
A Visual Tracer for DLV

Francesco Calimeri, Nicola Leone, Francesco Ricca, and Pierfrancesco Veltri

Dipartimento di Matematica, Università della Calabria, 87030 Rende, Italy
{calimeri,leone,ricca,pf.veltri}@mat.unical.it

Abstract. In software engineering, tracing is a specialized way for recording in-
formation about the execution of a program for debugging purposes. The more
complex the system, the more difficult is developing a manageable, and thus prac-
tically useful, tracer. Answer Set Programming (ASP) systems represent no ex-
ception in this respect: the intrinsic complexity of reasoning required the design
of elaborated evaluation algorithms.
In this paper, we present a suitable solution to the problem of tracing the execution
of an ASP system and its implementation into the ASP system DLV. The tool
herein presented features a graphical user interface and anon-line tracing method
that puts it on the way between tracing and debugging. The range of applicability
counts: bug fixing, system optimization, ASP-developing aids, and educational
purposes.

1 Introduction

In software development, tracing is a specialized use of logging in order to record in-
formation about the execution of a program. This information is typically used by pro-
grammers for debugging purposes or (depending on the type and detail of information
provided by the tracing system) by experienced system developers to diagnose problems
or optimize implementations. Information provided by a tracing mechanism is usually
employed by developers only, since usually there is not a standard output syntax, and
the produced result might be either noisy (it might contain alot of information which
is useless for a specific purposes) or very long. Indeed, a common problem with trac-
ing consists on the impossibility of isolating in a generic mechanism the information
which is needed for detecting a specific problem, and thus a lot of useless information
is inexorably printed.

Since the day of its first release theDLV system [1] is equipped with a simple tracing
mechanism that is available to the developers; tracing instructions are instead removed
by official release versions ofDLV , for obvious optimization purposes. When enabled,
this simple mechanism prints to the standard output a log of all internal system events
and the value of some (relevant) internal variables. However, the unavoidable complex-
ity of the algorithms employed for evaluating an ASP-program, and exploited byDLV ,
makes it quite difficult, or even impossible, to store and analyze such tracing output.
It is worth noting that the evaluation of (non-ground) disjunctive ASP programs is a
NEXPTIMENP task [1, 2]; thus, the execution of an ASP system might produce a trace
that is both inexorably large and difficult to handle, even inthe case of small inputs.



In order to cope with this situation, we designed a general architecture for control-
ling and tracing the execution; we implemented such proposal into DLV , thus coming
out with an advanced tracing system that has two important features: the execution of
each task can be controlled (started, paused, or restarted), and the information produced
can be set dynamically during the execution.

Our advanced tracer combines a graphical user interface andan on-line tracing
method that puts it on the way between a tracing and a specialized system debug-
ging tool.1 The user can control the execution of theDLV system by means of suitable
commands, and also ask the system to display some specific information, like e.g., the
content of the internal data structures or the status of the system.

The resulting tool enjoys a wide range of applicability: bugfixing, system opti-
mization, ASP-developing aids, and also educational purposes. Indeed, by following
the trace of system execution, a program developer might analyze the behavior of the
system and detect bugs or inefficient branches of the computation (as a by-product,
a developer can be given an error-detection in the input specification). Moreover, by
following the evaluation of a given encoding step-by-step,an ASP program developer
might understand the reason for an inefficient evaluation, and tune its encoding for ob-
taining a more efficient of evaluation .

As already mentioned, the system features a graphical interface, that eases the inter-
action with the advanced tracing techniques; such interface makes the system suitable
also for didactic purposes. Indeed, ASP systems act as a “black-box”, and it is not pos-
sible to see what is really happening inside. Conversely, professors can explain evalua-
tion techniques by preparing and showing a live-demo of their actual implementation.
Students might follow the execution, step-by-step, on their own machines; moreover,
“playing” with the system, they can gain a more direct understanding of the working
principles, which is facilitated by a clear image of what is going on “under the hood”.

Remark. It is worth noting that controlling and tracing the execution of an ASP sys-
tem is quite a different task from debugging an ASP program. Indeed, the first task
-the one addressed by the present work- aims at finding bugs and analyzing/controlling
the behavior of an ASP system (which is a piece of software usually written in some
imperative language); whereas, on the other hand, debugging an ASP program has the
purpose of finding bugs in an logic program (which consists ofASP-language code to
be then evaluated by means of an ASP system). While scanning the trace produced by
the ASP system, the developer could also find errors within the logic program in in-
put; but this kind of error-detection in the input specification is not the main purpose of
our tracer. Techniques and tools specifically devised for debugging ASP programs (see
e.g., [4–8]), are more appropriate than the tool herein presented for the second task.
Note also that analogous considerations do not hold for the tracing-based debuggers
for Prolog systems (see, e.g., [9]), where, due to the operational nature of the seman-
tics of the supported language, tracing the execution results to be very useful also for
debugging the logic program in input.

1 This tool provides a method for tracing and debugging ASP-systems; the interested reader can
find details on debugging techniques for ASP programs in [3].

80 F. Calimeri, N. Leone, F. Ricca, and P. Veltri



Fig. 1. DLV architecture.

The remainder of the paper is organized as follows: in Section 2 we describe the
architecture of theDLV system; in Section 3 we describe our advanced tracing system;
finally, we describe the system usage and the graphical user interface in Section 4.

2 The DLV System Architecture

We now outline the general architecture ofDLV , which is schematically reported in Fig-
ure 1. Upon startup, the input specified by the user is parsed and transformed into the
internal data structures of the system. In general, an inputprogramP contains variables,
and the first step of a computation of an ASP system is to eliminate these variables, gen-
erating a ground instantiationground(P) of P . This variable-elimination process is
calledinstantiationof the program (orgrounding), and is performed by theInstantiator
module (see Figure 1). A naı̈ve Instantiator would produce the full ground instantiation
Ground(P) of the input, which is, however, undesirable from a computational point
of view, as in general many useless ground rules would be generated.DLV therefore
employs sophisticated techniques which are geared towardskeeping the instantiated
program as small as possible. A necessary condition is, of course, that the instantiated
program must have the same answer sets as the original program. Moreover, if the in-
put program is normal and stratified, theDLV Instantiator is able to directly compute
its stable model (if it exists). The subsequent computations, which constitute the non-
deterministic part of an ASP system, are then performed onground(P) by both the
Model Generatorand theModel Checker. Roughly, the former produces some “can-
didate” answer set, whose stability is subsequently verified by the latter. The Model
generator ofDLV implements a backtracking search algorithm, similar to a DPLL pro-
cedure of SAT solvers, which works directly on the ground instantiation of the input
program. As previously pointed out, theModel Checkerverifies whether an answer set
candidate at hand is an answer set for the input program. Thistask is solved inDLV by
calling a specialized procedure, since it is as hard as the problem solved by the Model
Generator for disjunctive programs, while it is trivial fornon-disjunctive programs.2

Finally, once an answer set has been found,DLV prints it in text format, and possibly
theGround Reasonerresumes in order to look for further answer sets. Note that, other

2 However, there is also a class of disjunctive programs, called Head-Cycle-Free programs [10],
for which the task solved by the Model Checker is provably simpler, which is exploited in the
system algorithms.

A Visual Tracer for DLV 81



traditional ASP-systems basically agree on the same general architecture even if they
employ different techniques for implementing the same system components.

In sum, the evaluation of an ASP program inDLV can be divided in threemain
tasks:Instantiation, Model Generation, and Model Checking. Eachof them requires to
be traced for debugging purposes, and in the following Section we describe how our
advanced tracing mechanisms deals with this requirement.

3 Advanced Tracing for DLV

The oldDLV tracing mechanism is simple: it prints to standard output a log of all the
internal system events, followed by the value of some relevant internal variables (e.g.
current partial interpretation, current rule to be processed, etc.). More in detail, each
module ofDLV has a specialized set of traced variables and events, and thedetail of
the information produced can be set statically, for each module, to a given level ranging
from 0 to 3 (minimum and maximum level roughly correspond to tracing-disabled and
full information, respectively). This information allowsfor reconstructing an entireDLV
execution, and/or to focus on the details of a single (or some) task, like e.g. Instantiation.

The main problem of this tracing system is however very easy to be seen: even
small inputs can produce a huge tracing output, which might be either very difficult
to be handled or even impossible to be stored in the file system. Indeed, tracing in-
formation is noisy, in the sense that the developer cannot isolate in a generic tracing
mechanism the information which is needed for detecting a specific problem, and a lot
of useless information is inexorably printed. Moreover, the unavoidable complexity of
the algorithms employed for solving each single task of ASP-program evaluation can
make even impossible to store and analyze the tracing output. Note that, Instantiation
is in general EXPTIME-hard (the produced ground program being potentially of ex-
ponential size with respect to the input program), and both the Model Generator and
the Model Checker implements a backtracking procedure thatmight require to exe-
cute (and, thus trace) an exponential number of operations (w.r.t. the size of the ground
instantiation of the program!).

In order to cope with this situation, we designed and implemented in theDLV system
a general architecture for controlling and tracing the execution, that has two important
features: the execution of each task can be controlled (started, paused, or restarted) and
the information to be printed can be set dynamically during the execution.

In Figure 2 is depicted the general architecture of our tracing method. In particular,
the system is able to receive and recognize a sequence of commands in XML format
from the standard input (or from a given file); those commandsare recognized by the
command parsermodule and inserted in acommand queue. Each evaluation task of the
system has been modified in order to stop periodically its normal execution in some pre-
definedbreakpoints, pick-up a new command from the queue and execute it. Commands
might require to: set the system events to be printed, print the value of some status vari-
able or the content of some internal data structure (e.g. onemight ask whether some
atom is true or false in the current partial interpretation); to continue the execution up
to the next breakpoint; to undo the execution of some task; toterminate the process;

82 F. Calimeri, N. Leone, F. Ricca, and P. Veltri



Fig. 2. Tracing Architecture.

etc.3 The result of each command, together with the output generated by the system are
printed to the standard output according to a specifically designed XML format. In this
way, one can control dynamically the execution, and select the information it needs.
Thus, the information to be printed is dramatically reduced, and the user can focus on
the information regarding a specific moment of the execution. It is worth noting that,
we carefully placed several breakpoints in the evaluation algorithms; breakpoints, that
can be enabled of disabled by setting thegrain level of execution, e.g. in the Model
Generator one can decide to stop the execution at each choicepoint (lowest level of
grain) or at the end of each propagation rule (finest level of control). The level of grain
itself can be set dynamically by exploiting a specific command.

TheDLV system enriched with this advanced tracing can be controlled either man-
ually (by writing the commands from the console) or by exploiting a graphical user
interface that is described in the next Section.

4 System Usage and Graphical User Interface

This section describes the usage of the herein presented system, then illustrates the
Graphical User Interface (GUI) that has been conceived in order to ease interaction.

Commnad line interface.The tracing system is embedded into theDLV system, thus
it features a command-line interface; data are exchanged through standard input/output

3 For a complete listing of the available commands see Appendix 4.

A Visual Tracer for DLV 83



streams. The tracer can be started by invokingDLV with ”−control” option, and an
optional XML input file containing a list of commands:

\$./dl -control [commandFile]

If input file is not provided, then the system awaits for commands on the standard
input. We now report the snapshots of the command-line debugger while running on an
example program.

Suppose now that we want to trace the Model Generator, initially, we start theDLV
system with the option - control:

The logic program we will give in input toDLV is stored in the fileprova.dl, and
contains the following rules:a ∨ b. c ∨ d. e :− a.. The image below shows how to set
this program as input forDLV : just type the<files> tag.

Obviously, one might set more than one file by repeating the same command. Once
the input is set, we can start the parser and then the Instantiator as follows:

To enable tracing we set the tracing mode by inserting the<sbsw/> command. The
tag has two attributes: detail and grain. The detail level determines (as in the old tracing
method) the quantity of information to be printed; whereas,the grain level determines
the number of active breakpoints, respectively. In the following we set both Trace and
Grain levels to two:

84 F. Calimeri, N. Leone, F. Ricca, and P. Veltri



Then, we run the Model Generator, the system executes a part of the computation
and thenDLV stops at the first breakpoint (enabled for this level of grain) and prints the
tracing log. Then, we go to the next breakpoint with the command <sbsn/>. In this
case we will see the answer sets found written between braces(see Figure 3)

At each breakpoint we can modify the tracing configuration byadding or remov-
ing the information to be printed. In this example we requireto add some additional
information to the log (see Figure 4).

Going forward, Model generator finishes, andDLV waits for commands. In this
example we reset the grounding of the program and then we restart both Grounding
and Model Generator requiring to visualize the answer sets of the program without any
tracing (see Figure 5).

Alternatively, the user might start the debugging session by exploiting the graphic
interface.

Graphical User Interface.The GUI allows the user to exploit the full power ofDLV
Controller and Advanced Tracer in a simpler and more intuitive fashion. In the follow-
ing, we describe how he interface is structured.

On the left of the main window is the management area forDLV input. On top of
this area, a tree structure represents the part of the file system of the machine running
DLV (Figure 7). The user can choose the root of such tree while starting the application,
but if it can also be modified later.

Below the tree structure there is the list of the files given asinput toDLV for current
session (Figure 8).

A sessionis initialized when the system starts and it closes when theDLV process
ends; a session can also be forced to close by the user throughan appropriate button.

The central area of the main window is divided into two parts:the main available
commands and a tracing management area are placed in the upper side, while the lower
consists of a “Console”.

The tracing management area features some fields that remember the overall status
of the application.

Fields are in charge of showing: the current status ofDLV (Figure 10), the last com-
mand given by the user (Figure 11),DLV options that are currently enabled (Figure 12),
and the grain and detail levels set during the last tracing analysis (Figure 13).

Under these fields a table, initially empty, is placed which show all the information
printed by the Advanced Tracer during the session (Figure 14).

A Visual Tracer for DLV 85



As described above, the information printed at each breakpoint changes according
to the detail level; however, the user can also customize thecurrent configuration by
means of appropriate buttons.

In order to facilitate a better understanding of what is happening during the session,
the part of the information displayed which is updated by theTracer at each breakpoint
is highlighted in red; the rest is gray (Figure 15).

For each piece of information name and current value are available. If a value is too
long, it can be entirely displayed by clicking the “Enlarge”button.

The “Manage Info” button allows to customize the current display configuration for
the information printed by the Tracer.

The GUI will show only the pieces of information explicitly included in the first list
of Figure 16; nevertheless, such list can be customized by adding other pieces of infor-
mation from the second list, or by removing currently selected pieces of information.

Finally, a “Console” is showed in the lowest area of the window (Figure 17). This
text-area shows the output of the Controller as it is released; thus, when a command is
invoked, the user can view the results.

5 Conclusion

In this paper we have presented an advanced tracing methodology which has been es-
pecially conceived for controlling and monitoring the execution of an ASP system.4 We
have implemented it on theDLV system, and developed a Graphical User interface that
allows to manage tracing operations in a friendly environment.

The advanced tracing technique herein presented can be fruitfully exploited by sys-
tem developers, with the purpose of finding bugs or optimizing the execution of internal
algorithms. Moreover, tracing can be exploited by ASP program developers in order to
optimize (and, in some cases, fix) input ASP programs: indeed, by following the trace
of system execution, the ASP program developer might betterunderstand the behavior
of the exploited ASP system when a specific encoding is evaluated, and thus provide an
alternative (hopefully more-efficiently-evaluable) encoding, or fix an incorrect one.

Thanks to its friendly interface, the advanced tracer mightalso be employed for
didactic purposes; indeed, students can discover what is going on “under the hood”,
thus better understand underlying techniques and evaluation algorithms.

References

1. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G.,Perri, S., Scarcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACM TOCL 7(3) (2006) 499–562

2. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and Expressive Power of Logic
Programming. ACM Computing Surveys33(3) (2001) 374–425

4 Even though each ASP system features its own algorithms and techniques (and thus, also
peculiar variables an data structures), the idea of controlling the execution by means of proper
breakpoints and an external graphical interface which deals with the system by means of an
XML syntax can be easily adapted and implemented into ASP systems different from DLV.

86 F. Calimeri, N. Leone, F. Ricca, and P. Veltri



3. De Vos, M., Schaub, T., eds.: SEA’07: Software Engineering for Answer Set Programming.
Volume 281., CEUR (2007) Online athttp://CEUR-WS.org/Vol-281/.

4. Pontelli, E., Son, T.C., El-Khatib, O.: Justifications for logic programs under answer set
semantics. TPLP9(1) (2009) 1–56

5. Gebser, M., Pührer, J., Schaub, T., Tompits, H.: A Meta-Programming Technique for De-
bugging Answer-Set Programs. In: AAAI’08, AAAI Press (2008) 448–453

6. Perri, S., Ricca, F., Terracina, G., Cianni, D., Veltri, P.: An integrated graphic tool for devel-
oping and testing DLV programs. In: Proceedings of the Workshop on Software Engineering
for Answer Set Programming (SEA’07). (2007) 86–100

7. Syrjänen, T.: Debugging Inconsistent Answer Set Programs. In: Proceedings of the 11th
International Workshop on Non-Monotonic Reasoning, Lake District, UK (2006) 77–84

8. Brain, M., De Vos, M.: Debugging Logic Programs under the Answer Set Semantics. In:
Proceedings ASP05 - Answer Set Programming: Advances in Theory and Implementation,
Bath, UK (2005)

9. Roychoudhury, A., Ramakrishnan, C.R., Ramakrishnan, I.V.: Justifying proofs using memo
tables. In: PPDP. (2000) 178–189

10. Ben-Eliyahu, R., Dechter, R.: Propositional Semanticsfor Disjunctive Logic Programs.
AMAI 12 (1994) 53–87

A Appendix: Tracing Commands

In the following we report some of the most important tracingcommands that allow to
customize the tracing.

Customizing the Configuration Once the tracing mode has been set, or during the
analysis phase, the information to be printed can be customized according the user’s
need. This is done by means of the following statements.

– <show_info_tracer/>

shows all information concerning current configuration; this will be printed ev-
ery time an active breakpoint is reached. The short version of this statement is
<show_t/>.

– <add_info_to_tracer>"infoName1; . . .; infoNameN"</add_info_to_tracer>

add a piece of information to the current tracing configuration; information will
be printed at each step from now on. The information to be added must be writ-
ten between start tag and end tag. A hort version of this statement is available as
<a_to_t>"infoName1. . . infoNameN"</a_to_t>.

– <delete_info_of_tracer>"infoName1; . . .; "infoNameN</delete_info_of_tracer>

removes a piece of information from the current tracing configuration. The short
version is<d_of_t>"infoName1 . . . infoNameN"</d_of_t>.

– <empty_info_of_tracer/>

empties the current tracing configuration; this will force the tracer to print no infor-
mation at all. The short version is<e_of_t/>.

A Visual Tracer for DLV 87



Breakpoints Commands WhenDLV stops, at any breakpoint, the user can inspect and
trace the execution by means of the following commands:

– <step_by_step_next/>

allows to exit the current breakpoint and go forward to the next one. Short version
is <sbs_n/>.

– <step_by_step_continue/>

allows to leave the Tracing mode; hence,DLV goes ahead until the end of com-
putation with no stops (thus ignoring any other breakpoint). The short version is
<sbs_c/>.

– <step_by_step_view>"InfoName"</step_by_step_view>

this command prints information “on-demand”. Indeed, the user can ask the Tracer
to print some pieces of information which are not contained in the current configu-
ration. Short version is<sbs_v>"InfoName"</sbs_v>.

There are also some commands which are defined as “special”; these can be invoked
by the user only at some specific breakpoints.

– <step_by_step_go_back>"X"</step_by_step_go_back>

or
<sbs_gb>"X"</sbs_gb>

forcesDLV to go back ofX level; if L is the current level, the computation starts
over from level:L−X . This command can be invoked only while the Model Gen-
erator is being traced; in particular, only at a breakpoint whereDLV checks the
stability of the current model, or when it is waiting for the next choice.

– <step_by_step_stop_when>"X"</step_by_step_stop_when>

or
<sbs_sw>"X"</sbs_sw>

forcesDLV to go ahead without any stop while the atomX is not true; once the
atomX becomes true, the system will stop at next breakpoint. This command can
be executed at any breakpoint, both during the Grounding or the Model Generation
phases.

– <step_by_step_go_component>"X"</step_by_step_go_component>

or
<sbs_gc>"X"</sbs_gc>

forces the system to go ahead and stop just before the evaluation of the component
X has to start. It can be executed only during while the Grounding is traced, in
particular only during the evaluation of the components of the input program.

– <step_by_step_go_rule>"X"</step_by_step_go_rule>

or
<sbs_gr>"X"</sbs_gr>

forces the system to go ahead and stop just before the evaluation of the ruleX has
to start. It can be executed only while the Grounding is beingtraced, in particular
during the evaluation of the components of the input program. This command has
effect only if the grain level is set to2: indeed, there are no stops at rule level with
a lower grain level.

88 F. Calimeri, N. Leone, F. Ricca, and P. Veltri



– <step_by_step_go_constraint>"X"</step_by_step_go_constraint>

or
<sbs_gcn>"X"</sbs_gcn>

force the system to go ahead and stop just before the evaluation of the constraint
X has to start. It can be executed only during while the Grounding is being traced,
in particular during the evaluation of the components or theconstraints of the input
program. This command has effect only if the grain level is set to 2: indeed, there
are no stops at constraint level with a lower grain level.

– <step_by_step_go_wconstraint>"X"</step_by_step_go_wconstraint>

or
<sbs_gwcn>"X"</sbs_gwcn>

forces the system to go ahead and stop just before the evaluation of the weak con-
straintX has to start. It can be executed only while the Grounding is being traced,
in particular during the evaluation of the weak constraints. This command has ef-
fect only if the grain level is set to2: indeed, there are no stops at weak constraint
level with a lower grain level.

A Visual Tracer for DLV 89



Fig. 3. Run the Model Generator.

Fig. 4. Add tracing information.

90 F. Calimeri, N. Leone, F. Ricca, and P. Veltri



Fig. 5. End tracing.

Fig. 6. GUI: Starting interface.

A Visual Tracer for DLV 91



Fig. 7.GUI: Current State of DLV. Fig. 8. GUI: Last Command Executed.

Fig. 9.GUI: Main Area of the Window.

Fig. 10.GUI: Current State of DLV. Fig. 11.GUI: Last Command Executed.

Fig. 12.GUI: DLV Options Enabled. Fig. 13.GUI: Grain and Detail Levels.

92 F. Calimeri, N. Leone, F. Ricca, and P. Veltri



Fig. 14.GUI: Tracing Table at the Beginning.

Fig. 15.GUI: Tracing Table during Analysis.

Fig. 16.GUI: Dialog for Information Management.

Fig. 17.GUI: Console.

A Visual Tracer for DLV 93


