfied otherwise.

Following [11], a setI ⊆ HBP of atoms is ananswer setfor a strong programP
iff it is a subset-minimal set that satisfies thereduct

P I = {H(r) :-B+(r) | I ∩B−(r) = ∅, r ∈ Ground(P)}.
A set I ⊆ HBP of atoms is ananswer setfor a weak programP iff I is an an-

swer set ofRules(P) andHGround(P)(I) is minimal among all the answer sets of
Rules(P), where the penalization functionHP (I) for weak constraint violation of a
ground programP is defined as follows:

HP (I) =
∑lPmax

i=1

(
fP (i) ·∑w∈NP

i (I) weight(w)
)

fP (1) = 1, and
fP (n) = fP (n− 1) · |WC(P)| · wP

max + 1 for n > 1.

whereNP
i (I) denotes the set of weak constraints ofP in level i violated byI. For

any programP , we denote the set of its answer sets byAS(P). Note that for programs
having weak constraints only of weight and level 1,HGround(P)(I) amounts to the
number of weak constraints violated inI.

A ground atoma is a brave (sometimes also called credulous or possible) conse-
quence of a programP , denotedP |=b a, if a ∈ A holds for at least oneA ∈ AS(P).
A ground atoma is acautious(sometimes also called skeptical or certain) consequence
of a programP , denotedP |=c a, if a ∈ A holds for allA ∈ AS(P). A ground atom
a is adefiniteconsequence [7] of a programP , denotedP |=d a, if AS(P) 6= ∅ and
a ∈ A holds for allA ∈ AS(P). The sets of all brave, cautious, definite consequences
of a programP are denoted asBC(P), CC(P), DC(P), respectively.

3 Consequence Modules

A module essentially consists of a program, a collection of partially instantiated atoms,
and a reasoning mode. It can also receive some predicates as input. The idea is that this

A Framework for Programming with Module Consequences 37

module represents those consequences of the program under the specified reasoning
mode which match one of the atoms.

Definition 1. Aconsequence module(or module, for short) is a quadruple〈P, I,O,m〉,
whereP (the module program) is a strong program,I (the input predicates) is a set of
predicates,O (the output atoms) is a set of atoms (possibly containing variables), and
m (the reasoning mode) is one ofbrave, cautious, definite.

A consequence module framework(or consequence module program)F = 〈B,M〉
consists of a strong programB (called the base program) and a setM of consequence
modules.

Although the realization of a module looks very similar to known concepts (e.g.
modules as defined in [12] or the signature of module atoms in [13]), we remark that
the concept of a reasoning mode clearly separates our approach from previous ones. In
particular, the output of a module in our approach is just a set of facts (depending on the
chosen reasoning mode, this set is obtained from the answer sets of the modules) which
serves as input to further modules, while in other approaches the output is usually a
collection of answer sets, which have to combined with answer sets of other modules.

We define the universeUF of a consequence module frameworkF as the set of all
constants appearing inF (if no constant appears inF , an arbitrary constant is added),
and the baseHBF of F as the set of all ground literals constructible from the predicate
symbols appearing inF and the constants ofUF .

A consequence module framework is stratified on modules if there are no circular
dependencies through consequence modules. In the following, letPred(Σ) denote the
set of predicates in a syntactic elementΣ.

Definition 2 (Stratification on Modules). A consequence module frameworkF =
〈B,M〉 is stratified on modulesif there exists a level mappingλ (a stratification) from
the set of predicates inF to N, such that for each ruler in B, λ(b) ≤ λ(h) holds for
eachb ∈ Pred(B(r)) andh ∈ Pred(H(r)), and for each module〈P, I,O,m〉 ∈ M,
λ(i) < λ(o) holds for eachi ∈ I ando ∈ Pred(O).

In the following, we will consider only consequence module programs, which are
stratified on modules.

The semantics of a stratified consequence module programF is given by an evalu-
ation along one of its level mappings. In other words, the answer sets ofF are obtained
by simply running the modules in an order of stratification and applying the modules
query on the result of each.

Definition 3. Given a stratified consequence module frameworkF = 〈B,M〉 andλ
one of its stratifications, let, for eachi ∈ N, Bi = {r ∈ B | i = max{λ(h) | h ∈
H(r)}} andMi = {〈P, I,O,m〉 ∈ M | i = max{λ(o) | o ∈ Pred(O)}}.
Definition 4. For a moduleM = 〈P, I,O,m〉 and a setA of ground atoms,AS(A ⊲
M) = {oσ | o ∈ O, oσ ∈ X}, whereσ is a substitution,X = BC(P ∪ A) if
m = brave, X = CC(P ∪A) if m = cautious, X = DC(P ∪A) if m = definite. For
a setM of modules, letAS(A ⊲M) =

⋃
M∈M AS(A ⊲ M).

38 W. Faber and S. Woltran

Given a stratified consequence module frameworkF = 〈B,M〉, we then define the
following sequence

AS0(F) = AS(B0) ∪AS(∅ ⊲M0)
ASi(F) = AS(ASi−1(F) ∪Bi) ∪AS(ASi−1(F) ⊲Mi), for i > 0

in order to obtainAS(F) = ASn(F) wheren = max{λ(p) | p ∈ Pred(F)}.
It is not hard to see that any stratification will lead to the same answer sets.
Note that the semantics of unstratified consequence module frameworks cannot be

defined in this way because of circular dependencies. In thispaper we refrain from
studying unstratified settings, as their intended semantics is not obvious and possibly
gives rise to complexity issues. In a similar way, we do not consider nested modules
(that is, occurrences of modules inside module programs). While the intended seman-
tics for these would be more obvious, they would hamper the considerations in Section 5
and possibly also give rise to complexity issues. We believethat the framework in this
paper is sufficiently rich to describe many problems, which incur reasoning subtasks,
in a natural way. We conjecture that considering an unrestricted language not requiring
stratification and allowing for nested consequence moduleswould result in a relatively
high complexity, while the language considered here essentially stays inside ASP com-
plexity bounds.

4 Applications

In this section, we study some example encodings using consequence modules. The
first one is a well-known problem from propositional logic, which we will describe in
detail, the second one is from planning. Another example would be computing the ideal
extension for abstract argumentation frameworks, which was studied in [8], and which
we omit here for space reasons.

4.1 The Unique Minimal Model Problem

As a first example, we show how to encode the problem of deciding whether a given
propositional formulaϕ has a unique minimal model. This problem is known to be in
ΘP

2 and to beco-NP-hard (the exact complexity is an open problem). Our encodings
will rely on the following observation which is obvious if one considers models as sets
of those atoms which are assigned to true: LetI be the intersection of all models ofϕ,
thenϕ has a unique minimal model iffI is also a model ofϕ.

We will use a simple consequence module framework for this task consisting of
a single module which will take care of computing the intersection of all models of
a propositional CNF formulaϕ, and a simple base program which, on the one hand,
contains a suitable representation of the formulaϕ (and passes this to the module), and,
on the other hand, checks whether the result of the module yields a model ofϕ.

Let us make this idea more precise. To start with, we fix the representation of CNFs.
Let ϕ (over atomsA) be of the form

∧n
i=1 ci. Then,

Dϕ = {at(a) | a ∈ A} ∪ {cl(i) | 1 ≤ i ≤ n} ∪

A Framework for Programming with Module Consequences 39

{pos(a, i) | atoma occurs positively inci} ∪
{neg(a, i) | atoma occurs negatively inci}.

For the module, we require a program whose answer sets are in aone-to-one corre-
spondence to models of formulas. For this purpose, considerthe programSAT as the
set of the following rules.

true(X) :- not false(X), at(X);
false(X) :- not true(X), at(X);

ok(C) :- true(X),pos(X,C);
ok(C) :- false(X),neg(X,C);

:- not ok(C), cl(C).

It can be checked that the answer sets ofSAT∪Dϕ are in a one-to-one correspondence
to the models (overA) of ϕ. In particular, for any modelI ⊆ A of ϕ there exists an
answer setM of SAT ∪Dϕ such thatI = {a | true(a) ∈ M}.

Our consequence module will now be given by

SATcautious = 〈SAT, {at, cl,pos,neg}, {true(X)}, cautious〉.

In fact, usingDϕ as input toSATcautious, we obtain a result which characterizes those
atoms inϕ which are true in all models ofϕ.

For the base program, let us now define the programMODELCHECK as the set
of the following rules

ok(C) :- true(X),pos(X,C);
ok(C) :- not true(X),neg(X,C);
:- not ok(C), cl(C).

We immediately obtain the following result.

Theorem 1. For any CNF formulaϕ, it holds thatϕ has a unique minimal model, if
and only if the framework〈Dϕ∪MODELCHECK, {SATcautious}〉 has an answer set.

A slight adaption of this encoding allows us to formalize reasoning under the closed-
world assumption (CWA), cf. [14], over a propositional knowledge baseϕ, since the
atomsa in ϕ, for which the corresponding atomstrue(a) are not contained in any
answer set of the programSAT on inputDϕ, i.e. those atomstrue(a) not contained in
the output of the moduleSATcautious on inputDϕ, are exactly those which are added
negated toϕ for CWA-reasoning. In other words, the framework,

〈Dϕ ∪ {false(X) :- not true(X), at(X)}, {SATcautious}〉

represents the closed-world closure ofϕ. Further extensions of the base program can
now be used to formulate CWA-reasoning problems.

40 W. Faber and S. Woltran

4.2 Planning

Let us consider secure planning, which is also known as conformant or certain plan-
ning [15–18]. Given a description of a nondeterministic transition system involving
states (composed of fluents) and actions (occurring betweenstates), a secure plan is a
sequence of actions (a plan), which allows for reaching a goal state in any possible out-
come of action execution. This means that, starting from a set of initial states, executing
a secure plan must not get “stuck” during execution (the subsequent action must always
be executable), and must eventually reach the goal state.

Let us consider the problem of deciding whether a given plan is secure. For the
languageK of [17], some ASP encodings have been defined in [19]. Let us assume the
availability of a programTRAJ (for a given transition system described inK) that has
one answer set for each trajectory for a sequence of actions given in the input, where
a trajectory is a sequence of states along a path in the given transition system that is
labeled by the sequence of actions in the input. For so-called proper transition systems
(cf. [17]) it is sufficient to check whether all trajectoriesend in a goal state.

We can then define a consequence module

TRAJcautious = 〈TRAJ, {a1, . . . , an}, {f1(t1), . . . , fn(tn)}, cautious〉.
wherea1, . . . , an are predicates representing actions (and thus plans), andf1(t1), . . . ,
fn(tn) are atoms representing a goal state. Secure plan checking can then be captured
by a framework

〈AP ∪G = { :- not g ; g :- f1(t1), . . . , fn(tn)}, {TRAJcautious}〉
whereAP is an encoding of the plan to be checked. If there is an answer set, the plan is
secure.

Now assume thatINITEX is a program that computes initial states of a given tran-
sition system and which moreover derives an atomi with each initial state (cf. [19]).
We define the consequence module

INITEXbrave = 〈INITEX, ∅, {i}, brave〉.
Moreover, assume the existence of a programENUMPLANS, which wheneveri holds,
generates as answer sets all possible plans of a specified length (cf. [19]). Finding se-
cure plans for proper planning domains can then be accomplished by the following
framework.

〈ENUMPLANS ∪G, {INITEXbrave,TRAJcautious}〉

5 Transforming Consequence Modules to ASP

While one could implement the suggested language using oracles formed of ASP sys-
tems (see [20] for a recent realization of such an approach),and so lifting the framework
on a metalevel, we propose an alternative method which allows for an implementation
using ASP itself. We make use of manifold programs that we have recently proposed in
[8], and elaborate on them.

A Framework for Programming with Module Consequences 41

5.1 Manifold Programs

The main idea of manifold programs is to obtain a translationwhich creates a copy of
a given program for each element of a subset of its Herbrand base. Let us first consider
the simpler case of propositional programs.

We create a copy of a given programP for each atoma in a given setS, whereby
the transformation guarantees the existence of an answer set by enabling the copies
conditionally.

Definition 5. For a strong propositional programP andS ⊆ HBP , define itsmanifold
as

P tr
S =

⋃
r∈P

{H(r)a :- {c} ∪B(r)a | a ∈ S} ∪ {c :- not i ; i :- not c}.

whereIa = {pa | atomp ∈ I}∪{not pa | not p ∈ I} for a setI of atoms and an atom
a. We assumeHBP ∩HBP tr

S
= ∅, that is, all symbols inP tr

S are assumed to be fresh.

Example 1.ConsiderΦ = {p ∨ q :- ; r :- p ; r :- q} for which AS(Φ) = {{p, r},
{q, r}}, BC(Φ) = {p, q, r} andCC(Φ) = DC(Φ) = {r}. When forming the manifold
for HBΦ = {p, q, r}, we obtain

Φtr
HBΦ

=

pp ∨ qp :- c ; rp :- c, pp ; rp :- c, qp ; c :- not i ;
pq ∨ qq :- c ; rq :- c, pq ; rq :- c, qq ; i :- not c ;
pr ∨ qr :- c ; rr :- c, pr ; rr :- c, qr

Note that given a strong programP andS ⊆ HBP , the construction ofP tr

S can
be done in polynomial time (w.r.t. the size ofP). The answer sets of the transformed
program consist of (and extend) all combinations (of size|S|) of answer sets of the
original program (augmented byc) plus the special answer set{i} which we shall use
to indicate inconsistency ofP .

Example 2.ForΦ of Example 1, we obtain thatAS(Φtr
HBΦ

) consists of{i} plus (copies
of {q, r} are underlined for readability)

{c, pp, rp, pq, rq, pr, rr}, {c, qp, rp, pq, rq, pr, rr}, {c, pp, rp, qq, rq, pr, rr},
{c, pp, rp, pq, rq, qr, rr}, {c, qp, rp, qq, rq, pr, rr}, {c, qp, rp, pq, rq, qr, rr},
{c, pp, rp, qq, rq, qr, rr}, {c, qp, rp, qq, rq, qr, rr}.

Using this transformation, each answer set encodes an association of an atom with
some answer set of the original program. If an atoma is a brave consequence of the
original program, then a witnessing answer set exists, which contains the atomaa. The
idea is now to prefer those atom-answer set associations where the answer set is a
witness. We do this by means of weak constraints and penalizeeach association where
the atom is not in the associated answer set, that is, whereaa is not in the answer set
of the transformed program. Doing this for each atom means that an optimal answer set
will not containaa only if there is no answer set of the original program that contains
a, so eachaa contained in an optimal answer set is a brave consequence of the original
program.

42 W. Faber and S. Woltran

Definition 6. Given a strong propositional programP andS ⊆ HBP , let

P bc
S = P tr

S ∪ {:∼ not aa | a ∈ S} ∪ {:∼ i}
Observe that all weak constraints are violated in the special answer set{i}, while in

the answer set{c} (which occurs if the original program has an empty answer set) all
but :∼ i are violated.

Example 3.For the programΦ as given Example 1,Φbc
HBΦ

is given byΦtr
HBΦ

∪ {:∼
not pp ; :∼ not qq ; :∼ not rr ; :∼ i}. We obtain thatAS(Φbc

HBΦ
) = {A1, A2},

whereA1 = {c, pp, rp, qq, rq, pr, rr} andA2 = {c, pp, rp, qq, rq, qr, rr}, as these two
answer sets are the only ones that violate no weak constraint. We can observe that
{a | aa ∈ A1} = {a | aa ∈ A2} = {p, q, r} = BC(Φ).

For cautious consequences, we use a similar idea, taking into account that if a pro-
gram is inconsistent (in the sense that it does not have any answer set), each atom is a
cautious consequence.

Definition 7. Given a strong propositional programP andS ⊆ HBP , let

P cc
S = P tr

S ∪ {:∼ aa | a ∈ S} ∪ {aa :- i | a ∈ S} ∪ {:∼ i}
Example 4.Recall programΦ from Example 1. We haveΦcc

HBΦ
= Φtr

HBΦ
∪{:∼ pp ; :∼

qq ; :∼ rr ; pp :- i ; qq :- i ; rr :- i ; :∼ i}. We obtain thatAS(Φcc
HBΦ

) =
{A3, A4}, whereA3 = {c, qp, rp, pq, rq, pr, rr} andA4 = {c, qp, rp, pq, rq, qr, rr}, as
these two answer sets are the only ones that violate only one weak constraint, namely
:∼ rr. We observe that{a | aa ∈ A3} = {a | aa ∈ A4} = {r} = CC(Φ).

Finally we slightly adapt the construction for definite consequences.

Definition 8. Given a strong propositional programP andS ⊆ HBP , let

P dc
S = P tr

S ∪ {:∼ aa; ia :- i; :∼ ia | a ∈ S} ∪ {:∼ i}
Example 5.Recall programΦ from Example 1. We haveΦdc

HBΦ
= Φtr

HBΦ
∪{:∼ pp ; :∼

qq ; :∼ rr ; ip :- i ; iq :- i ; ir :- i :∼ ip ; :∼ iq ; :∼ ir ; :∼ i}. As in Example 4,
A3 andA4 are the only ones that violate only one weak constraint, namely :∼ rr, and
thus are the answer sets ofΦdc

HBΦ
.

Proposition 1. Given a strong propositional programP andS ⊆ HBP , for anyB ∈
AS(P bc

S), {b | bb ∈ B} = BC(P) ∩ S; for any C ∈ AS(P cc
S), {c | cc ∈ C} =

CC(P) ∩ S; for anyD ∈ AS(P dc
S), {d | dd ∈ D} = DC(P) ∩ S.

Obviously, one can compute all brave, cautious, or definite consequences of a pro-
gram by choosingS = HBP . We also note that the programs from Definitions 6, 7 and
8 yield multiple answer sets. However each of these yields the same atomsaa, so it is
sufficient to compute one of these. This issue will be addressed in Section 5.2.

We now generalize these techniques to non-ground strong programs. In principle,
one could annotate each predicate (rather than atom as before) with ground atoms of

A Framework for Programming with Module Consequences 43

a subset of the Herbrand Base. However, one can also move the annotations to the
non-ground level: For example, instead of annotating a rulep(X,Y) :- q(X,Y) by the
set{r(a), r(b)} yieldingpr(a)(X,Y) :- qr(a)(X,Y) andpr(b)(X,Y) :- qr(b)(X,Y) we
will annotate using only the predicater and extend the arguments ofp, yielding the
compact ruledr

p(X,Y,Z) :- dr
q(X,Y,Z) (we use predicate symbolsdr

p anddr
q rather

thanpr andqr just for pointing out the difference between annotation by predicates
versus annotation by ground atoms). In this particular example we have assumed that
the program is to be annotated by all ground instances ofr(Z); we will use this assump-
tion also in the following for simplifying the presentation. In practice, one can clearly
add atoms to the rule body for restricting the instances of the predicate by which we
annotate, in the example this would yieldpr(X,Y,Z) :- qr(X,Y,Z), dom(Z) where
the predicatedom should be defined appropriately. In the following, recall that α(p)
denotes the arity of a predicatep.

Definition 9. Given an atoma = p(t1, . . . , tn) and a predicateq, let atr
q be the atom

dq
p(t1, . . . , tn,X1, . . . ,Xα(q)) whereX1, . . . ,Xα(q) are fresh variables anddq

p is a new
predicate symbol withα(dq

p) = α(p)+α(q). Furthermore, given a setL of literals, and
a predicateq, letLtr

q be{atr
q | atoma ∈ L} ∪ {not atr

q | not a ∈ L}.
Note that we assume that even though the variablesX1, . . . ,Xα(q) are fresh, they

will be the same for eachatr
q . One could define similar notions also for partially ground

atoms or for sets of atoms characterized by a collection of defining rules, from which
we refrain here for the ease of presentation. We define the manifold program in analogy
to Definition 5, the only difference being the different way of annotating.

Definition 10. Given a strong programP and a setS of predicates, define itsmanifold
as

P tr
S =

⋃
r∈P

{H(r)tr
q :- {c} ∪B(r)tr

q | q ∈ S} ∪ {c :- not i ; i :- not c}.

Example 6.Consider programΨ = {p(X) ∨ q(X) :- r(X); ; r(a) :- ; r(b) :- } for
which AS(Ψ) = {{p(a), p(b), r(a), r(b)}, {p(a), q(b), r(a), r(b)}, {q(a), p(b), r(a),
r(b)}, {q(a), q(b), r(a), r(b)}}. Hence,BC(Ψ) = {p(a), p(b), q(a), q(b), r(a), r(b)}
andCC(Ψ) = DC(Ψ) = {r(a), r(b)}. Forming the manifold forS = {p}, we obtain

Ψ tr
S =

{
dp

p(X,X1) ∨ dp
q(X,X1) :- dp

r(X,X1), c ;
dp

r(a,X1) :- c ; dp
r(b,X1) :- c ; c :- not i ; i :- not c

}
AS(Ψ tr

S) consists of{i} plus 16 answer sets, corresponding to all combinations of the
four answer sets inAS(Ψ).

Now we are able to generalize the encodings for brave, cautious, and definite con-
sequences. These definitions are direct extensions of Definitions 6, 7, and 8, the dif-
ferences are only due to the non-ground annotations. In particular, the diagonalization
atomsaa should now be written asdp

p(X1, . . . ,Xα(p),X1, . . . ,Xα(p)) which represent
the set of ground instances ofp(X1, . . . ,Xα(p)), each annotated by itself. So, a weak
constraint:∼ dp

p(X1, . . . ,Xα(p),X1, . . . ,Xα(p)) gives rise to{:∼ dp
p(c1, . . . , cα(p),

c1, . . . , cα(p)) | c1, . . . , cα(p) ∈ U} whereU is the Herbrand base of the program in
question, that is one weak constraint for each ground instance annotated by itself.

44 W. Faber and S. Woltran

Definition 11. Given a strong programP and a setS of predicate symbols, let

P bc
S = P tr

S ∪ {:∼ not ∆q | q ∈ S} ∪ {:∼ i}
P cc

S = P tr
S ∪ {:∼ ∆q; ∆q :- i | q ∈ S} ∪ {:∼ i}

P dc
S = P tr

S ∪ {:∼ ∆q; Iq :- i; :∼ Iq | q ∈ S} ∪ {:∼ i}

where∆q = dq
q(X1, . . . ,Xα(q),X1, . . . ,Xα(q)) andIq = iq(X1, . . . ,Xα(q)).

Proposition 2. Given a strong programP and a setS of predicates, for an arbitrary
A ∈ AS(P bc

S), (resp.,A ∈ AS(P cc
S), A ∈ AS(P dc

S)), the set{p(c1, . . . , cα(p)) |
dp

p(c1, . . . , cα(p), c1, . . . , cα(p)) ∈ A} is the set of brave (resp., cautious, definite) con-
sequences ofP with a predicate inS.

Example 7.Consider againΨ andS = {p} from Example 6. We obtainΨ bc
S = Ψ tr

S ∪
{:∼ not dp

p(X1,X1) ; :∼ i} and we can check thatAS(Ψ bc
S) consists of the sets

R∪{dp
p(a, a),dp

p(b, b),d
p
q(a, b),dp

q(b, a)}, R∪{dp
p(a, a),dp

p(b, b),d
p
p(a, b),dp

q(b, a)},
R∪{dp

p(a, a),dp
p(b, b),d

p
q(a, b),dp

p(b, a)}, R∪{dp
p(a, a),dp

p(b, b),d
p
p(b, a),dp

p(b, a)};

whereR = {dp
r(a, a),dp

r(a, b),dp
r(b, a),dp

r(b, b)}. For eachA of these answer sets we
obtain{p(t) | dp

p(t, t) ∈ A} = {p(a), p(b)} which corresponds exactly to the brave
consequences ofΨ with a predicate ofS = {p}.
For cautious consequences,Ψ cc

S = Ψ tr
S ∪ {:∼ dp

p(X1,X1) ; dp
p(X1,X1) :- i ; :∼ i}

and we can check thatAS(Ψ cc
S) consists of the sets

R∪{dp
q(a, a),dp

q(b, b),d
p
q(a, b),dp

q(b, a)}, R∪{dp
q(a, a),dp

q(b, b),d
p
p(a, b),dp

q(b, a)},
R∪{dp

q(a, a),dp
q(b, b),d

p
q(a, b),dp

p(b, a)}, R∪{dp
q(a, a),dp

q(b, b),d
p
p(b, a),dp

p(b, a)};

whereR = {dp
r(a, a),dp

r(a, b),dp
r(b, a),dp

r(b, b)}. For eachA of these answer sets we
obtain{p(t) | dp

p(t, t) ∈ A} = ∅ and indeed there are no cautious consequences ofΨ
with a predicate ofS = {p}.
Finally, for definite consequences,Ψdc

S = Ψ tr
S ∪ {:∼ dp

p(X1,X1) ; ip(X1) :- i ; :∼
ip(X1) ; :∼ i}. It is easy to see thatAS(Ψdc

S) = AS(Ψ cc
S) and so{p(t) | dp

p(t, t) ∈
A} = ∅ for each answer setA of Ψdc

S , and indeed there is also no definite consequence
of Ψ with a predicate ofS = {p}.

These definitions exploit the fact that the semantics of non-ground programs is de-
fined via their grounding with respect to their Herbrand Universe. So the fresh variables
introduced in the manifold will give rise to one copy of a rulefor each ground atom. In
practice, ASP systems usually require rules to be safe, thatis, that each variable occurs
(also) in the positive body. The manifold for a set of predicates may therefore contain
unsafe rules (because of the fresh variables). But this can be repaired by adding ado-
main atomdomq(X1, . . . ,Xm) to a rule which is to be annotated withq. This predicate
can in turn be defined by a ruledomq(X1, . . . ,Xm) :-u(X1), . . . , u(Xm) whereu is
defined using{u(c) | c ∈ UP }. One can also provide smarter definitions fordomq by
using a relaxation of the definition forq.

A Framework for Programming with Module Consequences 45

5.2 Transforming Consequence Module Frameworks by Manifolding

The main intuition is to replace each module by a suitable manifold program. In par-
ticular, given a moduleM = 〈P, I,O,m〉 in a frameworkF , we intend to create its
manifold transform asP bc

Pred(O) if m = brave, P cc
Pred(O) if m = cautious, P dc

Pred(O) if
m = definite. Together with suitableadaptor rules, which map the transformed predi-
cates back to predicates of the original program, these willbe joined to the base program
of the framework.

However, there are two main issues to resolve: As remarked earlier, the various
manifold programs may admit more than one answer set, which are equivalent with
respect to the consequences represented in them. Still, in the context of modules we
would like to have a single answer set. The second issue dealswith the fact that the
manifold transforms of different modules should not interfere with each other.

The first issue can be dealt with by adding penalties in a way that only one answer
set remains. In order to avoid interference with other weak constraints, these should be
put into a separate level of lower importance. To this end oneshould fix an arbitrary
order of the ground atoms inX = {dq

q(c1, . . . , cα(q), c
′
1, . . . , c

′
α(q)) | ci, c

′
j ∈ UF , ck 6=

c′k} ∪ {dp
q(c1, . . . , cα(q), c

′
1, . . . , c

′
α(p)) | p 6= q, ci, c

′
j ∈ UF } and assigning weights of

the exponential sequence1, 2, 4, 8, . . . to them. This is because each atom should incur
a penalty which is greater than the sum of penalties of all preceding atoms. In particular,
if a0, a1, . . . is an enumeration ofX respecting the chosen order, add a weak constraint
:∼ ai.[2i : 1]. The weak constraints of the original manifold programs should be put in
the more important level 2 (higher levels are more importantin the semantics of weak
constraints), so all weak constraints introduced in Section 5.1 should be extended by
[1 : 2] (weight1 is the default for weights, which was implicitly used in Section 5.1).

The weak constraints introduced in this way can be thought ofreducing the set of
answer-set candidates in the following way: If answer sets without a0 exist, further
consider only those, otherwise there is no reduction. So theresulting candidates either
all do not containa0, or all do. Then, among the result, if answer sets withouta1 exist,
further consider only those, otherwise there is no reduction. The remaining candidates
do not differ on the presence ofa0 anda1. Continuing like this, in the end the remaining
candidates will not differ on the presence of any element inX. If the original set of
answer-set candidates differs only on elements inX, then only one answer set remains.

The second modification regards combinability of manifold programs. We would
like to be able to simply form the union of all manifold programs replacing the modules.
The way in which manifold programs have been defined in Section 5.1, they could
in principle share predicate names, which would lead to unwanted interferences. We
therefore ensure that each manifold program introduces a unique set of predicates by
extending the predicatesdq

p, iq (pa, ia in the propositional case) andi, c by a string
uniquely identifying the module, which the manifold program represents.

Definition 12. For a moduleM = 〈P, I,O,m〉, let its manifold transformbe defined
asT (M) = Pm

Pred(O), whereP brave
Pred(O), P cautious

Pred(O), P definite
Pred(O) correspond to the mani-

fold programs of Section 5.1 with the modifications described above.
Theadaptor rulesfor the moduleM are defined as

AM = {p(t1, . . . , tα(p)) :- dp
p(t1, . . . , tα(p), t1, . . . , tα(p)) | p(t1, . . . , tα(p)) ∈ O}

46 W. Faber and S. Woltran

Themanifold programfor a consequence module frameworkF = 〈B,M〉 is then
T (F) = B ∪⋃

M∈M(T (M) ∪AM).

Now we can state the correspondence result.

Proposition 3. For a consequence module frameworkF , AS(F) = AS(T (F)) ∩
HBF . In fact, there is a one-to-one correspondence betweenAS(F) andAS(T (F)) ∩
HBF .

Some of the key observations for this correspondence resultare that the depen-
dencies of predicates of the base program remain unaltered in T (F), and that module
dependencies between predicates inF become standard dependencies inT (F) via the
predicates introduced by manifolding. This allows for applying the splitting set theo-
rem of [21] to the program without weak constraints, mimicking the sequenceASi(·)
of Definition 4. However, the manifold parts ofT (F) give rise to many answer-set can-
didates, among which there are also answer sets that containexactly the consequences
under the respective reasoning mode. The combined programT (F) thus will contain
many answer-set candidates, but among these there are also precisely the answer sets of
the framework, because the latter are defined by replacing the modules by the respective
consequences.

The combination of all weak constraints then eliminates allbut these candidates.
Combining the weak constraints, considering first only those weak constraints described
in Section 5.1, has the desired effect because the symbols introduced byT (M) are not
contained in any otherT (M ′). Because of this and since these weak constraints all
have weight1, any global optimum must also be an optimum locally for anyT (M).
Therefore, without adding the additional weak constraintsfor enforcing uniqueness,
the first part of Proposition 3 already holds. One can then show that the differences
between multiple answer sets ofT (F) representing a single answer set ofF is only due
to atoms in the setsX described above, which are reduced to precisely one using the
method described earlier, thus obtaining a one-to-one correspondence.

6 Conclusion

In this paper, we provided a novel framework for specifying ASP programs, which in-
volve the consequences of subprograms, defining syntax and semantics of the proposed
language. We gave examples for problems that possess a comparably natural represen-
tation in this language, while a traditional ASP specification is not obvious. Moreover,
we proposed a transformation of consequence module frameworks to ASP with weak
constraints, based on an adaption of the recently proposed manifold program technique,
which allows for using a standard ASP solver supporting weakconstraints for comput-
ing answer sets of consequence module frameworks.

For future work, we are interested in studying the effects oflifting the restriction
of module stratification and of module nesting. We would alsolike to explore the
possibility to use alternative optimization constructs offered by ASP solvers, such as
minimize supported bylparse andgringo, in order not to be restricted by the

A Framework for Programming with Module Consequences 47

availability of weak constraints. Also on our agenda is analyzing the relationship be-
tween our framework and other proposals for modular ASP (see, e.g. [22, 13]). Finally,
we would also like to implement a system that supports consequence module program-
ming.

References

1. Marek, V.W., Truszczýnski, M.: Stable models and an alternative logic programming
paradigm. In: The Logic Programming Paradigm – A 25-Year Perspective. (1999) 375–
398

2. Niemel̈a, I.: Logic programming with stable model semantics as a constraint programming
paradigm. AMAI25(3–4) (1999) 241–273

3. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. CUP
(2002)

4. Gelfond, M.: Representing knowledge in A-Prolog. In: Computational Logic: From Logic
Programming into the Future. LNCS 2408, (2002) 413–451

5. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub,T., Truszczýnski, M.: The first
answer set programming system competition. In: LPNMR’07. LNCS 4483, (2007) 3–17

6. Bravo, L., Bertossi, L.E.: Logic programs for consistently querying data integration systems.
In: IJCAI 2003, (2003) 10–15

7. Sacc̀a, D.: Multiple total stable models are definitely needed to solve unique solutionprob-
lems. Inf. Process. Lett.58(5) (1996) 249–254

8. Faber, W., Woltran, S.: Manifold answer-set programs for meta-reasoning. In: LPNMR’09.
LNCS 5753, (2009) 115–128

9. Buccafurri, F., Leone, N., Rullo, P.: Enhancing disjunctive datalog by constraints. IEEE
Trans. Knowl. Data Eng.12(5) (2000) 845–860

10. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri,S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. TOCL7(3) (2006) 499–562

11. Gelfond, M., Lifschitz, V.: Classical negation in logic programs anddisjunctive databases.
New Generation Comput.9(3/4) (1991) 365–386

12. Oikarinen, E., Janhunen, T.: Achieving compositionality of the stablemodel semantics for
smodels programs. TPLP8(5-6) (2008) 717–761

13. Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Modular nonmonotonic logic program-
ming revisited. In: Proceedings of the ICLP’09. LNCS 5649, (2009) 145–159

14. Reiter, R.: On closed world data bases. In: Logic and Databases. Plenum Press (1978) 55–76
15. Goldman, R.P., Boddy, M.S.: Expressive planning and explicit knowledge. In: AIPS’96,

AAAI Press (1996) 110–117
16. Smith, D.E., Weld, D.S.: Conformant Graphplan. In: AAAI’98,AAAI Press (1998) 889–896
17. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: A logic programming approach to

knowledge-state planning: Semantics and complexity. TOCL5(2) (2004) 206–263
18. Son, T.C., Tu, P.H., Gelfond, M., Morales, A.R.: An approximation of action theories of and

its application to conformant planning. In: LPNMR’05. LNCS 3662, (2005) 172–184
19. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: A logic programming approach to

knowledge-state planning, II: the DLVK system. Artif. Intell.144(1–2) (2003) 157–211
20. Balduccini, M.: A general method to solve complex problems by combining multiple answer

set programs. In: Proceedings ASPOCP’09. (2009)
21. Lifschitz, V., Turner, H.: Splitting a logic program. In: ICLP’94, MIT Press (1994) 23–37
22. Oikarinen, E.: Modularity in Answer Set Programs. PhD thesis, Helsinki University of

Technology, Finland (2008)

48 W. Faber and S. Woltran

