
Yet Another Modular Action Language

Michael Gelfond and Daniela Inclezan

Computer Science Department
Texas Tech University

Lubbock, TX 79409 USA
Michael.Gelfond@ttu.edu, daniela.inclezan@ttu.edu

Abstract. The paper presents an action language, ALM, for the rep-
resentation of knowledge about dynamic systems. It extends action lan-
guage AL by allowing definitions of new objects (actions and fluents) in
terms of other, previously defined, objects. This, together with the mod-
ular structure of the language, leads to more elegant and concise repre-
sentations and facilitates the creation of libraries of knowledge modules.

1 Introduction

This paper presents an extension, ALM, of action language AL [1], [2] by simple
but powerful means for describing modules.AL is an action language used for the
specification of dynamic systems which can be modeled by transition diagrams
whose nodes correspond to possible physical states of the domain and whose
arcs are labeled by actions. It has a developed theory, methodology of use, and a
number of applications [3]. However, it lacks the structure needed for expressing
the hierarchies of abstractions often necessary for the design of larger knowledge
bases and the creation of KR-libraries. The goal of this paper is to remedy
this problem. System descriptions of our new language, ALM, are divided into
two parts. The first part contains declarations of the sorts, fluents, and actions
of the language. Intuitively, it defines an uninterpreted theory of the system
description. The second part, called structure, gives an interpretation of this
theory by defining particular instances of sorts, fluents, and actions relevant to
a given domain. Declarations are divided into modules organized as tree-like
hierarchies. This allows for actions and fluents to be defined in terms of other
actions and fluents. For instance, the action carry (defined in a dictionary as
“to move while supporting”) can be declared as a special case of move. There
are two other action languages with modular structure. Language MAD [4],[5]
is an expansion of action language C [6]. Even though C and AL have a lot in
common, they differ significantly in the underlying assumptions incorporated
in their semantics. For example, the semantics of AL incorporates the inertia
axiom [7] which says that “Things normally stay the same.” The statement is a
typical example of a default, which is to a large degree responsible for the very
close and natural connections between AL and ASP [8]. C is based on a different
assumption – the so called causality principle – which says that “Everything
true in the world must be caused.” Its underlying logical basis is causal logic [9].



There is also a close relationship between ASP and C but, in our judgment, the
distance between ASP and ALM is much smaller than that between ASP and
C. Another modular language is TAL-C [10], which allows definitions of classes
of objects that are somewhat similar to those in ALM. TAL-C, however, seems
to have more ambitious goals: the language is used to describe and reason about
various dynamic scenarios, whereas in ALM the description of a scenario and
that of reasoning tasks are not viewed as part of the language.

The differences in the underlying languages and in the way structure is incor-
porated into ALM, MAD and TAL-C lead to very different knowledge repre-
sentation styles. We believe that this is a good thing. Much more research and
experience of use is needed to discover if one of these languages has some advan-
tages over the others, or if different languages simply correspond to and enhance
different habits of thought.

This paper consists of two parts. First we define the syntax and semantics of an
auxiliary extension of AL by so called defined fluents. The resulting language,
ALd, will then be expanded to ALM.

2 Expanding AL by Defined Fluents

2.1 Syntax of ALd

A system description of ALd consists of a sorted signature and a collection of
axioms. The signature contains the names for primitive sorts, a sorted universe
consisting of non-empty sets of object constants assigned to each such name, and
names for actions and fluents. The fluents are partitioned into statics, inertial
fluents, and defined fluents. The truth values of statics cannot be changed by
actions. Inertial fluents can be changed by actions and are subject to the law
of inertia. Defined fluents are non-static fluents which are defined in terms of
other fluents. They can be changed by actions but only indirectly. An atom is a
string of the form p(x̄) where p is a fluent and x̄ is a tuple of primitive objects.
A literal is an atom or its negation. Depending on the type of fluent forming a
literal we will use the terms static, inertial, and defined literal. We assume that
for every sort s and constant c of this sort the signature contains a static, s(c).
Direct causal effects of actions are described in ALd by dynamic causal laws –
statements of the form:

a causes l if p (1)

where l is an inertial literal, a is an action name, and p is a collection of arbitrary
literals. (1) says that if action a were executed in a state satisfying p then l would
be true in a state resulting from this execution. Dependencies between fluents
are described by state constraints — statements of the form:

l if p (2)

where l is a literal and p is a set of literals. (2) says that every state satisfying
p must satisfy l. Executability conditions of ALd are statements of the form:

impossible a1, . . . , ak if p (3)

Yet Another Modular Action Language 65



The statement says that actions a1, . . . , ak cannot be executed together in any
state which satisfies p. We refer to l as the head of the corresponding rule and to
p as its body. The collection of state constraints whose head is a defined fluent
f is referred to as the definition of f . As in logic programming definitions, f is
true in a state σ if the body of at least one of its defining constraints is true in
σ. Otherwise, f is false. Finally, an expression of the form

f ≡ g if p (4)

where f and g are inertial or static fluents and p is a set of literals, will be
understood as a shorthand for four state constraints:

f if p, g ¬f if p,¬g g if p, f ¬g if p,¬f
An ALd axiom with variables is understood as a shorthand for the set of all its
ground instantiations.

2.2 Semantics of ALd

To define the semantics of ALd, we define the transition diagram T (D) for every
system description D of ALd. Some preliminary definitions: a set σ of literals is
called complete if for any fluent f either f or ¬f is in σ; σ is called consistent if
there is no f such that f ∈ σ and ¬f ∈ σ. Our definition of the transition relation
〈σ0, a, σ1〉 of T (D) will be based on the notion of an answer set of a logic program.
We will construct a program Π(D) consisting of logic programming encodings
of statements from D. The answer sets of the union of Π(D) with the encodings
of a state σ0 and an action a will determine the states into which the system
can move after the execution of a in σ0.

The signature of Π(D) will contain: (a) names from the signature of D; (b)
two new sorts: steps with two constants, 0 and 1, and fluent type with constants
inertial, static, and defined ; and (c) the relations: holds(fluent, step) (holds(f, i)
says that fluent f is true at step i), occurs(action, step) (occurs(a, i) says that
action a occurred at step i), and fluent(fluent type, fluent) (fluent(t, f) says
that f is a fluent of type t). If l is a literal, h(l, i) will denote holds(f, i) if l = f
or ¬holds(f, i) if l = ¬f . If p is a set of literals h(p, i) = {h(l, i) : l ∈ p}; if e is a
set of actions, occurs(e, i) = {occurs(a, i) : a ∈ e}.
Definition of Π(D)

(r1) For every constraint (2), Π(D) contains:

h(l, I)← h(p, I). (5)

(r2) Π(D) contains the closed world assumption for defined fluents:

¬holds(F, I)← fluent(defined, F ),
not holds(F, I). (6)

66 M. Gelfond and D. Inclezan



(r3) For every dynamic causal law (1), Π(D) contains:

h(l, I + 1)← h(p, I),
occurs(a, I). (7)

(r4) For every executability condition (3), Π(D) contains:

¬occurs(a1, I) v . . . v ¬occurs(ak, I)← h(p, I). (8)

(r5) Π(D) contains the Inertia Axiom:

holds(F, I + 1)← fluent(inertial, F ),
holds(F, I),
not ¬holds(F, I + 1).

(9)

¬holds(F, I + 1)← fluent(inertial, F ),
¬holds(F, I),
not holds(F, I + 1).

(10)

(r6) and the following rules:

fluent(F )← fluent(Type, F ). (11)

← fluent(F ),not holds(F, I),not ¬holds(F, I). (12)

← fluent(static, F ), holds(F, I),¬holds(F, I + 1). (13)

← fluent(static, F ),¬holds(F, I), holds(F, I + 1). (14)

(The last four encodings ensure the completeness of states – (11) and (12) – and
the proper behavior of static fluents – (13) and (14)). This ends the construction
of Π(D). Let Πc(D) be a program constructed by rules (r1), (r2), and (r6) above.
For any set σ of literals, σnd denotes the collection of all literals of σ formed
by inertial and static fluents. Πc(D, σ) is obtained from Πc(D) ∪ h(σnd, 0) by
replacing I by 0.

Definition 1 (State). A set σ of literals is a state of T (D) if Πc(D, σ) has a
unique answer set, A, and σ = {l : h(l, 0) ∈ A}.
Now let σ0 be a state and e a collection of actions.

Π(D, σ0, e) =def Π(D) ∪ h(σ0, 0) ∪ occurs(e, 0) .

Definition 2 (Transition). A transition 〈σ0, e, σ1〉 is in T (D) iff Π(D, σ0, e)
has an answer set A such that σ1 = {l : h(l, 1) ∈ A}.
To illustrate the definition we briefly consider

Example 1 (Lin’s Briefcase). ([11])
The system description defining this domain consists of: (a) a signature contain-
ing the sort name latch, the sorted universe {l1, l2}, the action toggle(latch),
the inertial fluent up(latch) and the defined fluent open, and (b) the following
axioms:

Yet Another Modular Action Language 67



toggle(L) causes up(L) if ¬up(L)
toggle(L) causes ¬up(L) if up(L)
open if up(l1), up(l2) .

One can use our definitions to check that the system contains transitions
〈{¬up(l1), up(l2),¬open}, toggle(l1), {up(l1), up(l2), open}〉,
〈{up(l1), up(l2), open}, toggle(l1), {¬up(l1), up(l2),¬open}〉, etc.

Note that a set {¬up(l1), up(l2), open} is not a state of our system.

System descriptions of ALd not containing defined fluents are identical to those
of AL. For such descriptions our semantics is equivalent to that of [12], [13].
(To the best of our knowledge, [12] is the first work which uses ASP to describe
the semantics of action languages. The definition from [1],[13] is based on rather
different ideas.) Note that the semantics of ALd is non-monotonic and hence, in
principle, the addition of a new definition could substantially change the diagram
of D. The following proposition shows that this is not the case. To make it precise
we will need the following definition from [14].

Definition 3 (Residue). Let D and D′ be system descriptions of ALd such
that the signature of D is part of the signature of D′. D is a residue of D′ if
restricting the states and actions of T (D′) to the signature of D establishes an
isomorphism between T (D) and T (D′).

Proposition 1. Let D be a system description of ALd with signature Σ, f 6∈ Σ
be a new symbol for a defined fluent, and D′ be the result of adding to D the
definition of f . Then D is a residue of D′.

3 Syntax of ALM
A system description, D, of ALM consists of the system’s declarations (a non-
empty set of modules) followed by the system’s structure.

system description name
declarations of name

[module]+

structure of name
structure description

A module can be viewed as a collection of declarations of sort, fluent and action
classes of the system, i.e.

module name
sort declarations
fluent declarations
action declarations

If the system declaration contains only one module then the first line above can
be omitted. In the next two subsections we will define the declarations and the
structure of a system description D.

68 M. Gelfond and D. Inclezan



3.1 Declarations of D
(1) A sort declaration of ALM is of the form

s1 : s2

where s1 is a sort name and s2 is either a sort name or the keyword sort1. In
the latter case the statement simply declares a new sort s1. In the former, s1 is
declared as a subsort of sort s2.

The sort declaration section of a module is of the form

sort declarations
[sort declaration]+

(2) A fluent declaration of ALM is of the form

f(s1, . . . , sk) : type fluent
axioms

[state constraint .]+

end of f

where f is a fluent name, s1, . . . , sk is a list of sort names, and type is one of the
following keywords: static, inertial, defined. If the list of sort names is empty
we omit the parentheses and simply write f . The remaining part – consisting of
the keyword axioms followed by a non-empty list of state constraints of ALd

and the line starting with the keywords end of – is optional and can be omitted.
The statement declares the fluent f with parameters from s1, . . . , sk respectively
as static, inertial, or defined.

The fluent declaration section of a module is of the form

fluent declarations
[fluent declaration]+

(3) An action declaration of ALM is of the form

a1 : a2

attributes
[attr : sort]+

axioms
[law .]+

end of a1

where a1 is an action name, a2 is an action name or the keyword action, attr is
an identifier used to name an attribute of the action, and law is a dynamic causal
law or an executability condition similar to the ones of ALd

2. If a2 = action,
1 Syntactically, names are defined as identifiers starting with a lower case letter.
2 Due to space limitations, we only allow executability conditions of ALM for single

actions, i.e. statements of the form impossible a1 if p.

Yet Another Modular Action Language 69



the first statement declares a1 to be a new action class. If a2 is an action name
then the statement declares a1 as a special case of the action class a2. The two
remaining sections of the declaration contain the names of attributes of this
action, and causal laws and executability conditions for actions from this class.
Both the attribute and the axiom part of the declaration are optional and can be
omitted. With respect to axioms, the difference between ALM and ALd is that
in ALd actions are understood as action instances while here they are viewed
as action classes. Also, in ALM in addition to literals, the bodies of these laws
can contain attribute atoms: expressions of the form attr = c, where attr is the
name of an attribute of the action and c is an element of the corresponding sort.
The action declaration section of a module is of the form

action declarations
[action declaration]+

The set of sort, fluent and action declarations from the modules of the system
description D will be called the declaration of D and denoted by decl(D). In
order to be “well-defined” the declaration of a system description D should
satisfy certain natural conditions designed to avoid circular declarations and
other unintuitive constructs. To define these conditions we need the following
notation and terminology:
Sort declarations of decl(D) define a directed graph S(D) such that 〈sort2, sort1〉 ∈
S(D) iff sort1 : sort2 ∈ D. Similarly, the graph A(D) is defined by action dec-
larations from decl(D). We refer to them as the sort and action hierarchies of
D.

Definition 4. The declaration, decl(D), of a system description D is called
well-formed if

1. The sort and action hierarchies of D are trees with roots sort and action
respectively.

2. If decl(D) contains the declarations of f(s1, . . . , sk) and f(s′
1, . . . , s

′
k) then

si = s′
i for every 1 ≤ i ≤ k.

3. If decl(D) contains the declaration of action a with attributes attr1 : s1,
. . ., attrk : sk and the declaration of action a with attributes attr′

1 : s′
1, . . .,

attr′
m : s′

m then k = m, and attri = attr′
i and si = s′

i for every 1 ≤ i ≤ k.

From now on we only consider system descriptions with well-formed declarations.

3.2 Structure of D
The structure of a system description D defines an interpretation of the sorts,
fluents, and actions declared in the system’s declaration. It consists of the defi-
nitions of the sorts and actions of D, and truth assignments for the statics of D.
The sorts are defined as follows:

sorts
[constants ∈ s]+

70 M. Gelfond and D. Inclezan



where constants is a non-empty list of identifiers not occurring in the declara-
tions of D and s is a sort name. We will refer to them as objects of D. The
definition of the sorts is followed by the definition of actions:

actions
[instance description]+

where an instance description is defined as follows:

instance a1(t1, . . . , tk) where cond : a2

attr1 := t1
. . .
attrk := tk

where attr1, . . . , attrk are attributes of an action class a2 or of an ancestor of a2

in A(D), t’s are objects of D or variables – identifiers starting with a capital letter
–, and cond is a set of static literals. An instance description without variables
will be called an action instance. An instance description containing variables
will be referred to as an action schema, and viewed as a shorthand for the set
of action instances, a1(c1, . . . , ck), obtained from the schema by replacing the
variables V1, . . . , Vk by their possibles values c1, . . . , ck. We say that an action
instance a1(c1, . . . , ck) belongs to the action class a2 and to any action class
which is an ancestor of a2 in A(D). Finally, we define statics as:

statics
[state constraint .]+

where the head of the state constraint is an expression of the form f(c1, . . . , ck)
(where f is a static fluent and c1, . . . , ck are properly sorted elements of the
universe of D), and the body of the state constraint is a collection of similar
expressions. As usual, if the list is empty the keyword statics should be omitted.

Example 2. [Basic Travel]
Let us now consider an example of a system description of ALM.

system description basic travel

declarations of basic travel

module basic geometry

sort declarations

areas : sort

fluent declarations

within(areas, areas) : static fluent
axioms

within(A1, A2) if within(A1, A), within(A,A2).
¬within(A2, A1) if within(A1, A2).
¬within(A1, A2) if disjoint(A1, A2).

Yet Another Modular Action Language 71



end of within

disjoint(areas, areas) : static fluent
axioms

disjoint(A2, A1) if disjoint(A1, A2).
disjoint(A1, A2) if within(A1, A3), disjoint(A2, A3).
¬disjoint(A,A).

end of disjoint

module move between areas

sort declarations

things : sort
movers : things
areas : sort

fluent declarations

loc in(things, areas) : inertial fluent
axioms
loc in(T,A2) if within(A1, A2), loc in(T,A1).
¬loc in(T,A2) if disjoint(A1, A2), loc in(T,A1).

end of loc in

action declarations

move : action
attributes
actor : movers
origin, dest : areas

axioms
move causes loc in(O,A) if actor = O, dest = A.

impossible move if actor = O, origin = A, ¬loc in(O,A).
impossible move if origin = A1, dest = A2, ¬disjoint(A1, A2).

end of move

structure of basic travel

sorts
michael, john ∈ movers
london, paris, rome ∈ areas

actions

instance move(O,A1, A2) where A1 6= A2 : move

actor := O
origin := A1

dest := A2

statics

disjoint(london, paris). disjoint(paris, rome). disjoint(rome, london).

72 M. Gelfond and D. Inclezan



4 Semantics of ALM
The semantics of a system description D of ALM is defined by mapping D into
the system description τ(D) of ALd.

1. The signature, Σ, of τ(D):
The sort names of Σ are those declared in decl(D). The sorted universe of Σ is
given by the sort definitions from D’s structure. We assume the domain closure
assumption [15], i.e. the sorts of Σ will have no other elements except those
specified in their definitions. An expression f(c1, . . . , ck) is a fluent name of Σ
if s1, . . . , sk are the sorts of the parameters of f in the declaration of f from
decl(D), and for every i, ci ∈ si. The set of action names of Σ is the set of all
action instances defined by the structure of D.

2. Axioms of τ(D):

(i) The state constraints of τ(D) are the result of grounding the variables of
state constraints from decl(D) and of static definitions from the structure of D
by their possible values from the sorted universe of Σ. Already grounded static
definitions from the structure of D are also state constraints of τ(D).

(ii) To define dynamic causal laws and executability conditions of τ(D) we do
the following: For every action instance ai of Σ and every action class a such
that ai belongs to a do:

For every causal law and executability condition L of a:

(a) Construct the expression obtained by replacing occurrences of a in L by ai.
For instance, the result of replacing move by move(john, london, paris) in the
dynamic causal law for the action class move will be:

move(john, london, paris) causes loc in(O,A) if actor = O,
dest = A.

(b) Ground all the remaining variables in the resulting expressions by properly
sorted constants of the universe of D.
The above axiom will turn into the set containing:

move(john, london, paris) causes loc in(john, paris) if actor = john,
dest = paris.

move(john, london, paris) causes loc in(michael, london) if actor = michael,
dest = london.

etc.

(c) Remove the axioms containg atoms of the form attr = y where y is not the
value assigned to attr in the definition of instance ai. Remove atoms of the form
attr = y from the remaining axioms.

This transformation turns the first axiom above into:

move(john, london, paris) causes loc in(john, paris).

and eliminates the second axiom.

Yet Another Modular Action Language 73



It is not difficult to check that the resulting expressions are causal laws and
executability conditions of ALd and hence τ(D) is a system description of ALd.

5 Representing Knowledge in ALM
In this section we illustrate the methodology of representing knowledge in ALM
by way of several examples.

5.1 Actions as Special Cases

In the introduction we mentioned the action carry, defined as “to move while
supporting”. Let us now declare a new module containing such an action. The
example will illustrate the use of modules for the elaboration of an agent’s knowl-
edge, and the declaration of an action as a special case of another action.

Example 3. [Carry]
We expand the system description basic travel by a new module, carrying things.

module carrying things

sort declarations

areas : sort
things : sort
movers : things
carriables : things

fluent declarations

holding(things, things) : inertial fluent

is held(things) : defined fluent
axioms
is held(O) if holding(O1, O).

end of is held

loc in(things, areas) : inertial fluent
axioms
loc in(T,A) ≡ loc in(O,A) if holding(O, T ).

end of loc in

action declarations

move : action
attributes
actor : movers
origin, dest : areas

axioms
impossible move if actor = O, is held(O).

end of move

74 M. Gelfond and D. Inclezan



carry : move

attributes
carried thing : carriables

axioms
impossible carry if actor = O, carried thing = T, ¬holding(O, T ).

end of carry

grip : action
attributes
actor : movers
patient : things

axioms
grip causes holding(C, T ) if actor = C, patient = T.
impossible grip if actor = C, patient = T, holding(C, T ).

end of grip
Similarly for action release.

Let us add this module to the declarations of basic travel and update the struc-
ture of basic travel by the definition of sort carriables:

suitcase ∈ carriables
and a new action

instance carry(O, T,A) : carry

actor := O
carried thing := T
dest := A

It is not difficult to check that, according to our semantics, the signature of
τ(travel) of the new system description travel will be obtained from the signa-
ture of τ(basic travel) by adding the new sort, carriables = {suitcase}, new
fluents like holding(john, suitcase), is held(suitcase) etc., and new actions like
carry(john, suitcase, london), carry(john, suitcase, paris), etc.

In addition, the old system description will be expanded by axioms:

carry(john, suitcase, london) causes loc in(john, london)

loc in(suitcase, london) ≡ loc in(john, london) if holding(john, suitcase)

Using Proposition 1 it is not difficult to show that the diagram of travel is a
conservative extension of that for basic travel.

5.2 Library Modules

The modules from the declaration part of travel are rather general and can be
viewed as axioms describing our commonsense knowledge about motion. Obvi-
ously, such axioms can be used for problem solving in many different domains.
It is therefore reasonable to put them in a library of commonsense knowlege.

Yet Another Modular Action Language 75



A library module can be defined simply as a collection of modules available for
public use. Such modules can be imported from the library and inserted in the
declaration part of a system description that a programmer is trying to build.
To illustrate the use of this library let us assume that all the declarations from
travel are stored in a library module motion, and show how this module can be
used to solve the following classical KR problem.

Example 4. [Monkey and Banana]
A monkey is in a room. Suspended from the ceiling is a bunch of bananas, beyond
the monkey’s reach. On the floor of the room stands a box. How can the monkey
get the bananas? The monkey is expected to take hold of the box, push it under
the banana, climb on the box’s top, and grasp the banana.

We are interested in finding a reasonably general and elaboration tolerant declar-
ative solution to this problem. The first step will be identifying sorts of objects
relevant to the domain. Clearly the domain contains things and areas. The things
move or are carried from one place to another, climbed on, or grasped. This
suggests the use of the library module motion containing commonsense axiom-
atization of such actions. We start with the following:

system description monkey and banana

declarations of monkey and banana

import motion from commonsense library

An ALM compiler will simply copy all the declarations from the library module
motion into our system description. Next we will have:

module main

% The module will contain specific information about the problem domain.

sort declarations

things : sort boxes : carriables
movers : things bananas : things
monkeys : movers areas : sort
carriables : things places : areas

fluent declarations

under(places, things) : static fluent

is top(areas, things) : static fluent

can reach(movers, things) : defined fluent
axioms
can reach(M,Box) if monkeys(M),

boxes(Box),
loc in(M,L),
loc in(Box,L).

76 M. Gelfond and D. Inclezan



can reach(M,Banana) if monkeys(M),
bananas(Banana),
boxes(Box),
loc in(M,L1),
is top(L1, Box),
loc in(Box,L),
under(L,Banana).

end of can reach

action declarations

grip : action
attributes
actor : movers
patient : things

axioms
impossible grip if actor = C, patient = T, ¬can reach(C, T ).

end of grip

structure of monkey and banana

sorts
m ∈ monkeys
b ∈ bananas
box ∈ boxes
floor, ceiling ∈ areas
l1, l2, l3, l4 ∈ places

actions

instance move(m,L) where places(L) : move

actor := m
dest := L

instance carry(m, box, L) where places(L) : carry

actor := m
carried thing := box
dest := L

instance grip(m,O) where O 6= m : grip

actor := m
patient := O

statics
disjoint(L1, L2) if places(L1), places(L2), L1 6= L2.
disjoint(floor, ceiling).
within(L, floor) if places(L),¬is top(L, box).
under(l1, b). is top(l4, box).

One can check that the system description defines a correct transition diagram
of the problem. Standard ASP planning techniques can be used together with
the ASP translation of the description to solve the problem.

Yet Another Modular Action Language 77



6 Conclusions

In this paper we introduced a modular extension, ALM, of action language AL.
ALM allows definitions of fluents and actions in terms of already defined flu-
ents and actions. System descriptions of the language are divided into a general
uninterpreted theory and its domain dependent interpretation. We believe that
this facilitates the reuse of knowledge and the organization of libraries. We are
currently working on proving some mathematical properties of ALM and im-
plementing the translation of its theories into logic programs. Finally, we would
like to thank V. Lifschitz for useful discussions on the subject of this paper.

References

1. Turner, H.: Representing Actions in Logic Programs and Default Theories: A Situ-
ation Calculus Approach. Journal of Logic Programming 31(1-3), 245–298 (1997)

2. Baral, C., Gelfond, M.: Reasoning Agents in Dynamic Domains. In: Workshop on
Logic-Based Artificial Intelligence, pp. 257–279. Kluwer Academic Publishers, Nor-
well (2000)

3. Baral, C.: Knowledge Representation, Reasoning, and Declarative Problem Solving.
Cambridge University Press (2003)

4. Lifschitz, V., Ren, W.: A Modular Action Description Language. In: Proceedings of
AAAI-06, pp. 853-859. AAAI Press (2006)

5. Erdoǧan, S.T., Lifschitz, V.: Actions as Special Cases. In: Proceedings of the 10th
International Conference on Principles of Knowledge Representation and Reasoning,
pp. 377–387 (2006)

6. Giunchiglia, E., Lifschitz, V.: An Action Language Based on Causal Explanation:
Preliminary Report. In: Proceedings of AAAI-98, pp. 623–630. AAAI Press (1998)

7. Hayes, P.J., McCarthy, J.: Some Philosophical Problems from the Standpoint of
Artificial Intelligence. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 4,
pp. 463–502. Edinburgh University Press, Edinburgh (1969)

8. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing 9, 365–386 (1991)

9. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic Causal
Theories. Artificial Intelligence 153, 105–140 (2004)

10. Gustafsson, J., Kvarnström, J.: Elaboration Tolerance Through Object-
Orientation. Artificial Intelligence 153, 239–285 (2004)

11. Lin, F.: Embracing Causality in Specifying the Indirect Effects of Actions. In:
Proceedings of IJCAI-95, pp. 1985–1993. Morgan Kaufmann (1995)

12. Baral, C., Lobo, J.: Defeasible Specifications in Action Theories. In: Proceedings
of IJCAI-97, pp. 1441–1446. Morgan Kaufmann Publishers (1997)

13. McCain, N., Turner, H.: A Causal Theory of Ramifications and Qualifications.
Artificial Intelligence 32, 57–95 (1995)

14. Erdoǧan, S.T.: A Library of General-Purpose Action Descriptions. PhD thesis, The
University of Texas at Austin (2008)

15. Reiter, T.: On Closed World Data Bases. In: Gallaire, H., Minker, J. (eds.) Logic
and Data Bases, pp.119–140. Plenum Press, New York (1978)

78 M. Gelfond and D. Inclezan


