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Abstract. Because biometrics-based authentication offersrakeglvantages

face to other authentication methods, it is imptrtthat such systems be
designed to withstand attacks. Reliability and gyw#or the public acceptance
of the system are also important factors. BioHashingresented as a new
technique to moderate the impact of susceptibkeatisr The acceptance of this
approach depends on whether it has low error r@tesis tamper proof. We

study so in this paper, the relevant advancesignattea being more focused on
fingerprint modality due to its widespread usagee \&lso consider a

FingerHashing smartcard-based implementation antbtemphasize how this

system can meet a secured biometric system.
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1 Introduction

User authentication is a great challenge for sgcudasons. Integrity of data and
transactions in various applications relies onfyary the participants’ identities. A
reliable personal authentication is critical in mathaily operations. For example,
physical access control and computer privilegeshaomming ever more important to
prevent their abuse.

The three basic forms of user authentication that lze used independently or in
combination with others, arknowledge basedvhich rely on a secret such as a
password held by the uséoken basedhat rely on possession of a ‘token’ (such as a
physical key or a smartcard) abtbmetric basedhat uses unique characteristics of
individuals (such as fingerprints or voice printéjhile knowledge can be forgotten
or duplicated, tokens stolen or lost, biometricgsesl not suffer from these
deficiencies, and can provide the security of Ipagswords without sacrificing the
ease of memorizing short ones [lij.addition, biometric authentication is not eagy t
transfer or share; it is a powerful weapon againspudiation. Biometric
authentication necessitates two phasesrollment and authentication (or
verification). Enrollment involves measuring an individual'sofmetric data to
construct aemplatefor storage. A template is a small file containgligtinguishing
features of the user derived from his/her biomedidta. Authentication involves a



measurement of the same data and comparison veitktdined template. Even though
automated biometrics can help alleviate the problessociated with the existing
methods of user authentication, hackers will $tild there are weak points in the
system.
Password systems are prone to brute force dictjomacks. Biometric systems, on
the other hand, require substantially more effort hounting such an attack. Yet,
there are several new possible types of attackthisnpaper, we highlight the main
weaknesses related to biometrics and try to emphasime existing solutions rising
above these limitations. The goal is to outline BieHashing technique as a
promising practical solution, being more focusedingerprint modality in one hand.
In the second hand, we try to study the impactsfgia trial factor authentication
composed of: smartcard, biometry and tokenizedagemnumber.

The paper is organized as follows: In Section 2digeuss the security elements in
a biometric-based system. In Section 3, we predentBioHashing technique as a
dual factor authentication. In Sections 4 and 5, de¢ail the research issues in
FingerHashing. In section 6, we study the secumtigvance of a FingerHashing
system embedded in a smartcard.

2 Biometric authentication

Biometric-based authentication has many usabililvaatages over traditional
systems; however, suffering from some inherent ritggcthreats as it is underlined
here. Biometric authentication, in terms of pattezoognition system, is exposed to
brute-force attacks in each level of the completec@ss (sensor, feature extractor,
template matcher). These attacks such as fake hioragnal are discussed in [2].

A problem with biometric authentication systemsesi when the data associated
with a biometric feature has been compromised.aeientication systems based on
physical tokens such as keys and badges, a congedriiken can be easily canceled
and the user can be assigned a new token. Similastr IDs and passwords can be
changed as often as required. If the biometric tatampromised, the replacement is
impossible. In order to alleviate this problem, iRa{l] introduces the concept of
cancellable biometrics

Deploying biometrics in a mass market, like creshird authorization or bank
ATM access, raises additional concerns beyond ¢cariy of the transactions. One
such concern is the public perception of a possiblasion of privacy. If an attacker
can intercept a person’s biometric data, then ttaeker might use it to masquerade
as the person, or perhaps simple to monitor higltieate activities.

Another risk is related to the database of stoeetptates which may be tampered.
The data might be distributed over several servdese, the attacker could try to
modify some templates in the database, which coeddilt either in authorizing a
fraudulent individual or denying service to the qmers associated with the corrupted
template.

Performance evaluation of biometric-based authafitio systems is another
important issue. Authentication session compailegadiometric sample provided by
the user with the user’'s reference template geeerat the system during the



enrollment procedure. This biometric matching detees the degree of similarity
between the live submitted biometric sample and¢fierence template. The result of
this comparison is a number known as a match seeh&h, in most systems is
compared against a tolerance threshold. Let's dethet stored template Rhd the
acquired one bf. In terms of hypothesis testing, we have:
H: P =P’, the person is genuine.
H: P #P’, the person is an impostor.

A similarity measure s Sim (P, P")is often defined an#i0 is decided if $Th (This
a the biometric decision threshplandH1 is decided if s <Th. DecidingHO when
H1 is true gives a false acceptation; decidithy whenHQ is true results in a false
rejection. False Accept RateBAR) and False Reject RateBRR are important
intrinsic characteristics of a matcher. The chaitealue for the tolerance threshold
therefore involves a trade-off between the two $ypé error and determines the
security and convenience of a biometrics-basedeatitation system. In practice, it
is almost impossible to obtain both zero FAR andrRF&rors, so realization of
relatively low FAR, i.e. acceptance of impostordl] wield relatively high FRR, i.e.
rejection of genuine and otherwise. In [7], the &mipof denial of access in biometric
systems is pointed. Another index of performancaeqigal error rate (EER) defined as
the point where FAR and FRR are equal. A perfestesy would have a zero EER
value.

There is a substantial research going on to finlitiems/alternatives to the
problems mentioned above:

2.1 Enhance biometric privacy

The most straightforward way to secure the biorodgimplate is to put it on a
smartcard. In 1998, Davida et al. [3] were amorgfifst to suggest biometric based
authentication systems which do not require theriperation of an on-line database
for the security infrastructure. An off-line biomet system is achieved by
incorporating a biometric template on a storagead#token (smartcardPresently,
there are quite a number of literatutbatreported the integration of biometrics into
the smartcardd—5]. However, the only effort being applied mstline is to store the
user’s template inside a smartcard, protected Aadtinistrators Keys, and extracted
from the card by the terminal to perform the vedfion. Some are allowed to verify
themselves in the card, but with performance dodengb).

Assuming that such tokens are tamper resistanbti@lmays true. In general, there
are two main classes of physical attacks againattsards: non-invasive and invasive
attacks [8]. So, it is possible that the template be gleaned from a stolen card.

Encrypting the template prior to storage can maikeplate compromise harder.
But, due to the intra-user variability over mulépcquisitions of the same biometric
trait, one cannot store a biometric template ineaorypted form and then perform
matching in the encrypted domain.

Today, we observe that the wide range of techniqogsotect the privacy of the
generated template can be widely divided into taet@gories:

i — Biometric cryptosystems

ii — Discretisation or feature transformation.



In biometric cryptosystema helper data as a secret kieys combined with the
template to lock the biometric set. Here, errorecting codes were designed as an
alternative to deal with the problem of changedadattween two different scans of
the same biometric data. Figure 1 illustrates aiptes crypto-system scheme:

Figure 1. Example of template protection by cryptosystem mégpine.
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Davida et al. [3] presented an authentication rilgm based on Hamming error-
correcting codes, the error correcting digits amohes other verifying data are stored.
This approach was applied to iris scans. The amolucrrection required serves as a
measure of the authentication success. The asthesumption that only 10% bits of
iris code can change among different presentatafnthe iris of a person is too
restrictive. In fact, the disagreement of the igiersonal iris codes is usually 40%-
60%. In [9], the authors use a concatenation ofar@td and Reed-Solomon codes
that can correct out of 32% of errors, results bezdar well. Monrose et al. [10]
map keystroke derived attributes into binary strirging the Shamir thresholding
technique. Shamir thresholding and Hamming codmegcansidered equivalent. The
same process was applied to voice [11]. They aeraeWRR of 48% for the keystroke
and 20% for the voice.
Thereby, while error correcting codes are consillesgitable for iris recognition,
dealing with fingerprint is more difficult. A fussyault scheme was presented by
Juels and Sudan [12]. This approach is more colpatith partial and reordered
data like fingerprint minutiae. It uses the polynahmterpolation to lock the template
set. The application of fuzzy vault to fingerpridéntification appeared in the work of
Clancy et al. [13]. The shortcoming of the fuzzyeme is the high FRR which is
near 30%.

In discretisation techniqueshe goal is to transform the continuous biomed&acta
xwith an error tolerant function H(x)to obtain a discrete bitstring code. Such

approaches ardirect hashingto store a hash of the biometric data rather than
biometric itself. Biometric hashes are largely diwx in [14]. However, these
attempts suffer from an excessive FRR (usually @@86). In [8], the authors present
a symmetric hash function for fingerprint. This @lthm performs good results
(EER=3%) but it has still a lowest accuracy thamtihseline system (EER=1,7%).

In [15] , Goh and Ngo introduce the tokenized kétmc discretization. By
combining the high uncertainty and low entropy bétric data with user specific
random data, the inherent entropy of the resultengplate is increased. Another
advantage of combining tokenized pseudo-random @btain a cancellable biometric
data. To re-issue the user identity, we need twigeoa specific new token. They
denote this model aBioHashing This is beginning to approach the parameters
needed for a practical system. The next sessionsespin more details the realistic
model.




2.2 Enhance biometric perfor mance

The biometric data acquired from an individual dgrhis verification may be very
different from the data used to generate the tetmmlaring the enroliment, thereby
affecting the matching process. This variationyigidally caused by a user who is
incorrectly interacting with the sensor, or whenss® characteristics are modified.

Multimodal biometrics can increase the system parémce. Despite that,
multimodal biometrics is not a solution for theyarty invasion problem. Moreover,
the use of multiple biometric measurement devicélscartainly impose significant
additional costs, more complex user—-machine integaand additional management
complexity.

In the next section, we present the BioHashing pektls a solution which may
tackle in one way much of these presented biomegik links.

3 An overview of BioHashing

3.1 Principles

In general, the process of BioHashing (see Figliteas two stages. In the first stage,
certain featureqf, f ,,..., f ) are derived from the raw biometric siggl In the

second stage, features are mapped to a binaryipiesbn]{o,]}m, where m is the

length of the bitstring code. The extraction praceeludes signal acquisition, pre-
processing and feature extraction. Different bioimesignals exploit different
techniques in the first process but the focus ofamalysis is discretization, the secret
of BioHashing, consisting of four steps [15]:

1) Generate a set of pseudo-random vedtardn practice, random number
sequence r could be generated from a physical éevic an USB token or a
smartcard through a random number generator. Téw isedifferent among
different users. For test, random bit/number athgors are publicly
available such as ad hoc scheme.

2) Apply the Gram-Schmidt process to transform theisbds into an

orthonormal set of matrices; 1 =1.m,
3) Compute the inner product between the biometrictufea f and

rDi(<f|rDi>), i=1m_  This projection results in an error tolerant
representation.
4) Compute am-bits BioHash denotedb ( bO2m,

oif (f|ry)sr -
b= 1if (f|r >>T,where is a preset threshold.
Oi

The resulting bitstringp namedBioHash codeis compared by the Hamming
distance for a matching scorEhe security of the process is assured if the BabHa
code is non invertible.



3.2 Perfor mance evaluation

We will depict the performance of BioHashing by Bi{ing the main dedicated
works (Table 1). The performance of a biometrictesysis commonly described by
its false acceptance rate (FAR) and false rejectair (FRR). Another index of
performance is equal error rate (EER) defined aspthint where FAR and FRR are
equal. A perfect system would have zero EER. Thieta resumes the main results
of the approaches that have since been developedcald conduct the following
remarks:

— BioHashing performance does not rely on specifirigtrics ;

— Zero equal error rate can be achieved ;

— Clean separation between impostor and genuinekdistn ;

— Even if the feature extractor is low, performarcadcurate ;

— Privacy is granted.
Hence, all seems to be perfect, until in [19], dla¢hors put in evidence the anomalies
of the BioHashing approach and conclude that thancbf having achieved a zero
EER is based upon the impractical hidden assumptior stealing of the Hash key.
Moreover, they proved that in a more realistic scEnwhere an impostor steals the
Hash key the results are worse than when usingitiveetric alone. So, today, the
challenge is to overcome this drawback. We focusthe next section on
FingerHashing that uses the fingerprints of anviddial as biometric modality.

Table 1. Summary of BioHashing main implementations

Biometric modality BioHashing EER Baseline system EER Reference
Face 0% >10% [15]
Palmprint 0% 2,015% [17]
Fingerprint 0% 5,66% [16]
Iris 0% 3,20% [18]

4 FingerHashing

FingerHashing can be decomposed into two compon@nfsature extraction and (ii)
discretisation steps.

i. Feature extraction

Various approaches of automatic fingerprint matghiave been proposed in the
literature. Fingerprint matching techniqgues mayhssified as being minutiae-based,
correlation-based or image-based. Most of the iegistystems are based on minutiae
features (ridge bifurcation and ending; see FigrreSuch systems first detect the
minutiae in a fingerprint image and then use sdaited alignment techniques to
match two minutiae sets.

Figure 2. Example of fingerprint minutiae, ridge endingg &nd ridge bifurcationso|.




In correlation-based approaches, the template lamdjgery fingerprint image are
spatially correlated to establish the degree oflaiity. In image-based approaches,
the features are directly extracted from the ravagem Moreover, image based
methods may be the only viable choice, for instamd®n image quality is too low to
allow reliable minutiae extraction.

Fingerprint matching is affected by the non-lindétortion introduced during the
image acquisition due to the elastic nature ofgki®. The non-linear deformation
causes fingerprint features such as minutiae pdmtbe distorted in a complex
manner: Consider an imagéz(x, y) that is a rotated, scaled translated replica

of f,(x,y):
f,=f,(o(xcosa +ysina)-xo,o(-xsina+ycosa)-y,) (1)
where a is the rotation angleo the uniform scale factor, ang,and y, are

translational offsets.
For a reliable matching, this non-linear deformatioust be accounted.

In [20], the authors proposed a novel representation schiemecaptures global
and local features of a fingerprint in a compaxedi-length feature vector denoted as
FingerCode This technique uses texture features availabéefingerprint to compute
the feature vector by Gabor Filters. Their scheme deneric representation of
oriented texture relies on extracting a core painthe fingerprint. The decision is
made using Euclidean distance between FingerCdde?], the authors made a
focus on this comparison step and replace the @=efi distance by a more robust
classification technique.

In [21], the authors proposed an integrated Wavelet and idfeiellin
transformed (WFMT) feature. The wavelet transforrasgrves the local edges and
noise reduction in the low-frequency domain aidT is translation invariant and
represents rotation and scaling as translationsgatbe corresponding axes in the
parameter spaceBecause these presented techniques are invarianbrdinear
deformation contrary to minutiae features, furthera they extract a feature vector
of a fixed length (FingerCode = 640 real value#l)ihee feature extractor used in the
FingerHashing are image-based method.

ii. Discretisation
This step has been described in Section 3.1. The eoatributions on FingerHashing
from the state of the art are detailed in Tabl&\2 denote M1 the FingerHashing
performed from the WFMT feature vector. In M2, M2nd M3, this feature is
considered as FingerCode. In M3, the FingerCodeoiscatenated with the DCT
(Discret Cosinus Transform) of face features while M4, this FingerCode is
concatenated with the Reed-Solomon code. Biomatdtching column is related to
the comparison method when using the baseline himmmethod alone. BioHash
matching is realized when comparing bio codes. rEs¢ of parameters are resumed
in the table, they consist ofm the length of BioHash coder the binarization
threshold and N the normalisation prefix (whenféeture vector is normalized), with
some particularity on M2+. In this case, a setlof p codes is generated.



Table2. Summary of the principle contributions in FingagHing in the state of the art.

Feature vector Biometric m T N BioHash Ref
matching matching
M1 WFMT ED 80 0.13 No HD [16
M2 FingerCode PWC 100 0 Yes HD [22]
M2+ FingerCode PWC| GenerateVarying Yes Totalling | [22]
k spaces [ N the
p steps kx p scores
M3 FingerCode SC 100 0 Yes HD [19]
M3+  FingerCode|DCT SC 200 0 Yes HD [19
face features
M4 FingerCode|RS ED 180 0 No HD [24]
code

Acronyms: ED : Euclidean Distance HD : Hamming DistancePWC : Parzen
Window Classifier SC: Specific Classifier.

5 Comparative study

We intend to measure the efficiency of the previoethods mentioned above as
reported in the literature. The comparison is agdeon images taken from FVC2002
[23]. FVC2002 provided four fingerprint databasB&1, DB2, DB3 and DBA4, three
of these databases are acquired by various sef®arspst and high quality optical
and capacitive whereas the fourth contains syrthibti generated images. In this
paper, we selected DB2 as the experimental benéhrmiaB2 contains eight
impressions of 100 different fingers, hence 800 dgesain total. However, the
comparison only can be done if both fingerprint s contain their respective core
points, but two of eight impressions for each fingave no core point due to the
exaggerate displacement. In experiments, these itmmessions were excluded
resulting in 600 images. The performance is evaltliat term of EER.

Table 3 shows the results in the caB® where the sole biometric data is used,
Bestwhen FingerHashing is performed in the best hygsithwhile never an impostor
steals the key anworstwhen always an impostor steals the key. Asoaclusion,
this comparison shows that:

— The FingerHashing outperforms dramatically the H@smetric in the best cases
for all methods ;

- In the worst case, the sole biometric is alwaysebeNote that M1 has not been
tested under this hypothesis ;

— Tuning the correct range interval for is a critical operation (M2+) ;

— The length of the BioHash code is a critical poiBy increasing this space
(M2+), the performance becomes better. Augmenting feature vector is
another alternative to enhance this length, aiB+) done by sequencing face
and fingerprint vectors ;



- Normalisation of the feature vector is recommended

- (M2+), (M3+) offer a good trade-off between bestl avorst cases ;

— The invariance of these methods is proven by riglidbtection of the core point;

— A study has to be done in order to understand weyerror correcting codes
provide very bad results. They perform very welthe best case ;

— The BioHash codes are always compared using thentiagndistance. The
problem can also be seen as a two class pattevgnigion problem ;

Table 3. Results obtained from FingerHashing-based metimosm of EER

Bio Best Worst
M1 5,3% 0% -
M2 5,2% 1% 15,5%
M 2+ 5,2% 0,2% 7,5%
M3 2,5% 1,5% 10,9%
M 3+ 4,9% 0,7% 2,5%
M4 11,7% 0,1% 50%

6 Proposal of FingerHashing authentication system in smartcard

From this previous study, we believe that as yerdhno “best” approach for
biometric system security. The application scenand requirements play a major
role in the selection of the biometric techniquéesne. For instance, dealing with
fingerhashing as promising overall solution, we lwiily to propose a secured
architecture system. As it happens, biometric rebesis pointed Biohashing perils
(see worst case, table3) in a situation where gtgge gain access, at the same time
to the biometric template as the randomized tol8m).if we assume that both the
BioCode and the token will not be compromised stemdously; BioHashing can be a
sufficient secure scheme. For this purpose, wewsd a smartcard as a secured way
for storing the biocode template and for making th&tch-on-card operation. The
validity of data in smartcard will be guaranteedéaygertificate authority (CA). And
we will try to emphasize how the system could ceulttreats to security.

6.1 Development of the prototype system

The system infrastructure (see Figure 2) will bmposed by two modules:
* Issue module
- Administration terminal: collect personal data, @icg biometry, extract the
fingerprint template which is the fingercode as@&dm[24] and generate the
biocode.
- Certificate authority: Issues X.509 certificateg that are signed by the
authority private key SKa.
- JavaCard to embed the biocode and the user cattific
» Authentication module



- Client interface: The certificate validity is veefl using the authority
public key Plkga. The matching is processed in the smartcard using

hamming distance.
Figure 2. Authentication infrastructure system
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6.2 Security analysis

For the sake of convenience, we use the notjBriT} to represent user credential, a
user smartcard, its associated biometric signBland its randomized tokeh. A
registered user X is enrolled by the informat{bgByp, Tx}. Suppose user X provides
his/her credentiafl x,By\, Tx} at the time of verification. Even thou@y, andByy are
from the same person, because of various noisegatte not identical. We represent
an imposter by Y pseudo. The fish-bone model inrfg3 modelises this biometric
system security. We assume that either token @artsard can be forgotten, lost,
stolen, duplicated or shared; otherwise the neebliofmetry will be meaningless. We
summarise the biometric system failure by two maid : (i) denial of service, (i)
intrusion.

Casel:This is a normal case when a genuine user X wal e client interface.
From the matching score, there are two possiblporeses: “correct acceptance” or
“false rejection” which depends on the intrinsiecfpemance of the biometric system.
Our biometric system meets globally the same pevdoce as M4 in table3, so the
denial of service risk approximates 0%.



Case2This case occurs when an impostor tries to useuatetfeited card. Or, the
authenticity of cards are controlled by a PKI isfracture, so the success of a
counterfeiting attack depends on the secrecy o€tesecret key which is isolated on
the administration terminal from any suspiciouswagk liaison. Concerning the
certificate, it is clear that in the infrastructupgoposed the user certificate can
traverse some communication channels. By this miedecomes prone to replay or
man in the middle attacks. Note that for the sakesimplicity, we have only
considered social engineering problems as carerstof shared. For the network
attacks, we not make a focus on possible solutasn€hallenge/Response or time
stamp mechanisms. Consequently, the intrusion depends on the validity of the
PKI infrastructure. We can assume that it is al®84t
Case3:Here, the card of the user X has been shared,nstwleduplicated by the
impostor . Since, he has not the randomized tokef) the risk of intrusion is of 0%.
Case4:the impostor has the token of the user X but netchrd. The intrusion risk is
at 0%.
Caseb This case is the worst case, when an impostosinasitaneously the card and
the token of the user X. The intrusion risk degend the intrinsic performance of
the biometric system which approximates, here, 18%.
Case6lf the impostor, don't present at the interface ang of the authenticator card
or token, the system will automatically refusesttasisaction.

Figure 3. Fish-bone model for enumerating security threfte@proposal system.

Casel Case3:{l x,Byp, Ty} Case5:{lx,Byp, Tx} Vs
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{I YvBYDvTY} VS{I YvBvaTY} {I Ys BYV|TX} {nu”,BY\/,Ty/ Tx } or

{Ix/1v,Bywnull } or
{null,Byy,null } or

7 Conclusion

Any system, including a biometric one, is vulneeablhen attacked by determined
hackers. We have highlighted the research advateesnhance such systems
performance. We focused our attention on BioHashwhich is a recent technique
that can address simultaneously the invasion @fpyiissue and the denial of access
problem. We have proposed a FingerHashing-basi@mtication system which can
converge to a secured system unless in case ofwtrst scenario when both
registered token and card are in a possession ahpaostor. In this case, we have
seen that the weakness of the approach is relatie fength of the biohash code and
the decision making which is always done by hamndistance. In future work, we



intend to combine all these remarks for augmenting security degree of a
FingerHashing authentication system.
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