A Visual Tracer for pwv

Francesco Calimeri, Nicola Leone, Francesco Ricca, anftr&ieesco Veltri

Dipartimento di Matematica, Universita della CalabriadD80 Rende, Italy
{calimeri,leone,ricca,pf.veltri}@mt.unical.it

Abstract. In software engineering, tracing is a specialized way foording in-
formation about the execution of a program for debuggingpses. The more
complex the system, the more difficult is developing a maablge and thus prac-
tically useful, tracer. Answer Set Programming (ASP) systeepresent no ex-
ception in this respect: the intrinsic complexity of reasgrrequired the design
of elaborated evaluation algorithms.

In this paper, we present a suitable solution to the problenacing the execution
of an ASP system and its implementation into the ASP systeM. Obe tool
herein presented features a graphical user interface amal-tme tracing method
that puts it on the way between tracing and debugging. Trgerahapplicability
counts: bug fixing, system optimization, ASP-developindsaand educational
purposes.

1 Introduction

In software development, tracing is a specialized use dfifagin order to record in-
formation about the execution of a program. This informmatotypically used by pro-
grammers for debugging purposes or (depending on the tygeetail of information
provided by the tracing system) by experienced system dpees to diagnose problems
or optimize implementations. Information provided by acing mechanism is usually
employed by developers only, since usually there is notrdstal output syntax, and
the produced result might be either noisy (it might contalataf information which
is useless for a specific purposes) or very long. Indeed, anmmproblem with trac-
ing consists on the impossibility of isolating in a generieahanism the information
which is needed for detecting a specific problem, and thus @f leseless information
is inexorably printed.

Since the day of its first release thev system [1] is equipped with a simple tracing
mechanism that is available to the developers; tracingunosons are instead removed
by official release versions @fLV, for obvious optimization purposes. When enabled,
this simple mechanism prints to the standard output a lodl oftarnal system events
and the value of some (relevant) internal variables. Howélre unavoidable complex-
ity of the algorithms employed for evaluating an ASP-progrand exploited byLV,
makes it quite difficult, or even impossible, to store andly®asuch tracing output.
It is worth noting that the evaluation of (non-ground) digjtive ASP programs is a
NEXPTIMEN® task [1, 2]; thus, the execution of an ASP system might preduicace
that is both inexorably large and difficult to handle, evethi@ case of small inputs.

80

F. Calimeri, N. Leone, F. Ricca, and P. Veltri

In order to cope with this situation, we designed a geneddlitecture for control-
ling and tracing the execution; we implemented such prdpogaDLV, thus coming
out with an advanced tracing system that has two importattfes: the execution of
each task can be controlled (started, paused, or restaatati)he information produced
can be set dynamically during the execution.

Our advanced tracer combines a graphical user interfaceaansh-line tracing
method that puts it on the way between a tracing and a spemiaBystem debug-
ging tool! The user can control the execution of tev system by means of suitable
commands, and also ask the system to display some specdticafion, like e.g., the
content of the internal data structures or the status ofythiesn.

The resulting tool enjoys a wide range of applicability: Hudng, system opti-
mization, ASP-developing aids, and also educational mepolndeed, by following
the trace of system execution, a program developer mighyzathe behavior of the
system and detect bugs or inefficient branches of the coripuitéas a by-product,
a developer can be given an error-detection in the inputifspetton). Moreover, by
following the evaluation of a given encoding step-by-seapASP program developer
might understand the reason for an inefficient evaluatiod,tane its encoding for ob-
taining a more efficient of evaluation .

As already mentioned, the system features a graphicafécesrthat eases the inter-
action with the advanced tracing techniques; such intenfagkes the system suitable
also for didactic purposes. Indeed, ASP systems act as ek4blex”, and it is not pos-
sible to see what is really happening inside. Conversebfessors can explain evalua-
tion techniques by preparing and showing a live-demo of thefual implementation.
Students might follow the execution, step-by-step, onrtbein machines; moreover,
“playing” with the system, they can gain a more direct untierding of the working
principles, which is facilitated by a clear image of what srgy on “under the hood”.

Remark. It is worth noting that controlling and tracing the executiaf an ASP sys-
tem is quite a different task from debugging an ASP progrardeéd, the first task
-the one addressed by the present work- aims at finding bubaralyzing/controlling
the behavior of an ASP system (which is a piece of softwarallyswritten in some
imperative language); whereas, on the other hand, debggagiSP program has the
purpose of finding bugs in an logic program (which consistd®P-language code to
be then evaluated by means of an ASP system). While scarmértgace produced by
the ASP system, the developer could also find errors withenldlgic program in in-
put; but this kind of error-detection in the input specifioatis not the main purpose of
our tracer. Techniques and tools specifically devised fbudging ASP programs (see
e.g., [4-8]), are more appropriate than the tool hereinguiesi for the second task.
Note also that analogous considerations do not hold forréeng-based debuggers
for Prolog systems (see, e.g., [9]), where, due to the ojpaadtnature of the seman-
tics of the supported language, tracing the execution tetulbe very useful also for
debugging the logic program in input.

! This tool provides a method for tracing and debugging AS&esys; the interested reader can
find details on debugging techniques for ASP programs in [3].

A Visual Tracer for DLV 81

Model Checker

I
e Irestantiator T} Modeal Generator T>

Fig. 1. DLV architecture.

The remainder of the paper is organized as follows: in SeQiove describe the
architecture of th®LV system; in Section 3 we describe our advanced tracing system
finally, we describe the system usage and the graphical nisefdace in Section 4.

2 Thepwv System Architecture

We now outline the general architecturedafv, which is schematically reported in Fig-
ure 1. Upon startup, the input specified by the user is pansédransformed into the
internal data structures of the system. In general, an immgfraniP contains variables,
and the first step of a computation of an ASP system is to efiteithese variables, gen-
erating a ground instantiatiogpround(P) of P. This variable-elimination process is
calledinstantiationof the program (ogrounding, and is performed by thiastantiator
module (see Figure 1). A naive Instantiator would prodbedfll ground instantiation
Ground(P) of the input, which is, however, undesirable from a compaotet point
of view, as in general many useless ground rules would bergtteDLV therefore
employs sophisticated techniques which are geared tovwaesing the instantiated
program as small as possible. A necessary condition is, wkegthat the instantiated
program must have the same answer sets as the original proltareover, if the in-
put program is normal and stratified, tb&V Instantiator is able to directly compute
its stable model (if it exists). The subsequent computatiarhich constitute the non-
deterministic part of an ASP system, are then performegremnnd(P) by both the
Model Generatorand theModel CheckerRoughly, the former produces some “can-
didate” answer set, whose stability is subsequently verifig the latter. The Model
generator oDLV implements a backtracking search algorithm, similar to &IDpro-
cedure of SAT solvers, which works directly on the groundéansgation of the input
program. As previously pointed out, thdodel Checkewerifies whether an answer set
candidate at hand is an answer set for the input program tds$kss solved irbLV by
calling a specialized procedure, since it is as hard as thiglgmn solved by the Model
Generator for disjunctive programs, while it is trivial foon-disjunctive programs.
Finally, once an answer set has been fond, prints it in text format, and possibly
the Ground Reasoneatresumes in order to look for further answer sets. Note thihgro

2 However, there is also a class of disjunctive programsedaflead-Cycle-Free programs [10],
for which the task solved by the Model Checker is provablymén which is exploited in the
system algorithms.

82 F. Calimeri, N. Leone, F. Ricca, and P. Veltri

traditional ASP-systems basically agree on the same gesr@fitecture even if they
employ different techniques for implementing the sameesystomponents.

In sum, the evaluation of an ASP programDuV can be divided in threenain
tasks:Instantiation, Model Generation, and Model Checking. Eafdihem requires to
be tracedfor debugging purposes, and in the following Section we diesdow our
advanced tracing mechanisms deals with this requirement.

3 Advanced Tracing for bLv

The oldDLV tracing mechanism is simple: it prints to standard outputgadf all the
internal system events, followed by the value of some releidernal variables (e.g.
current partial interpretation, current rule to be proedstc.). More in detail, each
module of DLV has a specialized set of traced variables and events, ardktaik of
the information produced can be set statically, for eachutegdo a given level ranging
from 0 to 3 (minimum and maximum level roughly correspond&zing-disabled and
full information, respectively). This information allovir reconstructing an enti@LV
execution, and/or to focus on the details of a single (or Jaass, like e.g. Instantiation.

The main problem of this tracing system is however very eashet seen: even
small inputs can produce a huge tracing output, which migheither very difficult
to be handled or even impossible to be stored in the file sydtedeed, tracing in-
formation is noisy, in the sense that the developer canotdtis in a generic tracing
mechanism the information which is needed for detectingegifip problem, and a lot
of useless information is inexorably printed. Moreoveg, tmavoidable complexity of
the algorithms employed for solving each single task of AB&3ram evaluation can
make even impossible to store and analyze the tracing outimiié that, Instantiation
is in general EXPTIME-hard (the produced ground progranmdpgiotentially of ex-
ponential size with respect to the input program), and be¢hModel Generator and
the Model Checker implements a backtracking procedurertiight require to exe-
cute (and, thus trace) an exponential number of operatians. the size of the ground
instantiation of the program!).

In order to cope with this situation, we designed and impleteein theDLV system
a general architecture for controlling and tracing the a%eaq, that has two important
features: the execution of each task can be controlled€stgraused, or restarted) and
the information to be printed can be set dynamically duriregegxecution.

In Figure 2 is depicted the general architecture of our iuonethod. In particular,
the system is able to receive and recognize a sequence of @odsnm XML format
from the standard input (or from a given file); those commaargsrecognized by the
command parsemodule and inserted in@ommand queu&ach evaluation task of the
system has been modified in order to stop periodically iter@aexecution in some pre-
definedbreakpointspick-up a new command from the queue and execute it. Comsnand
might require to: set the system events to be printed, grewalue of some status vari-
able or the content of some internal data structure (e.gnugat ask whether some
atom is true or false in the current partial interpretatiaa)continue the execution up
to the next breakpoint; to undo the execution of some taskenminate the process;

A Visual Tracer for DLV 83

Graphical User Interface

l Tracing Process Contraller |

Internal Data >
Structures
Worker
L Task
Status >
<commands> -|\ Management <output=

1
1
1
i
i
'
1
'
1
i
1
i
'
1
'
1
1
1
Command - Command H
Parser Queue 1
'

1

1

1

1

1

1

'

1

1

1

1

i

'

'

1

1

1

DLV-Tracer
e

=S

input files

Fig. 2. Tracing Architecture.

etc2 The result of each command, together with the output gesetat the system are
printed to the standard output according to a specificalbygieed XML format. In this
way, one can control dynamically the execution, and seleetiiformation it needs.
Thus, the information to be printed is dramatically redy@ed the user can focus on
the information regarding a specific moment of the executibis worth noting that,
we carefully placed several breakpoints in the evaluatigarghms; breakpoints, that
can be enabled of disabled by setting train level of execution, e.g. in the Model
Generator one can decide to stop the execution at each ghoiice(lowest level of
grain) or at the end of each propagation rule (finest levebatmol). The level of grain
itself can be set dynamically by exploiting a specific comthan

TheDLV system enriched with this advanced tracing can be condreltaer man-
ually (by writing the commands from the console) or by exjahgy a graphical user
interface that is described in the next Section.

4 System Usage and Graphical User Interface

This section describes the usage of the herein presentéehsythen illustrates the
Graphical User Interface (GUI) that has been conceivedderdo ease interaction.

Commnad line interfaceThe tracing system is embedded into thie/ system, thus
it features a command-line interface; data are exchangeddh standard input/output

3 For a complete listing of the available commands see Appehdi

84

F. Calimeri, N. Leone, F. Ricca, and P. Veltri

streams. The tracer can be started by invokihg with " —control” option, and an
optional XML input file containing a list of commands:

\$./dl -control [commandFil e]

If input file is not provided, then the system awaits for comogon the standard
input. We now report the snapshots of the command-line dgdrughile running on an
example program.

Suppose now that we want to trace the Model Generator, ligjtiee start theDLV
system with the option - control:

frankie@FrankiePC:~/Desktop/TesiSpecialistica/ControllerToServer/DifferenzeControllervsoriginale/dlvServerIFNDEF$ dl -control
DLV [build DEV/Jul 6 2009 gcc 4.0.2 20050808 (prerelease) (Ubuntu 4.0.1-4ubuntu9)]

<message> System started </message>

The logic program we will give in input tBLV is stored in the fileprova.d| and
contains the following rulest V b. ¢ V d. e :— a.. The image below shows how to set
this program as input fabLV: just type the<files> tag.

Obviously, one might set more than one file by repeating theessommand. Once
the input is set, we can start the parser and then the Instanés follows:

To enable tracing we set the tracing mode by insertingtblesw/> command. The
tag has two attributes: detail and grain. The detail levidigines (as in the old tracing
method) the quantity of information to be printed; wherehs,grain level determines
the number of active breakpoints, respectively. In theofelhg we set both Trace and
Grain levels to two:

A Visual Tracer for DLV 85

frankie@FrankiePC:~/Desktop/TesiSpecialistica/ControllerToServer/DifferenzeControllervsoriginale/dlvServerIFNDEF$ dl -control
DLV [build DEV/Jul 6 2009 gcc 4.0.2 20050808 (prerelease) (Ubuntu 4.0.1-4ubuntus)]

<message> System started </message>
<files>"../prova.dl"</files>
<message> Input file established </message>

<parser/>
<message> Parser executed </message>

<grounding/>
<message> Grounding executed </message>

<sbs_w detail="2" grain='2"/>

<message> Dlv is in step_by_step mode. MessageDetail = 2; TraceGrain = 2 </message>

Then, we run the Model Generator, the system executes a foidue computation
and therDLV stops at the first breakpoint (enabled for this level of graimd prints the
tracing log. Then, we go to the next breakpoint with the comenasbsn/>. In this
case we will see the answer sets found written between b(sees-igure 3)

At each breakpoint we can modify the tracing configuratiorablging or remov-
ing the information to be printed. In this example we requreadd some additional
information to the log (see Figure 4).

Going forward, Model generator finishes, abdv waits for commands. In this
example we reset the grounding of the program and then wartdgith Grounding
and Model Generator requiring to visualize the answer datsegrogram without any
tracing (see Figure 5).

Alternatively, the user might start the debugging sessipxploiting the graphic
interface.

Graphical User Interface.The GUI allows the user to exploit the full power btv
Controller and Advanced Tracer in a simpler and more inteifashion. In the follow-
ing, we describe how he interface is structured.

On the left of the main window is the management areaDior input. On top of
this area, a tree structure represents the part of the fiteraysf the machine running
DLV (Figure 7). The user can choose the root of such tree whitérgidhe application,
but if it can also be modified later.

Below the tree structure there is the list of the files giveimpat toDLV for current
session (Figure 8).

A sessiornis initialized when the system starts and it closes wherDihe process
ends; a session can also be forced to close by the user thaouggbpropriate button.

The central area of the main window is divided into two pattie: main available
commands and a tracing management area are placed in thesiggevhile the lower
consists of a “Console”.

The tracing management area features some fields that reenéimetoverall status
of the application.

Fields are in charge of showing: the current statuslaf (Figure 10), the last com-
mand given by the user (Figure 1DLV options that are currently enabled (Figure 12),
and the grain and detail levels set during the last tracirdyais (Figure 13).

Under these fields a table, initially empty, is placed whicbwg all the information
printed by the Advanced Tracer during the session (Figuye 14

86 F. Calimeri, N. Leone, F. Ricca, and P. Veltri

As described above, the information printed at each braakpbanges according
to the detail level; however, the user can also customizetinent configuration by
means of appropriate buttons.

In order to facilitate a better understanding of what is teaqiipg during the session,
the part of the information displayed which is updated byTtacer at each breakpoint
is highlighted in red; the rest is gray (Figure 15).

For each piece of information name and current value aréedolai If a value is too
long, it can be entirely displayed by clicking the “Enlardmitton.

The “Manage Info” button allows to customize the currenptiig configuration for
the information printed by the Tracer.

The GUI will show only the pieces of information explicitlyéluded in the first list
of Figure 16; nevertheless, such list can be customized Byngather pieces of infor-
mation from the second list, or by removing currently sedgtieces of information.

Finally, a “Console” is showed in the lowest area of the wind&igure 17). This
text-area shows the output of the Controller as it is relgabris, when a command is
invoked, the user can view the results.

5 Conclusion

In this paper we have presented an advanced tracing metigydehich has been es-
pecially conceived for controlling and monitoring the extian of an ASP systerhWe
have implemented it on theLVv system, and developed a Graphical User interface that
allows to manage tracing operations in a friendly environtne

The advanced tracing technique herein presented can lfelisuexploited by sys-
tem developers, with the purpose of finding bugs or optingizive execution of internal
algorithms. Moreover, tracing can be exploited by ASP progdevelopers in order to
optimize (and, in some cases, fix) input ASP programs: indeg¢bllowing the trace
of system execution, the ASP program developer might bettderstand the behavior
of the exploited ASP system when a specific encoding is etediiand thus provide an
alternative (hopefully more-efficiently-evaluable) edoa, or fix an incorrect one.

Thanks to its friendly interface, the advanced tracer majbd be employed for
didactic purposes; indeed, students can discover whatimggm “under the hood”,
thus better understand underlying techniques and evafualgorithms.

References

1. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, Berri, S., Scarcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACMLIITR) (2006) 499-562

2. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Conxity and Expressive Power of Logic
Programming. ACM Computing Surve®8(3) (2001) 374-425

4 Even though each ASP system features its own algorithms estthigues (and thus, also
peculiar variables an data structures), the idea of cdimgahe execution by means of proper
breakpoints and an external graphical interface whichsdeith the system by means of an
XML syntax can be easily adapted and implemented into ASEsysdifferent from DLV.

10.

A

A Visual Tracer for DLV 87

. De Vos, M., Schaub, T., eds.: SEAQ7: Software Enginegfam Answer Set Programming.

Volume 281., CEUR (2007) Online kt t p: / / CEUR- W5. or g/ Vol - 281/ .

. Pontelli, E., Son, T.C., El-Khatib, O.: Justifications fogic programs under answer set

semantics. TPLB(1) (2009) 1-56

. Gebser, M., Puhrer, J., Schaub, T., Tompits, H.: A MetmgRamming Technique for De-

bugging Answer-Set Programs. In: AAAI'08, AAAI Press (20@@8-453

. Perri, S., Ricca, F., Terracina, G., Cianni, D., Veltri,A integrated graphic tool for devel-

oping and testing DLV programs. In: Proceedings of the Waokson Software Engineering
for Answer Set Programming (SEAQ7). (2007) 86—-100

. Syrjanen, T.. Debugging Inconsistent Answer Set Prograln: Proceedings of the 11th

International Workshop on Non-Monotonic Reasoning, Lak&rizt, UK (2006) 77-84

. Brain, M., De Vos, M.: Debugging Logic Programs under theswer Set Semantics. In:

Proceedings ASPO5 - Answer Set Programming: Advances inrytend Implementation,
Bath, UK (2005)

. Roychoudhury, A., Ramakrishnan, C.R., Ramakrishn&h, Justifying proofs using memo

tables. In: PPDP. (2000) 178-189
Ben-Eliyahu, R., Dechter, R.: Propositional SemarfiaesDisjunctive Logic Programs.
AMAI 12(1994) 53-87

Appendix: Tracing Commands

In the following we report some of the most important tracoegnmands that allow to
customize the tracing.

Customizing the Configuration Once the tracing mode has been set, or during the
analysis phase, the information to be printed can be cuggmrccording the user’s
need. This is done by means of the following statements.

— <show_i nfo_tracer/>

shows all information concerning current configurations twill be printed ev-
ery time an active breakpoint is reached. The short versiahis statement is
<show_t/>.

<add_info_to_tracer>"infoNanel; ...; i nfoNameN'</add_i nfo_to_tracer>

add a piece of information to the current tracing configorgtinformation will
be printed at each step from now on. The information to be caddlest be writ-
ten between start tag and end tag. A hort version of thisraeeis available as
<a_to_t>"infoNamel...infoNameN'</a_to_t>.

<del ete_i nfo_of _tracer>"i nfoNanel; ...;"i nf oNameN</ del ete_i nfo_of _tracer>
removes a piece of information from the current tracing cpmfition. The short
version iS<d_of _t>"infoNanmel...infoNameN'</d_of _t>.

<enpty_info_of _tracer/>

empties the current tracing configuration; this will forhe tracer to print no infor-
mation at all. The short versionds_of t/>.

88 F. Calimeri, N. Leone, F. Ricca, and P. Veltri

Breakpoints Commands WhenDLV stops, at any breakpoint, the user can inspect and
trace the execution by means of the following commands:

— <step_by_step_next/>
allows to exit the current breakpoint and go forward to thetio@e. Short version
is <sbhs_n/>.

— <step_by_step_continue/>
allows to leave the Tracing mode; hen@gy goes ahead until the end of com-
putation with no stops (thus ignoring any other breakpoifie short version is
<shs_c/ >.

— <step_by_step_view>"|nfoNane"</step_by_step_vi ew>
this command prints information “on-demand”. Indeed, teerican ask the Tracer
to print some pieces of information which are not contaimethe current configu-
ration. Short version iSsbs_v>" nf oNane" </ sbs_v>.

There are also some commands which are defined as “spebidé tan be invoked
by the user only at some specific breakpoints.

— <step_by_step_go_back>"X"</step_by_step_go_back>
or
<shs_gb>"X"</ sbs_gb>
forcesDLV to go back ofX level; if L is the current level, the computation starts
over from level:LL — X. This command can be invoked only while the Model Gen-
erator is being traced; in particular, only at a breakpoihereDLV checks the
stability of the current model, or when it is waiting for thext choice.

— <step_by_step_stop_when>"X"</step_by_step_stop_when>
or
<shs_sw>" X"</ sbs_sw>
forcesDLV to go ahead without any stop while the atdtis not true; once the
atom X becomes true, the system will stop at next breakpoint. Térisroand can
be executed at any breakpoint, both during the GroundinigeokModel Generation
phases.

— <step_by_step_go_conponent >" X'</ st ep_by_st ep_go_conponent >
or
<shs_gc>"X"</sbs_gc>
forces the system to go ahead and stop just before the eealwdthe component
X has to start. It can be executed only during while the Graumds traced, in
particular only during the evaluation of the componentdefinput program.

— <step_by_step_go_rul e>"X"'</step_by_step_go_rul e>
or
<shs_gr>"X"</sbs_gr>
forces the system to go ahead and stop just before the eical@dithe ruleX has
to start. It can be executed only while the Grounding is béiaged, in particular
during the evaluation of the components of the input progrBinis command has
effect only if the grain level is set t: indeed, there are no stops at rule level with
a lower grain level.

A Visual Tracer for DLV 89

— <step_by_step_go_constraint>"X"</step_by_step_go_constraint>
or
<sbs_gcn>"X"</shs_gcn>
force the system to go ahead and stop just before the evatuattithe constraint
X has to start. It can be executed only during while the Graupii being traced,
in particular during the evaluation of the components orciiestraints of the input
program. This command has effect only if the grain level ige&: indeed, there
are no stops at constraint level with a lower grain level.

— <step_by_step_go_wconstraint>"X"</step_by_step_go_wconstraint>
or
<sbs_gwcn>" X" </ shs_gwcn>
forces the system to go ahead and stop just before the ecaluditthe weak con-
straintX has to start. It can be executed only while the Groundingiisgoaced,
in particular during the evaluation of the weak constraifitds command has ef-
fect only if the grain level is set t®: indeed, there are no stops at weak constraint
level with a lower grain level.

90

F. Calimeri, N. Leone, F. Ricca, and P. Veltri

frankiegrrankiePc: —;Dui:topﬂulspl:u'lutscucnntrulhrl’akrummffeunumﬂtmllarmaq;mhrd‘lv!truI-IFMZE% dl
oLy [build DEV/IUL 6 2008 goc 4.0.2 20050008 (prerelease) (Ubuntu 4.0.1-4ubuntus

<massage> System started </messages
<files="../prova.dl </files>
<massage> Input file established </message>

<parser/=

Parser d </

<grounding/>
Grounding d </

«<shs_w detail="2" grain="1"/»
<message> Olv is in step by step mode. MessageDetail = 2; TraceGrain = 1 </message>

<model_generator/>
<message> Model generator start :
“massage>
Breakpoint Reached.
well-Founded has been cosputed
</messager
«tracer>
<MGCurrentChoicesThe current choice has not yet initialized</MGCurrentchoices
<MGPositiveOrNegativechoice=The current choice has not yot initialized</MGPositivedrNegatlvechoices
</tracars
<shs_n/>

ge> Mext step

“messagas
Braakpaint Reached.
wait for next choice
</massage=
=tracer>
<MOCurrentCholcesbe</MGCurrentChoices>
<MOPos1 £1 veOrNegatl veChot ce>Posi tives/MGPos1 tiveOrNegativechoico=
<ftracer>
=message= Mext step </messages
“mEsSage>
Breakpoint Reached,
wait for mext choiee
=/messages
<tracer>
=MGCurrentcholcesd</MGCurrentChoices
«<MGPoB1 t1 veOrNegativechol ce=Posi tive=/MGPosi tiveOriegativechoicex
=/tracer=>
<shs_n/>
«message> MNext step </message>
{a, d, e}
“mESSage>
Breakpoint Reached.
Found stable model
</message=
=tracer>
<MGCur FéntChol cesd</MGCurrentchol ces
<MGPosi tivedrNegativechol cesPosl Tl ve</MGPos1 t1 veOriegati vechol ces
</tracer>

Fig. 3. Run the Model Generator.
wxhow_tnfo_trecer =
mannsge> The tracer can print thess infol
HoCurrentossice, Mileva L, MoPowl 11 velrisgati velholcs,
WCFrentIREE FRretatLon, MIET Qusus,
MiEur v T1cvalues, ROPropagat L onLl teral ,
ML ok aha st Lag, MOUnE cundadSet M0 L FoundedState,
Mol ook ghagdFai LFlag. il teralalnfar redinlintPropagstoan,
ol iCommnents, GRCurrentComponant. G nd saboutPredicate,
CRCUF ran TCapEnan O tpat, ORCurrentlEaratlen, OPIneuved Cls rentl taratien,
croutputelCurrentl teration, Goviginalfrls, PRecrderediuls, GPutchingReault,
GREstchingBeckTa, CFAALLContradnt, RConstraintFinaloutput, RoriglralConstraint,
GFFsorderedtemtraint, GurrentConstraintiutput, Tallveskcomtraing,
GRyiedd Comatralntf ralutput, OW0r) ginalwesk Constraing, PPesrderadensd Conatraint,
GCLr e Thisas Cons Tral A Toutput
L Tt PR

asmyaages Whila tha current info ars:
FECUr PN TChSLoe,
MPaEE 1 vaOrhEgaTL wEChoICE,
AL Components,
Pl rentCompanant .
Wurrentl teration,
Oy 10 CLiF s 11 L a2 0,
TFatputtf Cur rentI teration,
fRAtar rent Companent Gatput,
GPalLtonatraint,
GRCuf FEntCeri Er a v Ouliut,
GRCors Tr sl NP nal Dutput,
GRAL sk Cormtraint,
s ConatranntFlnalOutput,
G ren ek Conatral ntlutpat
wiemaiage e

=add_info_to_ tracers"MOLeve] MiCurrent Interpretation®«/add_infe_to_ trecers
srmgaages infe mided «/mesnages

Fig. 4. Add tracing information.

-eentrol

b, €}
s

A Visual Tracer for DLV 91

Braskpoint Meached,
Found stable sedel

< /mansagas
“Eracars

«MGCLr rantChol Camde M0CUr ranEChol cam

Lo
“/tracers

b

=

Nagatvachor
1=/ MLavil=
ntEntarpratation=s TRE [FAON LEFINED] =

wacholcax

fck, TRUE [FROM MUST_BE TRE] « {bl, WUST_EE TRE = (I, LMGEFTMED = {}, FALSE = {#, d, o} =oCur

n
“mennsges Mext STOD < mesnagEn

Model gensrator stop!</meassges

g

mmsxage> Grounding reset «/measages

<grounding/=

=assage> Crouming exetuted </mesnages

=mdel_generatar/>

~mmssage> Madel germrator start @

fa, 4, a}

f{a, 2, o}

{b, &

b, €}
Medel generator atep!cimensages

e

amannages Found MLt teg, Ooodbye! || «/mewsages

frankiedFrank1efC: = Desh top Tevi Soeci slintica/Control larTeSorver /0o flarenzaContral Larvsori ginale /dlvServar [RDIFS

& (3 nurthreagi=0 71
[eomeencn-2 2 0110 022
> 3 eahreacs-22.0
[} exmrens_1 0 2r2r-1_ 304
[} enneeadts 1.0 2r2r-1_i384

= 3 resmhreads

Fig. 5. End tracing.

Cammand Eutton:

| Optioms || Fies || Paser | Gousding | ShyWan | Shsed | SbaBxR | MedelGeesass | Reset | QuADLY || Resan DUV |

State Arex

T T — Current State: IR

TraceGrain - MessageDetail: -

Click to view the value of the selected info:

Enbuge | Click to manage the iofec | Shage fo Info on-demandt

View Infe

| Consale:
process_started, >
It

|cmessage> System started </message>

Fig. 6. GUI: Starting interface.

92 F. Calimeri, N. Leone, F. Ricca, and P. Veltri

File System Tree:
9 C dMests. =
oy
o [Bench2
D 2qpr.5.5.200
D) 2q0f.5.5.20¢
D 2ab1.5.5.200
D 3col
D 3cotin0
D 3co1t6
D zcoic
D) 3coin
D) 3cov
[makefile DIV Input Files Tree:
De2
[2.inheritance
[p3.inheritance
) resome
[README Ipnmra7

i

D) README stratcomp -]
il o 5 |
Fig. 7. GUI: Current State of DLV. Fig. 8. GUI: Last Command Executed.
Command Button
_opuons || puws || paeser || Grounaing || sosvan || swevens || sweewt || Moast Gomeator || sese [qweowy | mesuno |
State Arex
Last Command: [groumdingls] Current state: WState]

TraceGrain: MessageDetait:]

Click to view the value of the selected infa: _Entaige | Click to manage the info: | Manage nfo | Info on-demand: | View lnfo |

Cansole:

comp 3: GroundSubP = { (1% aC0) v g(.0) =~ ¢(0} (1), not bLo_ 1.}
comp 4 : GroundSubP = { (1) a.0) v g0}~ ¢ 0), (1), not bLO_ 1)}
</GRAIIComponents>

«jtracer>

<IAL

Fig. 9. GUI: Main Area of the Window.

Last Command: [EFouRamEIE

Current State;

Fig. 10.GUI: Current State of DLV. Fig. 11.GUI: Last Command Executed.
. -nofacts
Option Set TraceGrain: MessageDetail:

Fig.12.GUI: DLV Options Enabled. Fig. 13.GUI: Grain and Detail Levels.

A Visual Tracer for DLV 93

Tracer Info Table:

Variable: [Value:

Ereakpoint Message Not Initialized

Click to view the value of the selected info: | Enlarge | Click to manage the info: Infa on-demand:
Fig. 14.GUI: Tracing Table at the Beginning.

Tracer Info Table:
Variable: Value:

MGCurrentChoice Not initialized

MCGPositiveOrNegativeChoice Not initialized

GRCurrentComponent Not initialized

CRInfoAboutPredicate Not initialized

Click to view the value of the selected info: @ Click to manage the info: | Manage Info Info on-demand: = View Info

Fig. 15.GUI: Tracing Table during Analysis.

™ Tracer Info Manager X
Included info: Not included info:
[MGcumemCnoice 4] MGLevel -
hoice MGC
[GRAIIComponents MGPTQueue
[GRCurrentComponent MGEuristicValues
[GRInfoAboutPredicate MGPropagationLiteral
[GRCurrentComponentOutput MGLookaheadFlag
GRCurrentiteration MGUNfoundedset
[GRInputOfCurrentiteration MG\ellFoundedState
GROUtpULOfCurrentiteration MGLookaheadFailFlag
[GROTiginalRule MGLiteralsinferredinLastProp:
GRReorderedRule L)
« i < i 1y]

(sme][cance]

Fig. 16. GUI: Dialog for Information Management.

Console:

<message> Model generator stat :
Jest model: {q(1), q2)
ost (WeightLevel: (111>

[Model generator stop!</message>

Fig.17.GUI: Console.

