A Framework for Programming with Module
Consequences

Wolfgang Faber and Stefan Woltrah

1 University of Calabria, Italy
wf@wfaber.com
2 Vienna University of Technology, Austria
woltran@dbai.tuwien.ac.at

Abstract. We present a framework which allows to combine answer-set pro-
grams in a way that consequences (rather than answer sets theeélves
grams can be used as input to other programs. Situations in which soofipa-<
sition of programs is required appear in many practical application prabl€o

far, to deal with such problems, multiple calls to answer-set solvers ugerally
indispensable, as a direct ASP encoding is often much less obviouddilioa,

we provide a technique for compiling such frameworks into a single AS§pam
which consequently can be evaluated by a single call to an answethset Sur
approach relies on the recently introduced concept of manifold pregyvehich
make use of weak constraints to identify consequences of programs.

1 Introduction

In the last decadeAnswer-Set ProgramminfASP) [1, 2], also known as A-Prolog
[3,4], has emerged as a declarative programming paradigsi® i& well suited for
modelling and solving problems which involve common-saesesoning, and has been
fruitfully applied to a wide variety of applications inclund) diagnosis, data integration,
configuration, and many others. This development was fuayeithe efficiency of the
latest tools for processing ASP programs (so-called ASFess) which reached a state
that makes ASP applicable for problems of practical impuang5]. The most frequent
use of ASP is to compute answer sets (usually stable modedslogic program from
which the solutions of the problem encoded by the progranbeawbtained.

A somewhat neglected aspect of ASP are its capabilitiesrma®f consequence
relations (or, more general, using queries over answey, sgtich are firmly rooted in
the tradition of nonmonotonic reasoning. Different to slaal settings, in nonmono-
tonic reasoning there is no canonical consequence relatiom two most studied ones
are brave and cautious consequence (sometimes also tesrbealva and cautious rea-
soning); the former is also known as credulous or possiladsaing, the latter is also
referred to as skeptical or certain reasoning. In the comteXSP, one is usually inter-
ested in a subset of the atomic brave or cautious consegaemcieh corresponds to a

* This work was supported by the Vienna Science and Technology FUdT(wy, grant ICT08-
028, and by M.I.U.R. within the Italia-Austria internazionalization proj&istemi basati sulla
logica per la rappresentazione di conoscenza: estensioni e techittiendzzazione”.

A Framework for Programming with Module Consequences 35

generalization of query answering for databases. In tiiseseASP can also be seen as
an evolution of Datalog, a logical database query language.

As an example scenario, let us consider a problem stemmingdatabase systems.
A database is inconsistent, if a given database instance mlatesatisfy some of the
constraints imposed. One could argue that the creatiorcohsistent databases should
be inhibited, but it is also obvious that this is not alwaysgible: For instance, when
integrating data, that is, whenever only partitions of tatachre maintained in a locally
consistent state (for example due to permissions or phydistibution), the merged
data is not guaranteed to be consistent. Still, one wouddtbkwork with such data.

An attractive approach to dealing with inconsistent data isonsider minimal re-
pairs, that is, considering minimal modifications of thead#itat establish a consis-
tent state. ASP has been successfully employed for spegifynd computing mini-
mal repairs (see, e.g., [6]). In general, there is no uniginénmal repair, and the usual
workaround is to take a conservative approach and congidsetparts of the database
which hold in each minimal repair. In the ASP setting, thiathecorresponds to con-
sidering the cautious consequences of the program enctitérdatabase repairs.

However, as mentioned earlier, support for consequenataors is somewhat lim-
ited in current answer-set programming tools: Not all AS&tems support computing
atomic consequences directly, and even if they do, it isllysdane as a final process-
ing step, in the sense that it is not possible to use the atoomsequences in the same
run in order to do further reasoning. One could try to sineuthis kind of reasoning
by adding additional rules to the program over which the eqnences are computed.
However, the following simple example demonstrates thélpras of this approach:
The program{a - not b ; b= not a} has two answer set$a} and {b}, and so its
brave atomic consequences arandb, while there is no cautious atomic consequence.
In order to represent the question whether at least omeoof is a consequence, one
could try to add{q:- a ; ¢= b} to the program and check whethefis an atomic
consequence. While this works correctly for brave consecpge(a positive answer),
it does not for cautious consequences. The reason igytizaindeed a cautious con-
sequence of the modified program thus yielding a positivevanso the query, while
neithera norb is a cautious atomic consequence.

Actually, one would hope to be able to use as many languadarésathat ASP
provides in order to reason with atomic consequences of grany, but as seen in the
simple example above, existing query interfaces are ircserffi for this task. Indeed, if
one wants to employ recursion, a hypothetical method ofwirdpthe original program
by additional rules is quite obviously inadequate in mosesa

In this work, we introduce a framework that overcomes thatéitions outlined
above. In particular, we propose a language that encapsudamputing brave, cautious
or definité consequences of a program, which can then be utilized ingerakSP
program.

We discuss properties and limitations of the language asdride techniques for
implementing a system supporting the language. In padicule propose an extension
of manifold programsthat we have recently proposed as a method for compilingyque
answering into ASP in [8]. In particular, a manifold progradiy of an ASP program

3 An alternative notion proposed in [7].

36 W. Faber and S. Woltran

P allows for identifying all consequences of a certain typarignts exist for brave,
cautious, and definite consequences) within a single anseteThe framework we
present here goes beyond the concept of a single manifolgtgorowhich facilitates
guery answering wrt. a single program. Our framework perriiait the results (i.e.,
consequences of a certain type) of modules can serve adampuitther modules which
compile different queries of their own, and so forth. A stlethbase program finally
collects the result necessary for the overall task and ctespits own answer sets.
These sets are identified as the answer sets of the entirevirani

However, there is a price to be paid for identifying programsequences by mani-
folding: While M p contains optimization constructs (in [8] weak constraimse used,
cf. [9]), P should not contain any optimization constructs. Theress alreason for this:
While deciding whether one ground atom is a brave (respédgtiaaitious) consequence
is NP-complete for normal ground programs abd -complete for disjunctive ground
programs (respectivelyo-NP- and I71’-complete), enumerating brave (or cautious)
consequences is complete for the complexity cFéBﬁ'P for normal ground programs

,
and forFPE‘2 for disjunctive ground programs. It follows that unless godynomial

hierarchy collapses, a program enumerating brave or esmitonsequences without
optimization constructs does not exist. Moreover, in [talevant decision problems
for programs with weak constraints (without different lsyehave been shown to be
complete for the complexity clagl’ (97 in the presence of disjunction), from which

the function complexityFP‘l\‘IP (FPﬁg) can be obtained. It follows that the presence of

. . . ?
weak constraints is necessary given our current knowledg& B = P and also not
excessive.

2 Preliminaries

In this section, we review the basic syntax and semanticsSéf With weak constraints,
following [10], to which we refer for a more detailed defioiti.

An atomis an expressiop(ty, . . .,t,), wherep is apredicateof arity a(p) =n > 0
and each; is either a variable or a constantliferal is either an atom or its negation
not a. A (disjunctive) ruler is of the form

a1 V -V a, - blv'--abkn nOtbk+17..., nOtbm

withn >0, m > k > 0,n+m > 0, and whereuy, ..., a,,b1,...,b, are atoms.
Theheadof r is the setH (r) = {a4, ..., a,}, and thebodyof r is the setB(r)
{b1,...,bk, not bgi1,..., not by, }. FurthermoreB* (r) = {b1,...,bx} andB~(r)
{bk+1,---,bm }. We will sometimes denote a ruteasH (r) - B(r).
A weak constrainf9] is an expressiomwc of the form

i~ by, ..., b, N0t by, ..., N0t by, [w]

wherem > k > 0 andby,...,b,, are literals, whileweight(wc) = w (the weigh)
and! (theleve) are positive integer constants or variables. For convesigo and/or
I may be omitted and are set to 1 in this case. The Bétsc), BT (wc), and B~ (wc)
are defined as for rules. We will sometimes denote a weak@inisic as:~ B(wc).

A Framework for Programming with Module Consequences 37

A program P is a finite set of rules and weak constrain®.les(P) denotes the
set of rules andV C(P) the set of weak constraints iR. w/ . andif denote the
maximum weight and maximum level ov&/ C(P), respectively. A program (rule,
atom) ispropositionalor groundif it does not contain variables. A program is called
strongif WC(P) = (), andweakotherwise.

For any progran?, let Up be the set of all constants appearindHrif no constant
appears inP, an arbitrary constant is addedi%); let HB p be the set of all ground
literals constructible from the predicate symbols appepim P and the constants of
Up; and letGround(P) be the set of rules and weak constraints obtained by applying
to each rule and weak constraint ihall possible substitutions from the variables in
P to elements ot/p. Up is usually called théderbrand Universeof P and HB p the
Herbrand Basef P.

A ground ruler is satisfiedby a setl of ground atoms iffH (r) N I # () whenever
Bt(r) C ITandB~(r) NI = (. I satisfies a ground progra, if eachr € P is
satisfied byl. For non-groundP, I satisfiesP iff I satisfiesRules(Ground(P)). A
ground weak constraintc is violatedby I, iff Bt (wc) C I andB~ (we) N1 = (;itis
satisfied otherwise.

Following [11], a setl C HBp of atoms is aranswer sefor a strong progran®
iff it is a subset-minimal set that satisfies tleeluct

Pl ={H(r)- BY(r) | INB~(r) = 0,r € Ground(P)}.

A setl C HBp of atoms is aranswer sefor a weak progranP iff I is an an-
swer set ofRules(P) and HEund(P)(1) is minimal among all the answer sets of
Rules(P), where the penalization functiol ' (I) for weak constraint violation of a
ground progran® is defined as follows:

HP(I) = X5 (i) - Cenr (1) weight(w))
fp(l) =1, and
fep(n) =fp(n—1)-WC(P)|-wk . +1 forn>1.

max

where NP (I) denotes the set of weak constraintsffin level i violated byI. For
any programP, we denote the set of its answer setsAy(P). Note that for programs
having weak constraints only of weight and level L¢"°*"(P)(T) amounts to the
number of weak constraints violatedin

A ground atome is abrave (sometimes also called credulous or possible) conse-
quence of a prograr®?, denotedP =, a, if € A holds for at least ondl € AS(P).
A ground atorm is acautious(sometimes also called skeptical or certain) consequence
of a programP, denotedP . a, if a € A holds for allA € AS(P). A ground atom
a is adefiniteconsequence [7] of a prograf, denotedP =, a, if AS(P) # () and
a € Aholds for allA € AS(P). The sets of all brave, cautious, definite consequences
of a programP are denoted aBC'(P), CC(P), DC(P), respectively.

3 Consequence Modules

A module essentially consists of a program, a collectionasfiglly instantiated atoms,
and a reasoning mode. It can also receive some predicateglasThe idea is that this

38 W. Faber and S. Woltran

module represents those consequences of the program Unedspécified reasoning
mode which match one of the atoms.

Definition 1. Aconsequence moduler module, for short) is a quadruple?, I, O, m),
whereP (the module program) is a strong programh(the input predicates) is a set of
predicatesO (the output atoms) is a set of atoms (possibly containingatsées), and
m (the reasoning mode) is one lofave, cautious, definite.

A consequence module framewddt consequence module prograii)= (B, M)
consists of a strong prograr (called the base program) and a s&t of consequence
modules.

Although the realization of a module looks very similar toolam concepts (e.g.
modules as defined in [12] or the signature of module atom&3i),[we remark that
the concept of a reasoning mode clearly separates our abpfimen previous ones. In
particular, the output of a module in our approach is just afkcts (depending on the
chosen reasoning mode, this set is obtained from the anstgenisthe modules) which
serves as input to further modules, while in other appraathe output is usually a
collection of answer sets, which have to combined with ans&ts of other modules.

We define the univers€r of a consequence module framewdrlkas the set of all
constants appearing iR (if no constant appears ift, an arbitrary constant is added),
and the basé/B of F' as the set of all ground literals constructible from the jrat
symbols appearing if' and the constants &fy.

A consequence module framework is stratified on moduleseifettare no circular
dependencies through consequence modules. In the fotipVeinPred(X') denote the
set of predicates in a syntactic elemént

Definition 2 (Stratification on Modules). A consequence module framewadrk =
(B, M) is stratified on modules there exists a level mapping(a stratification) from
the set of predicates ifi' to N, such that for each rule in B, A\(b) < A(h) holds for
eachb € Pred(B(r)) andh € Pred(H(r)), and for each moduléP, I, O,m) € M,
A(#) < A(o) holds for each € T ando € Pred(O).

In the following, we will consider only consequence modutegrams, which are
stratified on modules.

The semantics of a stratified consequence module progirésr given by an evalu-
ation along one of its level mappings. In other words, thena@nsets off’ are obtained
by simply running the modules in an order of stratificationl applying the modules
query on the result of each.

Definition 3. Given a stratified consequence module framework (B, M) and
one of its stratifications, let, for eache N, B; = {r € B | i = maz{\(h) | h €
H(r)}}andM; = {{P,1,0,m) € M | i = maxz{\(o0) | 0 € Pred(O)}}.

Definition 4. For a moduleM = (P, 1,0, m) and a setA of ground atomsAS(A >
M) = {oo | 0 € O,00 € X}, whereo is a substitution,X = BC(P U A) if
m = brave, X = CC(P U A) if m = cautious, X = DC(P U A) if m = definite. For
a setM of modules, leS(A> M) = U e AS(A> M).

A Framework for Programming with Module Consequences 39

Given a stratified consequence module framewBrk= (B, M), we then define the
following sequence

ASO(F) = AS(B()) U AS(@ > Mo)
ASl(F) = AS(ASz_l(F) @] Bl) U AS(ASl_l(F) > Ml), fori >0

in order to obtainAS(F) = AS,,(F) wheren = max{A(p) | p € Pred(F)}.

It is not hard to see that any stratification will lead to theneaanswer sets.

Note that the semantics of unstratified consequence morhuteefvorks cannot be
defined in this way because of circular dependencies. Inpdjer we refrain from
studying unstratified settings, as their intended semaigicot obvious and possibly
gives rise to complexity issues. In a similar way, we do natsider nested modules
(that is, occurrences of modules inside module programs)levttie intended seman-
tics for these would be more obvious, they would hamper thsiderations in Section 5
and possibly also give rise to complexity issues. We belibaethe framework in this
paper is sufficiently rich to describe many problems, whintur reasoning subtasks,
in a natural way. We conjecture that considering an unasttilanguage not requiring
stratification and allowing for nested consequence modutegd result in a relatively
high complexity, while the language considered here e&glgrdtays inside ASP com-
plexity bounds.

4 Applications

In this section, we study some example encodings using gaesee modules. The
first one is a well-known problem from propositional logichiesh we will describe in

detail, the second one is from planning. Another exampleldve computing the ideal
extension for abstract argumentation frameworks, whick stadied in [8], and which
we omit here for space reasons.

4.1 The Unigue Minimal Model Problem

As a first example, we show how to encode the problem of degidinether a given
propositional formulay has a unique minimal model. This problem is known to be in
6F and to beco-NP-hard (the exact complexity is an open problem). Our engxlin
will rely on the following observation which is obvious if erconsiders models as sets
of those atoms which are assigned to true: Lbe the intersection of all models ¢f
theny has a unique minimal model iffis also a model of.

We will use a simple consequence module framework for thék tnsisting of
a single module which will take care of computing the intetim of all models of
a propositional CNF formule, and a simple base program which, on the one hand,
contains a suitable representation of the formul(and passes this to the module), and,
on the other hand, checks whether the result of the modulgsygemodel ofp.

Let us make this idea more precise. To start with, we fix theasgntation of CNFs.
Let ¢ (over atomsA) be of the formA [, ¢;. Then,

D, ={at(a) |a € A}U{cl(i) |1 <i<n}U

40 W. Faber and S. Woltran

{pos(a,i) | atoma occurs positively irc; } U
{neg(a,?) | atoma occurs negatively iw; }.
For the module, we require a program whose answer sets am@i@-8-one corre-

spondence to models of formulas. For this purpose, contiéeprogranSAT as the
set of the following rules.

true(X) = not false(X),at(X);
false(X) = not true(X), at(X);
ok(C) = true(X),pos(X,C);
ok(C) = false(X),neg(X, C);

- not ok(C),cl(C).

It can be checked that the answer setSAT U D, are in a one-to-one correspondence
to the models (overl) of . In particular, for any model C A of ¢ there exists an
answer sef\/ of SAT U D, such thatl = {a | true(a) € M}.

Our consequence module will now be given by

SAT cautious = (SAT, {at, cl, pos, neg}, {true(X)}, cautious).

In fact, usingD,, as input toSAT c.uti0us, We Obtain a result which characterizes those
atoms inp which are true in all models a$.

For the base program, let us now define the progha@DELCHECK as the set
of the following rules

ok(C) = true(X), pos(X, C);
0k(C) = not true(X),neg(X, C);
- not ok(C), cl(C).

We immediately obtain the following result.

Theorem 1. For any CNF formulap, it holds thaty has a unique minimal model, if
and only if the frameworkD,, UMODELCHECK, {SAT cautious }) Nas an answer set.

A slight adaption of this encoding allows us to formalizes@aing under the closed-
world assumption (CWA), cf. [14], over a propositional kredge basep, since the
atomsa in ¢, for which the corresponding atomsue(a) are not contained in any
answer set of the prografAT on inputD,, i.e. those atoms-ue(a) notcontained in
the output of the modul8AT c..si0us ON iNpUtD,,, are exactly those which are added
negated ta» for CWA-reasoning. In other words, the framework,

(Dy U {false(X) - not true(X),at(X)}, {SAT cautious })

represents the closed-world closurewfFurther extensions of the base program can
now be used to formulate CWA-reasoning problems.

A Framework for Programming with Module Consequences 41

4.2 Planning

Let us consider secure planning, which is also known as corant or certain plan-
ning [15-18]. Given a description of a nondeterministimsition system involving
states (composed of fluents) and actions (occurring beta®&¢es), a secure plan is a
sequence of actions (a plan), which allows for reaching agjate in any possible out-
come of action execution. This means that, starting front afgeitial states, executing
a secure plan must not get “stuck” during execution (the agibsnt action must always
be executable), and must eventually reach the goal state.

Let us consider the problem of deciding whether a given ptaseicure. For the
languageC of [17], some ASP encodings have been defined in [19]. Let sisas the
availability of a programl'RAJ (for a given transition system describedki that has
one answer set for each trajectory for a sequence of actigas @ the input, where
a trajectory is a sequence of states along a path in the gigasition system that is
labeled by the sequence of actions in the input. For soetplieper transition systems
(cf. [17]) it is sufficient to check whether all trajectoriesd in a goal state.

We can then define a consequence module

TRAJcautions = (TRAJ, {a1,...,an}, {f1(t1), ..., fu(tn)}, cautious).

whereay, . .., a, are predicates representing actions (and thus plans)f;dngd, .. .,
fn(t,) are atoms representing a goal state. Secure plan checkirtheabe captured
by a framework

(ApUG ={+-notg ; g= fi(t1),..., fu(tn)}, {TRAJcautious })

whereA p is an encoding of the plan to be checked. If there is an anssgthe plan is
secure.

Now assume thdiNITEX is a program that computes initial states of a given tran-
sition system and which moreover derives an atowith each initial state (cf. [19]).
We define the consequence module

INITEX prave = (INITEX, 0, {i}, brave).

Moreover, assume the existence of a progEaYUMPLANS, which whenevef holds,
generates as answer sets all possible plans of a specifigtth Ignf. [19]). Finding se-
cure plans for proper planning domains can then be acconagli®y the following
framework.

(ENUMPLANS U G, {INITEX byave, TRA T cautious })

5 Transforming Consequence Modules to ASP

While one could implement the suggested language usingesrémtmed of ASP sys-
tems (see [20] for a recent realization of such an approaalso lifting the framework
on a metalevel, we propose an alternative method which alfowan implementation
using ASP itself. We make use of manifold programs that we lhagently proposed in
[8], and elaborate on them.

42 W. Faber and S. Woltran

5.1 Manifold Programs

The main idea of manifold programs is to obtain a translatitiich creates a copy of
a given program for each element of a subset of its Herbrasel. th&et us first consider
the simpler case of propositional programs.

We create a copy of a given prografhfor each atonu in a given setS, whereby
the transformation guarantees the existence of an answéry ssnabling the copies
conditionally.

Definition 5. For a strong propositional progran® andS C HB p, define itamanifold
as
Py = U {H(r)*=- {c}UB(r)*|a € S}U{c- noti ; i:= notc}.
repP
wherel® = {p® | atomp € I} U{not p® | not p € I} for a setl of atoms and an atom
a. We assumé/Bp N HBptr = 0, that is, all symbols iP%" are assumed to be fresh.

Example 1.Considerd = {pV ¢q:- ; r=p ; r:= g} forwhich AS(®) = {{p,r},
{¢,r}}, BC(®) = {p,q,r} andCC(P) = DC(P) = {r}. When forming the manifold
for HBg = {p, q,r}, we obtain

pPPNVGP-c; rPe=cp? ; rP-c,qP? 5 c- noti g
tr _ og .
Pup, = PIVgi-c; ri=cp?; ri-cq?; i-note ;

T T . . T T . T

pVvqg -c; r=c,p; r=cq

Note that given a strong prograf and.S C HBp, the construction o’y can
be done in polynomial time (w.r.t. the size £). The answer sets of the transformed
program consist of (and extend) all combinations (of i@ of answer sets of the
original program (augmented k¥ plus the special answer sgt} which we shall use
to indicate inconsistency a?.

Example 2.For® of Example 1, we obtain thatS (&%,) consists of i} plus (copies
of {¢,r} are underlined for readability)

T D o q T T
{e,pPrP p9, 9, p" 1"} {e, g8, rP pt rd, p" " {e, pP P gl pT T
T T y4 q T T y4 T T
{e,p?,r2, 0,19, ", r" } {e, P 1P g% p" T} {e, ¢b P ptre gt T}
q v T P q v T
{e,pP, 7P, q%, 1% q" "} {e, ¢, rP ¢4, r? ", "}

Using this transformation, each answer set encodes aniaiso®f an atom with
some answer set of the original program. If an atolis a brave consequence of the
original program, then a witnessing answer set exists, bintains the atom®. The
idea is now to prefer those atom-answer set associationsevthe answer set is a
witness. We do this by means of weak constraints and peredicie association where
the atom is not in the associated answer set, that is, wifei®not in the answer set
of the transformed program. Doing this for each atom meaatsatin optimal answer set
will not containa® only if there is no answer set of the original program thattams
a, SO eachu® contained in an optimal answer set is a brave consequenbe ofiginal
program.

A Framework for Programming with Module Consequences 43

Definition 6. Given a strong propositional prograt® andS C HBp, let
P = P U {:~nota® | a € S}U{:~i}

Observe that all weak constraints are violated in the span&gwer se{i}, while in
the answer sefc} (which occurs if the original program has an empty answeralet
but:~ ¢ are violated.

Example 3.For the progran® as given Example ldél};&p is given by@ﬁ;&b U {:~
not p? ; :~motg? ; :~mnotr” ; :~ i}. We obtain thamS(QSZ};B¢) = {4, Ao},
whereA; = {c¢,pP,rP,q%, v, p",r"} and Ay = {c,p", P, q%,r,4", "}, as these two
answer sets are the only ones that violate no weak constk&fmtcan observe that
{a]a* € A1} ={a]|a* € A3} = {p,q,r} = BC(P).

For cautious consequences, we use a similar idea, takiogaaount that if a pro-
gram is inconsistent (in the sense that it does not have aswearset), each atom is a
cautious consequence.

Definition 7. Given a strong propositional prograii and.S C HBp, let
P =Pl u{i~a”|aeStuU{a"- i|ae S}U{i~i}

Example 4.Recall progran® from Example 1. We havé(i, = ®%p U{:~ pP ; :~
q? 5 i~ PPy @l 45 v =05 i~ i} We obtain thatdS (P,) =
{As, Ay}, whereAs = {c,¢P, P, p?,r%,p",r"} andAy = {c,qP, 7P, p%,r9,q", 7"}, @s
these two answer sets are the only ones that violate only ea& wonstraint, namely
:~ 1", We observe thafa | a® € A3} = {a | a® € Ay} = {r} = CC(D).

Finally we slightly adapt the construction for definite ceggences.

Definition 8. Given a strong propositional prograi? and.S C HBp, let
Pde = P uU{i~a® i - i i~ i |a € SYU{i~ i}

Example 5.Recall progran® from Example 1. We havéf;, = QZBJ{{’N PP i~

gl ier” P =g 1% 0y T i P 5 i i%) i T 5 i i) Asin Example 4,
Az and A, are the only ones that violate only one weak constraint, hamer”, and
thus are the answer sets®f;; .

Proposition 1. Given a strong propositional prograi® and S C HBp, foranyB €
AS(PE), {b | B* € B} = BC(P)N S; forany C € AS(PS), {c | ¢ € C} =
CC(P)Nn S;forany D € AS(PZ),{d|d* € D} = DC(P)N S.

Obviously, one can compute all brave, cautious, or defiratesequences of a pro-
gram by choosing = HB p. We also note that the programs from Definitions 6, 7 and
8 yield multiple answer sets. However each of these yieldstime atoms®, so it is
sufficient to compute one of these. This issue will be adeatss Section 5.2.

We now generalize these technigues to non-ground strorgyges. In principle,
one could annotate each predicate (rather than atom aspefth ground atoms of

44 W. Faber and S. Woltran

a subset of the Herbrand Base. However, one can also moventiwéations to the
non-ground level: For example, instead of annotating ap(l, Y) - ¢(X,Y) by the
set{r(a),r(b)} yieldingp"(X,Y) - ¢"@(X,Y) andp"® (X,Y) - ¢"®(X,Y) we
will annotate using only the predicateand extend the arguments pf yielding the
compact ruledj(X,Y, Z) - dj(X,Y, Z) (we use predicate symbol§ andd;, rather
thanp” andq” just for pointing out the difference between annotation bydirates
versus annotation by ground atoms). In this particular gtarwe have assumed that
the program is to be annotated by all ground instance§4f; we will use this assump-
tion also in the following for simplifying the presentatidm practice, one can clearly
add atoms to the rule body for restricting the instances efpitedicate by which we
annotate, in the example this would yieltl(X,Y, Z) - ¢"(X,Y, Z),dom(Z) where
the predicatelom should be defined appropriately. In the following, recaditth(p)
denotes the arity of a predicate

Definition 9. Given an atomz = p(t4,...,t,) and a predicatey, let af{ be the atom
dd(ty, ..o tn, Xi, ..o, Xo(q)) WhereXy, ..., X, (g are fresh variables andy is a new
predicate symbol with/(d?) = a(p) +a(q). Furthermore, given a set of literals, and
a predicatey, let £ be{a!" | atoma € L} U {not a} | not a € L}.

Note that we assume that even though the varialilgs . ., X, are fresh, they
will be the same for eadnf]’“. One could define similar notions also for partially ground
atoms or for sets of atoms characterized by a collection fifiidg rules, from which
we refrain here for the ease of presentation. We define th&@aichprogram in analogy
to Definition 5, the only difference being the different wédyaonotating.

Definition 10. Given a strong progran® and a setS of predicates, define itmanifold
as

Pl = U {H(r)J = {c}UB(r), | g€ S} U{cnoti ; i= notc}.
reP
Example 6.Consider prograr# = {p(X) V ¢(X) = #(X); ; r(a)= ; r(b)= } for
which AS(¥) = {{p(a), p(b),r(a),r(b)}, {p(a),q(b),(a),r(b)}, {q(a),p(b),r(a),

r(0)}, {4(a),q(b),r(a),r(b)}}. Hence,BC(¥) = {p(a), p(b), g(a), q(b),r(a), (b)}
andCC(¥) = DC(¥) = {r(a), r(b)}. Forming the manifold foS = {p}, we obtain

Wtr _ dg(X,Xl)\/dg(X,Xl)' df(X,Xl),C)
o d?(a,X1)-c; d2(b,X1)- ¢ ; c¢=-mnoti ; i= note

AS(WE) consists of(i} plus 16 answer sets, corresponding to all combinationseof th
four answer sets illS(¥).

Now we are able to generalize the encodings for brave, asjtand definite con-
sequences. These definitions are direct extensions of Defigi6, 7, and 8, the dif-
ferences are only due to the non-ground annotations. licpkat, the diagonalization
atomsa® should now be written ad) (X1, .. ., Xo(p), X1, - - -, Xo(p)) Which represent
the set of ground instances pfX;, ..., X,(,)), €ach annotated by itself. So, a weak
constraint:~ db (X1, ..., Xop), X1, Xap)) gives rise to{:~ db(ci, ..., Ca(p),
Cly--sCa(p)) | €1,-- - Capy € U} whereU is the Herbrand base of the program in
guestion, that is one weak constraint for each ground instannotated by itself.

A Framework for Programming with Module Consequences 45

Definition 11. Given a strong progran® and a setS of predicate symbols, let

P =PI u{i~mot A, | g€ SYU {i~ i}
P& =Pl u{i~mAy Ay-i|ge Su{i~vi}
Pl = Pru{i~ Ay; I, i i~ I, | g € S}U {i~v i}

WhereAq = dg(Xl, .. ,Xa(q),Xl, .. 7‘Xoé(q)) anqu = iq(Xl, .. ,Xa(q))-

Proposition 2. Given a strong progranP and a setS of predicates, for an arbitrary
A € AS(P&), (resp.,A € AS(PS), A € AS(PZ%), the set{p(c1, ..., ca(p)) |
db(c1, -5 Cap)s C1s -+ -5 Ca(p)) € A} is the set of brave (resp., cautious, definite) con-
sequences aP with a predicate inS.

Example 7.Consider agai’ andS = {p} from Example 6. We obtai#’* = ¥4 U
{:~mnot db(X1,X1) ; :~ i} and we can check thatS(¥{°) consists of the sets

Ru{db(a,a),db(b,b),
RU{d}(a,a),db(b,b),

db(a,b),db(b,a)}, Ru{db(a,a),db(b,b),db(a,b),db(b,a)},
d

P(a,b),db(b,a)}, RU{db(a,a),db(

q

-
o>
v
[oN
=
—
<=
S
SN—
S
—
S
=
—

whereR = {d?(a,a),d?(a,b),d2(b,a),d?(b,b)}. For eachA of these answer sets we
obtain{p(t) | db(t,t) € A} = {p(a),p(b)} which corresponds exactly to the brave
consequences @f with a predicate o = {p}.

For cautious consequencds® = W¢ U {i~ db (X1, X1) ; dB(Xy, Xy) =@ 5 i~}
and we can check thatS(¥¢°) consists of the sets

RU{d{]’(a, a),
RU{d}(a,a),

(a,b),d?(b,a)}, RU{d?(a,a),

a (b,b),dp(a,b),db (b, a)},
g(a, b), dg(b, a)}, RU{d{I’(a, a),

p
q b

g(bv b), dg(b» a), dg(bv a)};
whereR = {d?(a,a),d®(a,b),d?(b,a),d?(b,b)}. For eachA of these answer sets we
obtain{p(t) | db(t,t) € A} = 0 and indeed there are no cautious consequences of
with a predicate of = {p}.

Finally, for definite consequenceBg® = V& U {:~ dB(X1, X1) ; ip(X1) =i 5 i~
ip(X1) ; i~ i} Itis easy to see thal (W) = AS(¥E) and sofp(t) | db(t,t) €

A} = () for each answer set of ¥Z¢, and indeed there is also no definite consequence
of ¥ with a predicate of = {p}.

These definitions exploit the fact that the semantics of gimund programs is de-
fined via their grounding with respect to their Herbrand l&nse. So the fresh variables
introduced in the manifold will give rise to one copy of a réde each ground atom. In
practice, ASP systems usually require rules to be safeightiiat each variable occurs
(also) in the positive body. The manifold for a set of prethsamay therefore contain
unsafe rules (because of the fresh variables). But this eaefmired by adding do-
main atomdom, (X1, . .., X,,) to a rule which is to be annotated wighThis predicate
can in turn be defined by a rulm (X1, ..., Xn) - u(X1),...,u(X,,) whereu is
defined usindu(c) | ¢ € Up}. One can also provide smarter definitions dofn, by
using a relaxation of the definition faqr

46 W. Faber and S. Woltran

5.2 Transforming Consequence Module Frameworks by Manifoldig

The main intuition is to replace each module by a suitableifolanprogram. In par-
ticular, given a modulé\/ = (P,1,0,m) in a frameworkF’, we intend to create its
manifold transform a®y; o, if m = brave, Pg;_, o) if m = cautious, PE7 oy if

m = definite. Together with suitabladaptor rules which map the transformed predi-
cates back to predicates of the original program, theséwijibined to the base program
of the framework.

However, there are two main issues to resolve: As remarkdikredhe various
manifold programs may admit more than one answer set, whigleguivalent with
respect to the consequences represented in them. Stifleiocdntext of modules we
would like to have a single answer set. The second issue déighe fact that the
manifold transforms of different modules should not ingegfwith each other.

The first issue can be dealt with by adding penalties in a walydhly one answer
set remains. In order to avoid interference with other wemaistraints, these should be
put into a separate level of lower importance. To this end sivauld fix an arbitrary
o,rder of the ground aton/ws iR :l{dg(cl, .. .,ca(q),/c’l, .. .,c;(q)) | Ciy c;_ € UF,_ck +
.t U {dg(cl,_. -3 Calq)y Chs - - - ,ca(p)) | p # q,ci, cj € Ur} and assigning Welghts_of
the exponential sequente2, 4, 8, ... to them. This is because each atom should incur
a penalty which is greater than the sum of penalties of atlgming atoms. In particular,
if ag,a1,...is an enumeration ok respecting the chosen order, add a weak constraint
:~ a;.[2" : 1]. The weak constraints of the original manifold programsusthde put in
the more important level 2 (higher levels are more imporianhe semantics of weak
constraints), so all weak constraints introduced in Seciid should be extended by
[1: 2] (weight1 is the default for weights, which was implicitly used in Sent5.1).

The weak constraints introduced in this way can be thoughtddicing the set of
answer-set candidates in the following way: If answer sathawut ay exist, further
consider only those, otherwise there is no reduction. Soabglting candidates either
all do not contairug, or all do. Then, among the result, if answer sets withqugxist,
further consider only those, otherwise there is no redaciithe remaining candidates
do not differ on the presence @f anda, . Continuing like this, in the end the remaining
candidates will not differ on the presence of any elemenXinf the original set of
answer-set candidates differs only on elementX jithen only one answer set remains.

The second modification regards combinability of manifotldgrams. We would
like to be able to simply form the union of all manifold prograireplacing the modules.
The way in which manifold programs have been defined in Sediid, they could
in principle share predicate names, which would lead to umedhinterferences. We
therefore ensure that each manifold program introducescuerset of predicates by
extending the predicatel, i, (p®, i in the propositional case) andc by a string
uniquely identifying the module, which the manifold prograepresents.

Definition 12. For a moduleM = (P, I,0,m), let itsmanifold transfornbe defined
asT(M) = Pp. 0y, WherePpRes), PERs), PRefinte, correspond to the mani-
fold programs of Section 5.1 with the modifications descrideove.

Theadaptor rulegor the modulel/ are defined as

Ay = {p(tl, - ,ta(p)) - dg(tl, - ,ta(p),f,l, - ,f,a(p)) |p(t1,. .. ,ta(p)) € O}

A Framework for Programming with Module Consequences 47

Themanifold progranfor a consequence module framewdfk= (B, M) is then
T(F) =BUUpem(T(M)U An).

Now we can state the correspondence result.

Proposition 3. For a consequence module framewdrk AS(F) = AS(T(F)) N
HBF. In fact, there is a one-to-one correspondence betweg(F') and AS(T(F)) N
HBp.

Some of the key observations for this correspondence raseilthat the depen-
dencies of predicates of the base program remain unalterédA’), and that module
dependencies between predicateg’ibecome standard dependencief'(iF) via the
predicates introduced by manifolding. This allows for ajmd the splitting set theo-
rem of [21] to the program without weak constraints, mimigkithe sequencdsS;(-)
of Definition 4. However, the manifold parts 81 F') give rise to many answer-set can-
didates, among which there are also answer sets that caxadtly the consequences
under the respective reasoning mode. The combined progi@m thus will contain
many answer-set candidates, but among these there araetssepy the answer sets of
the framework, because the latter are defined by replacengtdules by the respective
consequences.

The combination of all weak constraints then eliminatesatl these candidates.
Combining the weak constraints, considering first only ghweak constraints described
in Section 5.1, has the desired effect because the symhtinsliced byl'(M) are not
contained in any othef'(M’). Because of this and since these weak constraints all
have weightl, any global optimum must also be an optimum locally for ry\/).
Therefore, without adding the additional weak constrafatsenforcing uniqueness,
the first part of Proposition 3 already holds. One can thenvsaiat the differences
between multiple answer setsBf F') representing a single answer seffofs only due
to atoms in the setX described above, which are reduced to precisely one useng th
method described earlier, thus obtaining a one-to-onespandence.

6 Conclusion

In this paper, we provided a novel framework for specifyingFAprograms, which in-
volve the consequences of subprograms, defining syntaxesmalrgics of the proposed
language. We gave examples for problems that possess a @tyaatural represen-
tation in this language, while a traditional ASP specifizatis not obvious. Moreover,
we proposed a transformation of consequence module frarkewm ASP with weak
constraints, based on an adaption of the recently propoaedatd program technique,
which allows for using a standard ASP solver supporting wemalstraints for comput-
ing answer sets of consequence module frameworks.

For future work, we are interested in studying the effectsftifig the restriction
of module stratification and of module nesting. We would dike to explore the
possibility to use alternative optimization constructteddd by ASP solvers, such as
m ni m ze supported by par se andgri ngo, in order not to be restricted by the

48 W. Faber and S. Woltran

availability of weak constraints. Also on our agenda is gnialy the relationship be-
tween our framework and other proposals for modular ASP, ésge[22, 13]). Finally,
we would also like to implement a system that supports caresce module program-
ming.

References

1. Marek, V.W., Truszczyski, M.: Stable models and an alternative logic programming
paradigm. In: The Logic Programming Paradigm — A 25-Year Petsgec(1999) 375-
398

2. Niemeh, I.: Logic programming with stable model semantics as a constraigtaroning
paradigm. AMAI25(3-4) (1999) 241-273

3. Baral, C.: Knowledge Representation, Reasoning and Declaratiebh Solving. CUP
(2002)

4. Gelfond, M.: Representing knowledge in A-Prolog. In: Computatitpgic: From Logic
Programming into the Future. LNCS 2408, (2002) 413-451

5. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., SchayBruszczyski, M.: The first
answer set programming system competition. In: LPNMR’'07. LNCS344%007) 3-17

6. Bravo, L., Bertossi, L.E.: Logic programs for consistently querylata integration systems.
In: 1JCAI 2003, (2003) 10-15

7. Saca, D.: Multiple total stable models are definitely needed to solve unique sofutidm
lems. Inf. Process. Leth8(5) (1996) 249-254

8. Faber, W., Woltran, S.: Manifold answer-set programs for megsoning. In: LPNMR’09.
LNCS 5753, (2009) 115-128

9. Buccafurri, F., Leone, N., Rullo, P.: Enhancing disjunctive datddg constraints. IEEE
Trans. Knowl. Data Engl2(5) (2000) 845-860

10. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., P&rj,Scarcello, F.: The DLV
system for knowledge representation and reasoning. TQB)(2006) 499-562

11. Gelfond, M., Lifschitz, V.: Classical negation in logic programs disjunctive databases.
New Generation Compu®(3/4) (1991) 365—-386

12. Oikarinen, E., Janhunen, T.: Achieving compositionality of the staioldel semantics for
smodels programs. TPL#5-6) (2008) 717-761

13. Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Modulammonotonic logic program-
ming revisited. In: Proceedings of the ICLP’09. LNCS 5649, (20Q&5-1159

14. Reiter, R.: On closed world data bases. In: Logic and Databdsesin®Press (1978) 5576

15. Goldman, R.P., Boddy, M.S.: Expressive planning and explicitkedge. In: AIPS'96,
AAAI Press (1996) 110-117

16. Smith, D.E., Weld, D.S.: Conformant Graphplan. In: AAAI'#RAI Press (1998) 889-896

17. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: Adqgogramming approach to
knowledge-state planning: Semantics and complexity. TG (2004) 206—-263

18. Son, T.C., Tu, P.H., Gelfond, M., Morales, A.R.: An appraiion of action theories of and
its application to conformant planning. In: LPNMR’05. LNCS 3662, (2p072-184

19. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: Adqgogramming approach to
knowledge-state planning, II: the DE¥system. Artif. Intell.144(1-2) (2003) 157-211

20. Balduccini, M.: A general method to solve complex problems by d@oimdpmultiple answer
set programs. In: Proceedings ASPOCP’09. (2009)

21. Lifschitz, V., Turner, H.: Splitting a logic program. In: ICLP’94 |MPress (1994) 23-37

22. Oikarinen, E.: Modularity in Answer Set Programs. PhD thesis,ifel&niversity of
Technology, Finland (2008)

