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Abstract. Petroleum industry production systems are highly automatized. In 
this industry, all functions (e.g., planning, scheduling and maintenance) are 
automated and in order to remain competitive researchers attempt to design an 
adaptive control system which optimizes the process, but also able to adapt to 
rapidly evolving demands at a fixed cost. In this paper, we present a multi-agent 
approach for the dynamic task scheduling in petroleum industry production 
system. Agents simultaneously insure effective production scheduling and the 
continuous improvement of the solution quality by means of reinforcement 
learning, using the SARSA algorithm. Reinforcement learning allows the 
agents to adapt, learning the best behaviors for their various roles without 
reducing the performance or reactivity. To demonstrate the innovation of our 
approach, we include a computer simulation of our model and the results of 
experimentation applying our model to an Algerian petroleum refinery. 

Keywords: reactive scheduling, reinforcement learning, petroleum process, 
multi-agent system. 

1   Introduction 

Current oil and gas market trends, characterized by great competitiveness and 
increasingly complex contradictory constraints, have pushed researchers to design an 
adaptive control system that is not only able to react effectively, but is also able to 
adapt to rapidly evolving demands at a fixed cost. The system does this by using the 
available resources as efficiently as possible to optimize this adaptation. [4] presented 
an analysis of the needs of production systems, highlighting the advantages of 
adopting a self-organized heterarchical control system. The term, heterarchy, is used 
to describe a relationship between entities on the same hierarchical level [6]. Initially 
proposed in the field of medical biology, it was then adapted for several other 
domains [9; 10; 7]. In the multi-agent domain, the term, heterarchy, is relatively close 
to the concept of "distribution", as used in "distributed systems". However, from our 
point of view, the fact that the decisional capacities are distributed does not mean that 
the multi-agent system is organized heterarchically, even though this is often the case 
[15;17]. Nonetheless, the heterarchic organization of distributed systems is the 
assumption that we make in this paper. From our point of view, this assumption is 
justified by the system dynamics and the volatility of the information, which make a 



purely or partially hierarchical approach inappropriate for creating an effective 
reactive system [4]. 

In this paper, we focus on the dynamic control of complex manufacturing systems, 
such as those found in the petroleum industry. In this industry, all functions (e.g., 
planning, scheduling and maintenance) and resources (e.g., turbines, storage systems) 
are automated.  

2 BRIEF DESCRIPTION OF UNIT3100 IN RA1Z REFINERY 

This unit is designed to produce oil from the base oil treated in the units HB3 and 
HB4 and imported additives, the base oil is received in Tank TK2501 to TK2506. 
Each docking Tank stock defined grade of oil (SPO, SAE10-30, BS) (Production of 
132,000 t / year for an amount of 10% additives) if the type of oil stored in a tank 
must be changed, the tank must first be rinsed for hours which is often avoided. This 
unit produces two major oil: engine oils 81% of the production (gasoline, diesel, 
transmission oils) and industrial oils (hydraulic (TISK), turbines (torba), spiral 
(Fodda), compressor (Torrada) and various oils). To do this, two methods are used: 
continuous mixing (mixing line) and mixing in discontinuous (batch) (see Figure 1). 
In this article we focus on the mixing line. To produce finished oil, a recipe must be 
applied: 

X1% Hb1 + X2% Hb2+ X3% Additif1 
 
Where : Xi is the rate and HBi is the base oil. 
 

 
Fig. 1. Unite 3100 model 

 
The mixing line its base oil from the docking Tanks, which produce this decade plan 
(see figure 2): 

 
In this paper, we aim to develop an adaptive control system for Unit3100 which will 
produce dynamically efficient scheduling solution using resources in optimal way. 



We consider each resource and Oil in tank as a decisional entity, and we model them 
as agents. 

 

 
Fig. 3. Production plan 

3 STATE-OF-THE-ART 

We conducted a state-of-the-art review of the dynamic scheduling problem in the 
literature. This section highlights the studies that reflected our point of view. 

3.1 Dynamic scheduling 

In manufacturing control, scheduling is the most important function. In this paper, we 
focus on dynamic scheduling. 

 
[5] Have classified dynamic scheduling into three categories: predictive, proactive, 

and reactive. The first, predictive, assumes a deterministic environment.  Predictive 
solutions call for a priori off-line resource allocation.  However, when the 
environment is uncertain, some data (e.g., the actual durations) only becomes 
available when the solution is being executed. This kind of situation requires either a 
proactive or reactive solution. Proactive solutions are certainly able to take 
environmental uncertainties into account. They allocate the operations to resources 
and define the order of the operations, though, because the durations are uncertain, 
without precise starting times. However, such solutions can only be applied when the 
durations of the operations are stochastic and the states of the resources are known 
perfectly (e.g. stochastic job-shop scheduling) [3]. The third type of dynamic 
scheduling, reactive, is also able to deal with environmental uncertainties, but is better 
suited for evolving processes. 



Reactive solutions call for on-line scheduling of resources. In fact, the resource 
allocation process evolves, making more information available and thus allowing 
decisions to be made in real-time [16; 11; 5; 1]. Naturally, a reactive solution is not a 
simple objective function, but instead a resource allocation policy (i.e., a state-action 
mapping) which controls the process. In this paper, we focus exclusively on reactive 
solutions. 

3.2  Reinforcement learning 

Over the last few decades, scheduling researchers were inspired by artificial 
intelligence whose methods were based exclusively on operational research 
algorithms of exponential complexity. Taking into account performance effectiveness 
and efficiency, which means optimizing several criteria, will increase problem 
complexity even more. Artificial intelligence has allowed such complex problems to 
be solved, yielding satisfactory, if not always optimal, solutions.  

 
[9] used genetic algorithms (GA) to adapt the decision strategies of autonomous 

controllers. Their control agents use pre-assigned decision rules for a limited amount 
of time only, and obey a rule re-placement policy that propagates the most successful 
rules to the subsequent populations of concurrently operating agents. However, GA 
do not provide satisfactory solutions for reactive scheduling. Therefore, a reactive 
technique must be integrated into GA to allow the system to be controlled in real 
time. 

 
Reinforcement learning (RL) might be an appropriate way to obtain quasi-real-time 

solutions that can be improved over time. Reinforcement learning is learning by trial 
and error dedicated to agents learning. In this paradigm, agents can perceive their 
individual states and perform actions for which numerical rewards are given. The goal 
of the agents is thus to maximize the total reward they receive over time. 

 
[8] used reinforcement learning to optimize resource use in a very expensive 

electric motor production system. Such systems are characterized by a variety of 
products that are produced on re-quest, which requires a great deal of flexibility and 
adaptability. The assembly units must be autonomous and modular, which makes 
performance control and development difficult. [8] considered these units as insect 
colonies able to organize themselves to carry out a task. Self-organization can reduce 
the number of resources used, allowing production risk problems to be solved more 
easily. 

 
The most used reinforcement learning algorithm is Q-learning.  [18] extended this 

algorithm by using a reward function based on EMLT (Estimated Mean LaTeness) 
scheduling criteria, which are effective though not efficient. [2] pro-posed an 
intelligent agent-based scheduling system. They employed the Q-III algorithm to 
dynamically select dispatching rules. Their state determination criteria were the 
queue's mean slack time and the machine's buffer size. These authors take advantage 
of domain knowledge and experience in the learning process. 



 
But in this paper, we are exploring a more developed algorithm “SARSA 

algorithm” in a heterarchical organisation of agents. In conclusion, we are trying to 
experiment reinforcement learning by using SARSA algorithm to conceive an 
adaptative and reactive manufacturing control system for petroleum process based on 
heterarchical multi-agent architecture. In the next section, we will present our system 
architecture and motivating our choices. 

4 THE PROPOSED CONTROL SYSTEM 

A multi-agent system is a distributed system with localized decision-making and 
interaction among agents. An agent is an autonomous entity with its own value 
system and the means to communicate with other such entities. For a general survey 
of the application of multi-agent systems in manufacturing, see the review by [1]. In 
order to develop multi-agent system with a reactive decision capability in an uncertain 
environment, they may be modelled as Markov Decision Process (MDP) [12]. And to 
improve the system performances and learn optimal policy in Markov environment, If 
the transition function T (modelling the system’s evolution from state to state) is 
unknown while an objective can be identified a learn-by-trial process such as RL 
[12;13] can be designed.  

4.1 The proposed manufacturing control system 

We consider that a petroleum refinery exists in a dynamic, uncertain and 
unpredictable environment, since it is subject to internal stress (e.g., production risks) 
and external constraints (e.g., forced markets, unexpected orders). According to[12], 
the decisions made in such environments involve Markov decision processes (MDP). 
Clearly, in such a Markovian context, it is necessary to consider the transition 
function T, modelling the system’s evolution from state to state as an unknown. 
According to [12] and [13], a learn-by-trial process, such as reinforcement learning, 
should be used determine the optimal policy. This modelling approach is widespread. 
Figure 1 shows the main functions embedded in each agent. 

4.2 SARSA (Stat, Action, Reward, new Stat, new Action) algorithm to resolve 
dynamic scheduling problem   

An MDP is a tuple < S,A,T,R >, where S is a set of problem states, A is a set of 
actions, T(s, a, s’)  [0, 1] is a function defining the probability that taking action a in 
state s results in a transition to state s’, and R(s, a, s’)  R defines the reward received 
after such a transition.  



 
Fig.1. MDP  RL improvement of on-line scheduling 

Performances 
 

If all the parameters of the MDP are known, an optimal policy can be found by 
dynamic programming. If T and R are initially unknown (which is commonly the case 
when considering industrial case studies), Reinforcement learning (RL) methods can 
learn an optimal policy by direct interaction with the environment. RL is learning to 
act by trial and error. Agents perceive their individual states and perform actions for 
which numerical rewards are given. The goal of the agents is thus to maximize the 
total reward received over time. This technique is often used in robotics, in order to 
teach a robot the behavior to achieve its goals and to overcome obstacles.  

The SARSA algorithm is used to learn the function Qπ(s, a), defined as the expected 
total discounted return when starting in state s, executing action a and thereafter using 
the policy π to choose actions: 

( , ) ( , , )[ ( , , ) ( , ( ))]
s

Q s a T s a s R s a s Q s sπ πγ π
′

′ ′ ′ ′= +∑  (1) 

The discount factor γ ∈  [0,1] determines the relative importance of short term and 
long term rewards. For each s and a we store a floating point number Q(s,a) for the 
current estimate of Qπ(s,a). 

As experience tuples < s,a,r,s’,a’ > are generated through interaction with the 
environment, the table of Q-values is updated using the following rule: 

( , ) ( 1) ( , ) ( ( , ))Q s a Q s a r Q s aα α γ ′ ′= − + +   (2) 

The learning rate α ∈  [0,1] determines how much the existing estimate of Qπ(s,a) 
contributes to the new estimate. 



If the agent's policy tends towards greedy choices as time passes, the Q(s,a) values 
will eventually converge to the optimal value function Q*(s,a). To achieve this, we 
use a Boltzman probability which determines the probability of choosing a random 
action. 

Figure 2 shows the steps of the SARSA algorithm 

 
 

Fig. 2. The SARSA algorithm 

In our case, this algorithm will make the Resource Agent learn its action policy π, 
which in turn makes it able to choose the best action for each state (accept 
task/request, or not). This algorithm works with the following data: 

State parameters are the current time t ∈0…T; the inventory of pmps p1… pn and 
their states Sp1… Spn (e.g., maximum capacity, feeding, receiving); the list of Storage 
Tanks T1… Tm, and their states ST1…STm (e.g., Capacity). Action concerns the 
reception or not of the product, stop or start pumping.... Reward function assigns no 
reward to most of the states and positive rewards to a specific goal state. For more 
precision and to obtain a proper convergence, the reward function is a state 
combination engendered by an action. One idea was to take into account the volum in 
tanks and (Ci) and  feeding and uploading stream (Fdi) (Udi) in the reward function: 
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  4.3 Multi-agent interaction 

As shown in Figure 3, the MCSR (Manufacturing Control System using 
Reinforcement learning) architecture consists of “resource agents” for the pumps, 
“parts agents” for the tanks containing oil and an "observer agent" to control the 
process. 
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The idea is roughly the following: a part agent has a task request that it proposes to 
resource agents, and then the resource agents give their propositions. The part agent 
chooses the best proposition and establishes the contract. A detailed illustration of the 
agent interaction is provided in figure 4. 

5 IMPLEMENTATION AND EXPERIMENTS 

Our model was simulated in the Borland Jbuilder environment because of its potential 
for facilitating communication and thread programming and because of its 
compatibility with the chosen MADKIT platform architecture for SMA development 
(visit http:// www.madkit.org/downloads). One of the advantages of the reinforcement 
learning algorithms is that they allow evaluation during learning. To permit this 
evaluation, we selected the following criteria.  

5.1 Description of the process & constraints 

A petroleum refinery is subjected to many operational constraints. Operational 
constraints include the requirement that only one tank at a time can receive oil, but 
several can simultaneously feed mixing line, and another that states a tank cannot 
receive and send oil at the same time. Problem inputs include the base oil arrival 
schedule, which describes the volumes and qualities of the base oils and additives that 
will be received in the refinery during the desired time horizon; the finished oil 
demands, and the current levels and qualities of the base oil in the storage tanks. The 
major constraints considered can be formalized as follows (see parameter definitions 
given in 4.2): 
 
C1: Tank storage level can never be less than a given threshold ( ) mini iC t C≥     
C2: Tank storage level can never be greater than a given threshold . ( ) maxi iC t C≤  

C3: mixing line must always contain oil 
1

( ) 0
n

i
i
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=

>∑    
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i i

Ud t Fd t
Ud t Fd t
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The base oil is stored in specific storage tanks (TK2501-TK2506 (see figure 5)). The 
total time horizon spans 160 hours, during which completely defined oil parcels have 
to be received from the pipeline. Six oil tanks are available; all of them have the same 
capacity, but different amounts of oil at the beginning of the time horizon (figure. 6.) 



 
Fig. 5. Tank setting                               Fig. 6. base oil arrival 

 
Aims are to receive all base oil using available pumps feeding Tank with sufficient 
capacity, and to produce exactly the requested quantity with the available quantity of 
bases oil in the range of the decade. For this reason, we consider as an evaluation 
criterion the Cmax (Maximum duration time to produce the requested products). 

5.2 Experimental results 

The experiment was conducted as follows: we launch the system with data explained 
above. The graph (Figure 7) shows the results for the first phase of the learning 
algorithm. As this graph shows, before 5000 iterations, the Cmax variation is rather 
high.  It varied in the interval [100h, 1500h], which is a modest result. This can be 
justified by the fact that the results are from the exploration phase, in which actions 
are executed randomly according to the Boltzmann probability [1]. The second phase 
is the exploitation phase, in which the choice of actions is based on Q values (just 
before and after 5000 iterations), and the results are better. This phase produced 
solutions with a very interesting Cmax of 45 h. Thus, we can state that our system 
converges towards optimal solutions by minimizing the total time of production even 
with maintenance tasks. 

 
Fig. 7. Cmax graph 



5.3 Reactive behavior 

Despite being relatively under control, thanks to the preventive maintenance plans, 
perturbations are always possible in a refinery. To test our system faced with such 
random events, we caused system perturbations in order to observe the system’s 
behavior. 
We caused the same perturbation (a breakdown of  P3102) in the exploration phase at 
the 2000th iteration and again in the exploitation phase at the 15000th iteration. When 
such perturbations occur in the current system, some production tasks have to be 
cancelled to allow the maintenance tasks to be performed. The human expert then has 
to manually find a solution to replace the cancelled production tasks. However, in our 
experiment, the disturbance in the exploitation phase was quickly compensated for 
without any Cmax variation over 49h, and the system was brought back to the level of 
its best performances. These results show that our system is able to learn how to 
establish a continuously improving optimal control policy to schedule maintenance 
tasks within a production plan without reducing the production rate. 

6  CONCLUSION AND FUTURE WORKS 

In this paper, we have presented a multi-agent model for the dynamic scheduling of in 
petroleum process. In this model, agents simultaneously insure effective scheduling 
and continuous improvement of the solution quality by means of reinforcement 
learning, using the SARSA algorithm. We have also provided an overview of the 
research done in the field of manufacturing control, focusing on dynamic and reactive 
scheduling. The results of our experiments with this model show that our approach 
can generate on-line scheduling solutions and improve their quality by minimizing 
Cmax. Nevertheless, we want to widen the time horizon of our experimentation, 
taking into consideration more complex production units. Last, we are going to work 
on a holonic version of our model for future comparison with the multi-agent model. 
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