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Abstract. Vertical partition is an important technique in database design used 
to enhance performance in database systems. Vertical fragmentation is a 
combinatorial optimization problem that is NP-hard in most cases. We propose 
an application and an adaptation of an improved combinatorial particle swarm 
optimization (ICPSO) algorithm for the vertical fragmentation problem. The 
original CPSO algorithm [3] suffers from major drawback—redundant 
encoding. This paper applies an improved version of CPSO that using the 
restricted growth (RG) string [5] constraint to manipulate the particles so that 
redundant particles are excluded during the PSO process. The effectiveness and 
efficiency of the improved CPSO algorithm are illustrated through several 
database design problems, ranging from 10 attributes/8 transactions to 50 
attributes/50 transactions. In all cases, our design solutions match the global 
optimum solutions. 

Keywords: Database vertical partition, Particle swarm optimization, RG String, 
Genetic algorithms, Optimization. 

1  Introduction  

Vertical partition (also called vertical fragmentation) is the problem of clustering 
attributes of a relation into fragments for subsequent allocation. The technique is used 
to minimize the execution time of user applications that run on these fragments. 
Vertical partition provides an important technique for designing distributed database 
systems. Compared to other types of data fragmentation, vertical partition is more 
complicated than horizontal partition because of the increased number of possible 
alternatives [1].  

Vertical partition algorithms contain two essential parts: the optimization method 
and the objective function. Ozsu and Valduriez [1] argue that finding the best 
partition scheme for a relation with m attributes by exhaustive search must compare at 
least the mth Bell number of possible fragments, which means that such an algorithm 
has a complexity of O(mm). Thus, it is more feasible to look for heuristic methods to 
seek optimal solutions. On the other hand, database partition aims at enhancing the 
transactional processing in database. The objective function evaluates whether such a 
goal is achieved.   
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Most previous algorithms employ multiple iterations of binary partition to 
approximate m-way partition. Navathe, Ceri, Wiederhold, and Dou (1984) propose 
the Recursive Binary Partition Algorithm (RBPA), which extends Hoffer and 
Severance’s work by automating the selection process of vertical fragments; they 
propose some empirical objective functions. Cornell and Yu (1990) adopt the same 
approach but replace the empirical objective functions with one constructed on a 
model database. Chu and Ieong (1992) adopt transactions as units in their algorithm; 
however, it is still a binary partition approach.  

Efforts have also been made to use other optimization techniques to benefit vertical 
partition. Hammer and Niamir (1979) propose a hill-climbing method that 
alternatively groups and regroups attributes and fragments to reach a suboptimal 
solution. Song and Gorla (2000) solve the problem with GA. However, each run of 
their GA only gets a binary partition. Therefore, the GA only provides the 
intermediate results in a recursive process. Our aim in this paper is to propose a pure 
PSO solution to vertical partition. By pure we mean the direct result from the PSO 
execution is already an m-way partition.  
The work described in this paper considers the vertical partition problem and reports a 
Combinatorial PSO application that can eliminate the encoding redundancy by using a 
restricted growth (RG) string [3] constraint in constructing particles. To evaluate its 
effectiveness and demonstrate its superiority, we compare the result of using the 
improved CPSO with that of using traditional GA as well as RG string encoding with 
traditional object based GA operators called SGA and another GA based algorithm 
called Group oriented Restricted Growth String GA GRGS-GA developed to solve 
the vertical partition problem by Jun Du and Al (2006) [2]. 
The balance of the paper is structured as follows. Section 2 introduce the partition 
evaluator (PE) developed by Chakravarthy and al [4]; this evaluator will be used as 
the fitness function for the proposed approach and the two other approaches used in 
experiments. Section 3 presents the particle swarm optimization with a general brief 
overview RG strings. Section 4 we develop an improved particle swarm for vertical 
partition problem. Section 5 presents the application of the improved CPSO algorithm 
to the vertical partition problem and compares the proposed approach with the other 
two approaches SGA and GRGS-GA; and it is demonstrates that the improved CPSO 
can effectively find optimal solutions even for large vertical partition problems. 
Section 6 is summary and conclusions. 

2  Objective functions for vertical partition 

The two kinds of objective functions used for partition algorithms are 1) model cost 
functions based on the transaction access analysis on a model DBMS and 2) those 
based on an empirical assumption. The former form of objective function is specific 
to the underlying DBMS while the latter is more general and intuitive [2]. 

In addition to the AUM used as input for both types of objective functions, the 
model cost function takes into account the specific access plan chosen by the query 
optimizer, e.g., the join method and the type of scan on the relation by each 
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transaction type. Without this additional information, the empirical cost objective 
function only shows the trends in the cost that are affected by the partition process. 

However, it is useful for the logical design of a database when information about 
physical parameters may not be available. Although less precise than the model cost 
functions, they can be very effective in comparing different optimization techniques 
used by algorithms. 
In this paper, we use an empirical objective function, a modified version from the 
partition evaluator proposed by Chakravarthy et al. (1992). This partition evaluator 
uses the square-error criterion commonly applied to clustering strategies. We thus 
name it the Square-Error Partition Evaluator (SEPE). The SEPE consists of two major 
cost factors: the irrelevant local attribute access cost and the relevant remote attribute 
access cost. They represent the additional cost required, other than the ideal minimum 
cost. Further, the ideal cost is the cost when transactions only access the attributes in a 
single fragment and have no instances of irrelevant attributes in that fragment. Both 
costs are calculated using the square-error result; they are denoted ���   and ���, 
respectively. More details about SEPE, including the formula, can be found in 
Chakravarthy et al. (1992). 

3 Particle swarm optimization 

PSO introduced by Kennedy and Eberhart [8] is one of the most recent 
metaheuristics, which is inspired by the swarming behavior of animals and human 
social behavior. Scientists found that the synchrony of animal’s behavior was shown 
through maintaining optimal distances between individual members and their 
neighbors. Thus, velocity plays the important role of adjusting each member for the 
optimal distance. Furthermore, scientists simulated the scenario in which birds search 
for food and observed their social behavior. 
They perceived that in order to find food the individual members determined their 
velocities according to two factors, their own best previous experience and the best 
experience of all other members. This is similar to the human behavior in making 
decision, where people consider their own best past experience and the best 
experience of the other people around them. 

PSO algorithm 

The general principles of the PSO algorithm are stated as follows. Similarly to an 
evolutionary computation technique, PSO maintains a population of particles, where 
each particle represents a potential solution to an optimization problem. 
Let m be the size of the swarm. Each particle i can be represented as an object with 
several characteristics. 
Suppose that the search space is a n-dimensional space, then the ith particle can be 
represented by a n-dimensional vector, �� � �	�
� 	�� � � 	�� , and velocity �� ����
� ��� � � ���, where  i = 1, 2, ..., m. 
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In PSO, particle i remembers the best position it visited so far, referred as���� ����
� ���� � ���, and the best position of the best particle in the swarm, referred as � � ��
� ��� � ��. 
PSO is similar to an evolutionary computation algorithm and, in each generation t, 
particle i adjusts its velocity ���� ����and position 	��� ��for each dimension j by referring 
to, with random multipliers, the personal best position �����
����and the swarm’s best 
position������
, using Eqs. (1) and (2), as follows: 
 ����������������� �� �����
 � �����������
 � 	����
�� � �����������
 � 	����
������������������������� �! 
  And ��� 
           ��	��� ��� ��� 	����
 ��� ������� ���������������������������������������������������������������������������������������� �! 

Where c1 and c2 are the acceleration constants and r1 and r2 are random real 
numbers drawn from [0, 1]. Thus the particle flies through potential solutions toward  ��� and �� �while still exploring new areas. Such stochastic mechanism may allow 
escaping from local optima. Since there was no actual mechanism for controlling the 
velocity of a particle, it was necessary to impose a maximum value �"#$  on it. If the 
velocity exceeded this threshold, it was set equal to���"#$ , which controls the 
maximum travel distance at each iteration, to avoid a particle flying past good 
solutions. The PSO algorithm is terminated with a maximal number of generations or 
the best particle position of the entire swarm cannot be improved further after a 
sufficiently large number of generations. 

The aforementioned problem was addressed by incorporating a weight parameter 
in the previous velocity of the particle. Thus, in the latest versions of the PSO, Eqs. 
(2) and (3) are changed into the following ones: 

 � ���� �� ' (�����
 � �����������
 � 	����
�� � �����������
 � 	����
!������������������ )!�	��� ��� ��� 	����
 ��� ������� ��������������������������������������������������������������������������������������������� *! 
 ( is called inertia weight and is employed to control the impact of the previous 

history of velocities on the current one. Accordingly, the parameter ( regulates the 
trade-off between the global and local exploration abilities of the swarm. A large 
inertia weight facilitates global exploration, while a small one tends to facilitate local 
exploration. A suitable value for the inertia weight ( usually provides balance 
between global and local exploration abilities and consequently results in a reduction 
of the number of iterations required to locate the optimum solution. ' is a constriction 
factor, which is used to limit the velocity. 

The PSO algorithm has shown its robustness and efficacy for solving function 
value optimization problems in real number spaces. Only a few researches have been 
conducted for extending PSO to combinatorial optimization problems. 
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4 An improved CPSO for Database Vertical Partition 

In this paper, we propose an improved version of the combinatorial CPSO algorithm 
[3] aimed at solving the Database Vertical Partition problem. The CPSO algorithm 
suffers from major drawback—redundant encoding. This paper applies the restricted 
growth (RG) string [5] constraint to manipulate the particles so that redundant 
particles are excluded during the PSO process. The following section presents the 
basics of the RG strings. 

4.1  Basics of RG strings 

The Restricted Growth (RG) string encoding represents a grouping solution as an 
array of integers, denoted a[n], where n is the number of attributes in the relation. The 
elements in the array may be integer values ranging from 1 to n. Meanwhile, as 
constituents if RG string, they must satisfy Definition 1, given next. In addition to the 
formal definition of RG string, other supporting extended definitions are presented 
next: 
Definition 1. A RG string r is a sequence of integers represented as an array, which 
satisfies the following inequality: 

            +,-. /  012 +,3.� +,4.� � � +,- � 4.! � 4!� 3 5 6 5 7� �,3. � 4   

For example, {1 1 2 3 1 1 2 4} is RG string, but {4 4 2 3 4 4 2 1} is not, although they 
map to the same solution in random string encoding scheme. 

 
Definition 2. The degree of RG string r is the largest value in r, denoted d(r). 
 
          For example, consider r = {11123221}, then d(r)=3. 

 
Definition 3. The ith prefix of RG string r, denoted��8� , is the substring that includes 
the first i values of r. 

 
For example, consider r = {11123221}, �89�= {1112}. 

4.2 Definition of a particle 

Denote by :�� � �;�
� � ;��� � � � ;�� � the n-dimensional vector associated to the solution ��� � �	�
� � 	��� � � � 	�� ��� taking a value in {-1, 0, 1} according to the state of solution 
of the ith particle at iteration t. :��  is a dummy variable used to permit the transition from the combinatorial state 
to the continuous state and vice versa. 
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:��� �
<=>
=? ����������������������������6@�	��� �� ���� ��������������������������6@��	��� �� ���������A������6@� 	��� �� ���� � ����� !B������������������������ACDE�F6GE

H ������������������������������������ I! 

4.3 Velocity 

Let J� � �� � ;����
�be the distance between  	����
 and the best solution obtained 
by the ith particle.  

Let J� � � � ;����
�� the distance between the current solution �	����
 and the best 
solution obtained in the swarm. 

The updated equation for the velocity term used in CPSO is then: ���� �� FK �����
 � ���K ��K J� � ��K ��K J���������������������������������������������������������������� L! 
���� �� FK �����
 � ���K ��K ��� � ;����
� � ��K ��K  � � ;����
��!��������������������������� M! 

With this function, the change of the velocity ����  depends on the result of��;����
. 
If�	����
 �� �����
, then����;����
 � �. Thereafter d2 turns to ‘‘0’’, and d1 takes “-2’’, 

thus imposing to the velocity to change in the negative sense. 
If�	����
 �� �����
, then����;����
 � ��. Thereafter d2 turns to ‘‘2’’, and d1 takes ‘‘0’’, 

thus imposing to the velocity to change in the positive sense. 
The case where 	����
 N� �����
�������and������	����
 N� �����
��, ����;����
 turns to ‘‘o’’, d2 is 

equal to ‘‘1’’ and d1 is equal to “-1’’, thereafter the parameters r1; r2; c1 and c2 will 
determine the sense of the change of the velocity. 

The case where 	����
 �� �����
�������and������	����
 �� �����
��, ����;����
�takes a value in    
{-1,1}, thus imposing to the velocity to change in the inverse sense of the sign of ��;��� . 

4.4 Construction of a particle solution 

The update of the solution is computed within�;��� : 
                                   O��� � ����;����
 ������ ������������������������������������������������� P! 

The value of �;��� �is adjusted according to the following function: 

                               ;��� � Q �����6@��O��� R �S������6@��O��� 5��SB���ACDE�F6GE H �����������������������������������������  T! 
The new solution is: 

	��� � Q����
����������������������������6@�;��� � ��������������������
����������������������������6@�;��� � �������������U��U7JAV�7WVXE���������ACDE�F6GE H ����������������������  �B! 
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The choice previously achieved for the affectation of a random value in {1, -1} for �;����
�in the case of equality between 	����
�� �����
���YZ[������
 allows to insure that the 
variable �;��� �takes a value 0, and to permit a change in the value of variable�	��� . We 
define a parameter S for fitting intensification and diversification. For a small value 
of�S, 	��� �takes one of the two values �����
 or �����
 (intensification). In the opposite 
case, we impose to the algorithm to assign a null value to the�;��� , thus inducing for 	��� �a value different from �����
 U7J�����
 (diversification). The parameters c1 and c2 
are two parameters related to the importance of the solutions �����
 U7J�����
for the 
generation of the new solution����. They also have a role in the intensification of the 
search. 

4.5 Solution representation 

In this subsection, we describe the formulation of the improved CPSO algorithm for 
the database vertical partition problem. 
One of the most important issues when designing the PSO algorithm lies on its 
solution representation. We setup search space of n-dimension for a relation of n-
attributes. Each dimension represents an attribute and particle ��� � �	�
� � 	��� � � � 	�� �� 
corresponds to the affectation of n attributes, such that 	��� � \ {1, 2, 3,…, k}, where k 
is the number of fragments. 
The scheme of Fig. 1 illustrates an example of the solution representation of particle ��� of the improved CPSO algorithm. 
Let n = 7 attributes 
k = 4 fragments. 

   ��
�  ����  ��]�  ��9�  ���̂  ��_�  ���̀  

��� 1 2 1 3 4 2 2 

Fig. 1. An example of solution representation with RG constraint. 

4.6 Initial population 

A swarm of particles is constructed based on RG string. In the particles generated, the 
RG constraint is enforced from the beginning. No rectification process is needed after 
all position in a particle are randomly created because each position is created as a 
random integer between 1 and the high potential degree for its position, complying 
with the RG string constraint. In the initial population, the first element is set to 1 and 
the upper bound for each element increases gradually and this rarely reaches k-1, 
where k is the number of fragments anticipated by the user 

4.7 Creating a new solution 

For creating new solution we use Eq(5). We obtain the vector value �;���
 , The vector 
of velocity ����computed with Eq(6). The new value of O��  is calculated using O��� ������a����
 ��� ������� .  a��� �is determined using Eq(9) and using Eq (10) the new solution 
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vector  ���is determined. But the new solution can breaking the RG constraint for this 
purpose we have designing the rectifier. The rectifier is a key issue in the proposed 
approach that each particle is RG string. 

However, the initialization of particles does not guarantee each particle to be RG 
string. Also the operation of creating new solutions may change the constitution of a 
particle the population in a way that violates the RG string constraint. To handle such 
cases, we introduce a rectifying function that guarantees each particle to be RG string. 
For particles that violate the RG string constraint, the rectifier simply scans through a 
particle and converts it into RG string by adjusting the locations of its positions. 

5 Implementation and experimental results 

The algorithms have been implemented in java. All experiments with improved CPSO 
and GRGS-GA [2] and SGA were run in Windows XP on desktop PC with Intel 
Pentium4, 3.6 GHz processors. The GRGS-GA (Group oriented Restricted Growth 
String) is GA based approach proposed by Jun Du and al [2] for database vertical 
partition. The SGA is a Simple GA that uses random encoding schemes and classical 
genetics operators.    

We have dividing the experimental section into two phases. The test phase and the 
comparison phase. In the test phase we have trying the improved CPSO on two cases, 
the first case is an attribute usage matrix (AUM) of 10 attributes and 8 transactions 
and the second case is an attribute use matrix of 20 attributes and 15 transactions. 

In the comparison phase we have trying the improved CPSO with two others GA 
based algorithm GRGS-GA and SGA on two larges cases generated pseudo randomly 
with a pseudo random generator of AUM designed to generate a large size AUM. 

5.1 Case 1: 10-attribute example 

In this case, we use an attribute usage matrix AUM, with 10 attributes and 8 
transactions. This AUM has already been utilized by other researchers as described in 
Cornell and Yu, 1990, Navathe and al 1984, Suk-kyu Song and Narasimhaiah Gorla, 
2000, J. Muthuraj and al 1993. J. Muthuraj and al found that for this AUM the best PE 
value is 5820, which gives a fragmentation of 3 fragments {1 5 7} {2 3 8 9} {4 6 10}. 

The improved CPSO find the best fragmentation in the 4 iteration, as illustrated in 
the figure 2. And the algorithm is executed 10 times. Figure 3 shows the optimal costs 
found in each trial. The above mentioned 3-fragment partition is evaluated to have a 
PE value of 5820. So we argue that if the final partition of each trial has a PE value 
less or equal to 5820, then such trial is considered a success. The success rate of the 
improved CPSO is 100%. Another interesting statistic is the average number of 
iterations needed to reach the optimal solution in the improved CPSO is 6.5. 
Apparently, the improved CPSO performs well in terms of fitness and convergence 
speed. 
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Table 1. 10–attribute Matrix 

Fig. 2. PE values of best particles in each iteration 
 

 
Fig. 3. Optimal solutions found in 10 trials case of 10 attributes  

5.2 Case 2: 20-attribute example 

The 20-attribute example has already been utilized by other researchers as described 
in Chakravarthy et al. (1992), Navathe et al. (1984), and Navathe and Ra (1989). The 
usage matrix used in this example describes the reference pattern of 15 transactions 
accessing 20 attributes. The methods proposed in Navathe et al. (1984) and 
Chakravarthy et al. (1992) both find the same optimal partition that groups 20 
attributes into four fragments. In particular, Chakravarthy et al. (1992) decide based 
on the PE value that this four-fragment partition is better than the five-fragment 
partition found in Navathe and Ra (1989). 
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The improved CPSO Algorithm is executed 100 times. Figure 5 shows the optimal 
costs found in each trial. The above mentioned 4-fragment partition is evaluated to 
have a PE value of 4644. So we argue that if the final partition of each trial has a PE 
value less or equal to 4644, then such trial is considered a success. The success rate of 
the improved CPSO is 100%. Another interesting statistic is the average number of 
generations needed to reach the optimal solution in the improved CPSO is 30.4. 
Apparently, the improved CPSO performs well in terms of fitness and convergence 
speed. 

 
Fig. 4.The trends of PE values of best particles in each iteration. Case of 20 attributes 

 
Fig. 5. Optimal costs-trial graph for 20-attribute example 

5.3 Case 3: 20-attribute pseudo random AUM 

In this case we compare the improved CPSO algorithm with two others GA based 
algorithms the GRGS-GA and SGA on pseudo random attribute usage matrix of 20 
attributes and 20 transactions. This AUM generated using pseudo random AUM 
generator designed to generate a large size usage matrix. The number of fragments 
anticipated is 20 fragments. The value of the best fitness in this case is 0. 
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The average number of generations needed to reach the optimal solution in each 
algorithm. They are 30.4, 45.6, 
respectively. Apparently, SGA performs worst among the three in terms of fitness and 
convergence speed.  

Fig. 6. The trends of PE values of best particles for Improved CPSO, G

5.4 Case 4: 50-attribute example

In this case, we try to apply the improved CPSO described in Section 4 to a large 
size usage matrix.  This AUM have 50 attributes and 50 transactions, the number of 
fragments anticipated is 50 fragments. The value 

The figure 7 shows that the improved CPSO reach the best fragmentation in 193 
iterations.  
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The average number of generations needed to reach the optimal solution in each 
algorithm. They are 30.4, 45.6, and 296.2 for improved PSO, GRGS-GA and SGA, 
respectively. Apparently, SGA performs worst among the three in terms of fitness and 

The trends of PE values of best particles for Improved CPSO, GRGS-GA and SGA on 
the 20-Attribute pseudo AUM. 

attribute example 

In this case, we try to apply the improved CPSO described in Section 4 to a large 
size usage matrix.  This AUM have 50 attributes and 50 transactions, the number of 
fragments anticipated is 50 fragments. The value of the best fitness is 0. 

The figure 7 shows that the improved CPSO reach the best fragmentation in 193 
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The average number of generations needed to reach the optimal solution in each 
GA and SGA, 

respectively. Apparently, SGA performs worst among the three in terms of fitness and 

 

GA and SGA on 

In this case, we try to apply the improved CPSO described in Section 4 to a large 
size usage matrix.  This AUM have 50 attributes and 50 transactions, the number of 

The figure 7 shows that the improved CPSO reach the best fragmentation in 193 
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5.5 Results analysis 

As the number of attributes grows, the improved CPSO becomes harder to converge 
because of the increased complexity of the partition problem. 

Every improved CPSO trial finds the optimal partition known when the usage 
matrix is generated. The convergence speed of the improved CPSO is well over the 
two others GA based algorithms. So, the advantage of using the improved CPSO is 
apparent over using the other two GAs. Figure 6 shows the PE values for 20 AUM. 
Again from this graph, we conclude that the improved CPSO is the best among the 
three and GRGS-GA is better than SGA in terms of the convergence speed. 

6 Conclusion 

Vertical database partition is a significant problem for database transaction 
performance. In this article, we proposed a PSO-based solution. Particularly, this 
solution features two new attempts: first, a RG string constraint is applied to 
overcome the redundant encoding of previous GAs for the partition problem or 
similar ones; second, a comparison is used to evaluate the performance of the 
improved CPSO with to others GA based algorithms the GRGS-GA [2], and a simple 
GA called SGA in term of convergence speed and best fragmentation results. 
The success of using the improved CPSO to solve vertical partition problem suggests 
it may be used to solve other clustering or grouping problems.  
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