
 1

Physical synthesis for CPLD architectures

 Sid-Ahmed Senouci
 Mentor Graphics, Grenoble, France

Abstract—In this paper, we present a new synthesis feature namely, “Xor matching”, and the foldback
product term synthesis for Complex Programmable Logic Devices (CPLD) architecture that is based on
PAL-like macrocells. Our goal is to use the Xor gate and the foldback terms, (or shareable expander −
Altera equivalent terminology [17]), available in each macrocell for minimizing the number of macrocells
required to implement a circuit. We propose two innovative approaches: the first, is a very fast algorithm
which always gives a match for a function onto the Xor gate of the CPLD device, when one exists; the
second approach, is based on answering a fundamental problem: determine if a given foldback cluster can
be assigned to a PAL block. A foldback cluster is defined as a set of functions and sub-functions that result
in the same foldback which is created by the foldback decomposition algorithm. A suite of test cases
(MCNC) were tested with device-fitting algorithms targeting the Atmel CPLD device (ATF15xx series)
which implemented the corresponding hardware resources.

I. Introduction

The growth of the programmable logic market is a non-debatable success in the IC world over the last decade.
CPLDs and FPGAs share this success in a balanced way and seem to be perfectly adapted to complementary needs.
Most FPGAs have logic blocks based on look-up-tables (LUTs) , and some have multiplexer-based logic blocks.
CPLDs are based on Programmable Array Logic style macrocells. Each macrocell can implement any Boolean
function of up to k inputs and with no more than m product terms. Figure 2 shows the structure of an Atmel’s CPLD
macrocell. It consists of Xor gate, foldback (or shareable expander − Altera equivalent terminology [17]), cascade
(or parallel expander − Altera equivalent terminology [17]) and a flip-flop (Architecture of the macrocell is detailed
in section II.1). An FPGA offers high logic density, high capacity and somewhat unpredictable delays, as a critical
path may need to go through multiple levels of logic cells connected by programmable interconnections. On the
other hand, CPLD offers lower logic density and predictable delays, as a critical path may need to go through fewer
levels of macrocells. It is well known that fast decoders, finite state machines are the favorite application field of
CPLD whilst FPGA products have become aggressive in offering efficient high complexity logic and in embedding
RAM or hard blocks in their architectures.
In the last decade, the synthesis problem for FPGAs has been widely addressed. Many LUT-based technology
mapping, placement and floor-planning algorithms have been presented [5,6,7]. However, only some studies have
been proposed on the synthesis problem for CPLDs, and consequently, very few mapping algorithms have been
published [1,2,3,4].
[1] presented an approach that allows existing multi-level synthesis techniques to be adapted to implement circuits
that are well-suited for CPLD architectures. The TEMPLA flow includes three phases: optimal tree mapping,
heuristic partial collapsing−, and bin packing. The objective of this algorithm is to minimize the number of PLAs. In
[2] PLAmap was developed to minimize the delay of mapped circuits. The PLAmap algorithm breaks the
technology mapping problem into three phases: labeling, mapping and packing. [3] proposed k_m_flow as a
technology mapper for single-output PLA-like macrocells, with both inputs and product term. The k_m_flow
algorithm consists of two phases: labeling the network and mapping the network into k/m-macrocells. In [4]
area/depth is the primary goal where the algorithm takes advantange of existing LUT mapper for single-output PLAs
and packing for multiple-output PLAs. Most these algorithms are based on PLA architecture, without taking into
account the macrocell architecture.
This paper focuses on innovative techniques in the synthesis flow for complex programmable logic devices (CPLDs)
especially for those containing foldbacks, which are like an inverted product term, and an Xor block such as (Pterm
⊕ Sum of Pterms). For Xor synthesis, the detected Xor templates become "don't touch" subfunctions similar to other
macros such as arithmetic blocks generated by parameterized macrogenerators. Furthermore the foldback
decomposition, which is a pseudo factorization, is performed if and only if a global cost evaluation in terms of the
potential number of macrocells shows a gain. As foldback product terms can only be used within a Programmable
Array Logic (PAL), the combinational logic using a foldback product term has to be put in the same PAL (Fig 2).
Thus the foldback cluster is created. This cluster assignment is somwhat similar to the cone-based approach used for
timing-driven floorplan [8], but here the clusters give priority to foldback gains. The aim of the Xor and foldback
detection procedures is to reduce the number of macrocells required to implement a circuit. We propose a very fast
Xor matching algorithm based on algebraic theory[9]. We have also successfully reduced the number of macrocells
by applying the foldback decomposition. Finally, we address the assignment problem on the PAL block.
The rest of the paper is organized as follows: after having introduced the CPLD features we are dealing with, the
global flow is presented in section 2. In section 3, we give basic definitions, notations and problem formulation of

 2

the Xor detection. Definitions, foldback decompostion algorithm and assignment problem are presented in section
4. Experimental results and conclusions are presented in sections 5 and 6.

II. General approach
II.1 CPLD features

Atmel’s ATF15xx family of CPLDs [16] will be used as an example throughout this paper. The architecture is a

classical CPLD structure partitioned into PAL blocks. Each PAL consists of a set of macrocells and a switch matrix
block. All PAL blocks are linked together via the global bus (Fig 1), which contains all input and I/O pin signals as
well as the buried feedback signals from all macrocells. The switch matrix in each PAL block receives as its inputs
all signals from the global bus in their true and inverted form. These signals can be selected as inputs to the
individual PAL blocks by the fitter software. Each input signal or feedback signal has access to a few multiplexers
from switch matrix block, thus greatly limiting the available opportunities to route a global bus signal.

 Fig 2 : ATF15xx Macrocell

Figure 2 illustrates the macrocell architecture. Each macrocell consists of product terms, a product term select

multiplexer, OR gate, Xor gate, Cascade logic (or parallel expander), foldback bus, a flip-flop/latch and an output
buffer. The product term select multiplexer (PTMUX) allocates five product terms as needed to the macrocell.
Within a single macrocell, all the product terms can be routed to the OR gate. For the Cascade capability, the
number of product terms can be extended from neighboring macrocells, up to 40 as long as space is available in the
same PAL. An Xor gate exists at the output of the macrocell for each Boolean function. One input to the Xor gate

M acrocells
1 to 16

R
eg

io
na

l
Fo

ld
b a

ck
s

Sw
it c

h
M

a t
r ix

P A L B lock A
16

16

16

40
I/O P ins

G
lo

ba
l B

us
(I

np
ut

s a
nd

 F
ee

db
ac

ks
 B

us
)

I/O P ins

I/O P ins
P A L B lock N

I/O P ins
P A L B lock N - 1P A L B lock B

G O E
G C K

G C L E A R

F ig 1 : A T F15xx Fam ily o f C PL D

Pr
od

uc
t T

er
m

 M
U

X

. . .

D/T

CK

CE

Q

SW
IT

C
H

 M
A

TR
IX

PT1

PT2

PT3

PT4

PT5

FOLDBACK
CASCADE

X
O

R
 G

at
e

Regional
Foldback Bus

Global Bus
Switch Matrix

Outputs

O
R

 G
at

e

40
16

 3

comes from the OR sum product terms (SOP). The other Xor gate input can be a product term (PT). Thus he the
macrocell’s Xor gate allows efficient implementation of any Boolean function that can be expressed as
()SOPPT ⊕ . Each macrocell can also generate a foldback product term. This signal goes to the regional bus and is
available to all the macrocells in a given PAL block. The foldback is an inverse polarity of one of the macrocell’s
product terms. Lastly, the flip-flop has very flexible data and control functions and can be configured for D and T
operation.

II.2 The global design flow

The global design flow takes as input a netlist which is the output of a higher level compiler (VHDL, CUPL, Verilog
or ABEL Compiler) as well as user constraints (Fig 3).

 Fig 3: Global design flow

After a classic polarity selection phase based on product term number minimization (ESPRESSO), a mapping step
is called. Thereafter, the Xor matching and Foldback decomposition stages are considered. The first step detects
Xor expressions that are of interest for CPLD synthesis, namely expressions having the following
form ()SOPPT ⊕ , where PT is a Product Term and SOP a Sum of Product terms Boolean expression. The second
step is a Foldback product term detection/selection. It will be decided at this point if the use of a foldback product
term appears to be suitable for the initial functions or subfunctions. These approaches will be explained in detail in
this paper. The Xor matching and Foldback decomposition are performed if and only if a global cost evaluation in
terms of potential number of macrocells shows a gain. After the foldback detection step, foldback clusters are
created. As foldback product terms can only be used within a PAL, the logic utilizing a foldback product term has
to be put in the same PAL. Unfortunately, the presence of foldback clusters may lead to a difficult fitting process.
Nevertheless, it is interesting to use the foldback physical pattern and to perform minimization on logic as
required. The assignment of foldback clusters consists of two phases: first, control and size limitation of the
foldback clusters are processed. The second phase is to check if each cluster input is affected to one and only one
input of the PAL block. This will lead to the final placement/routing that will not be considered at all in this paper.

 III. Xor Matching for CPLD architectures
Xor operators commonly appear in high level descriptions and are preserved through the RTL synthesis path. It
may happen, particularly in the CPLD world, that Xor expressions are flattened and one of the tasks of this paper
is to reintroduce them in order to take full advantage of the available Xor gates of the CPLD device.

 This study is therefore completely different from the basic problem of expressing Boolean functions using the Xor
 operator. It is well known that a large amount of published literature exists on Reed-Muller expressions [15]. In
 this section we present a matching algorithm for the Xor gate of the CPLD device based on the necessary

Open Abel Format

Flip-Flop Processing

Minimization/Polarity Selection

Mapping

Xor Matching

Foldback detection

Cluster assignement

Final Place/Route

User constraints

 4

conditions theory [9].
 III.1 Problem formulation

 Definition: Consider the Xor_CPLD expressed in the following form fPT ⊕ , where PT is a product term of a
 macrocell and f is a sum of product terms of a macrocell (Fig 2).
 Example : Let F be an Xor Boolean function :

 ()ghcdabF +⊕= (i)
After flattening and minimization , F can be expressed as :

hdabgdabhcab

gcabghbghacdbcdaF

+++

++++= (ii)

The macrocell architecture is based on five product terms.
In (i), use 1 macrocell to implement F, but in (ii), use 2 macrocells to implement F.
After the Xor extraction, we reduce the number of macrocells required to implement F, and the gain is equal to
one macrocell.

 The problem selected here as expressed above is rather a rewriting of the Boolean function equivalent to
 fPT ⊕ in which such a form has been hidden by a flattening process.
 Given a Boolean function, F is a sum of product terms expression. We assume that F is expressed in minimum
 support. In this section we try to use the new approach to detect if F can be implemented by an Xor_CPLD. F can
 be expressed as follows: gPtF ⊕= (1)

Where g is a sum of product terms expression.

 The input variable supports of Pt and g are disjoint. This corresponds to the CPLD physical pattern. By applying
 this restriction, we obtain a much faster algorithm. The aim of the procedure presented in this subsection is to
 extract a product term Pt having a maximal number of literals called “Xor cofactors” from the Boolean function
 F.
 III.2 Necessary conditions verified by literals of a XOR cofactor
 Let F be a minimized sum of product terms expression.

∑
=

=
n

i
imF

1
 where im is the product term. (2)

 Let us suppose that F can be implemented by an Xor_CPLD, then F has a decomposition as shown in (1).
 Where Pt is Xor cofactor.
 The problem reduces to finding Pt, which is an Xor cofactor.

 pxxxPt ...21= (3)

 gpxxxF ⊕⎟
⎠
⎞⎜

⎝
⎛= ...21 (4)

 Proposition III.2.1: If Pt is an Xor cofactor, then all the inputs of Pt have the same occurrence in a
 decomposition of F as in (2).
 Let jxix , be two inputs of Pt and ()ixOccixOcc),(be respectively the occurrence of the literals ixix , in (2).

 An input occurrence be expressed as follows: () () ()ixOccixOccixSumOcc +=
 From (4) we have:

 gpxjxixgpxjxixF ⎟
⎠
⎞⎜

⎝
⎛+⎟

⎠
⎞⎜

⎝
⎛= (5)

 With g being independent of all inputs of Pt :

 ∑
=

=
k

i
ipg

1
 and ∑

=
=

h

i
l ig
1

 where ip and il are product terms then : =)(ixSumOcc hkjxSumOcc +=)(

 Proposition III.2.2: Xor cofactor Pt exists if,
⎭
⎬
⎫

⎩
⎨
⎧

=∈∀ g
ixFPtLtixix),(, .

 Where)(PtLt is a set of literals of Pt . We compute
ixF or

ix
F according to this literal ix appears under a

 direct or complemented form in Pt .
 We know g is independent of all inputs of Pt and using (4) we then have: gFFF

pji xxx ==== ...

 5

 III.3 Xor_CPLD matching algorithm
The approach used here consists of two phases. If gPtF ⊕= , then obvious necessary conditions exist dealing
with the occurrence of the literals of Pt. A first phase aims at detecting these necessary conditions of identifying
the Pt literals. Having identified the variable candidates, a second phase based on ROBDDs (Reduced Ordered
Binary Decision Diagram) verifies if F is equivalent to a gPt ⊕ expression.
 III.3.1 Binary decision diagram
We assume here that the reader is familiar with
binary decision diagrams and all related numerous
BDD packages [9][10].
Example1: The ROBDD templates of ba⊕ (Fig 4)
Example2: We begin the construction of the ROBDD following an order of variables which starts with
the Pt variables. The ROBDD templates of gPt ⊕ is shown in (Fig 5).

 III.3.2 Algorithm
Based on this theory, we describe the algorithm that checks whether F can be implemented by an Xor_CPLD gate.
The Boolean function F is minimized once. Let S(F) be the set of inputs of F. We perform this check only if we
need more than one macrocell to implement F. The matching steps are done as follows:
 1.)(FSix ∈∀ , compute ()ixSumOcc and use SumOcc value to sort S(F) in classes.
 Each class is an Xor cofactor candidate.

 2. Select Xor cofactor candidate as one with greater number of inputs, then we construct a
 ROBDD for this candidate using a variable ordering such that the inputs of the Xor cofactor
 candidate appear on the top of the ROBDD (Fig 5).

 3. Check for each input ix of the Xor cofactor candidate if g

ixF = . This check is performed

 by verifying in the ROBDD template (Fig 5) if the node g is reached by only direct
 (complemented) from the nodes 1,..., −pi xx and by direct edge and an inverted edge from

 the node px .

 4. To check if F is equivalent to a gPtF ⊕= expression. If so, report a match and quit.
 Otherwise return to step 2.

 IV. Foldback synthesis
A foldback is a product term PT of a macrocell which is inverted and fed back into the PAL logic array for use by
any or all of the macrocells in the same PAL block (Fig 2) (i.e this signal is available to all macrocells within the
same PAL block). The foldback terms in each PAL can also generate additional fan-in sum terms with small
additional delays.
 IV.1 Basic definitions:
Definition 1: Cost of a Boolean expression

 Consider a Boolean function F expressed as a sum of product terms. The cost of the function F, denoted as Cost
 (F), is the number of product terms.

X1

Xp

ROBDD of g

Fig 5

Inverter

a

b

0 1

0 1
Fig 4

 6

Definition 2: foldback candidate
A foldback candidate is a Boolean expression having the form)...(321 kxxxx ++++ where ix is an input
variable or a subfunction (shared or not) under a direct or complemented form and denoted by the term

FBNode which is always inverted.
Definition 3: Cost of foldback
The cost of a foldback subfunction selected as an admissible foldback candidate is 1. This means that it
corresponds to the foldback physical pattern.

We detect a foldback factor of two or more product terms of a set of functions.
Example1: Let F be a minimized sum of the product terms expression.

nplmhghfabeabceabdeF +++++= and Cost (F) = 6
yields a foldback factoring as follows:

nplmhghfcdabeF +++++=)(,)(fdcNodeFB = and Cost (FBNode) = 1

 then: nplmhghNodeabeF FB +++= and Cost (F) = 4
 After the foldback decomposition the gain is equal to 2 product terms.
 Example 2:
 The following case does not generate a foldback factor.

)(cdeababcdabeF +=+=
 In this case we do not have the foldback form since, the expression)(cde + is not a foldback factor.

 IV.2 Foldback detection algorithm
The algorithm proceeds like a “pseudo” factorization with a filtering of all the factors which are not the foldback
form)...(321 kxxxx ++++ , where ix is an input variable or a subfunction (shared or not) under a direct or
inverted form. We describe the foldback detection algorithm as follows:

 1. Form cliques of functions by specifying number of literals in common.
 For each clique of functions.

2. For each function in clique,
 Create all foldback product terms for both onset and offset expressions and for each such
 foldback product term
 a. Determine if the identical foldback product term is derived from other product
 terms of this function or from product terms of other functions of the clique.
 b. Form an association with this foldback of each function of the clique which will
 factor into this foldback.
When all foldback product terms of the clique are
 determined,

 3. For each foldback in the clique, For each function in the clique,
 a. Determine if the function factors into that foldback, onset, offset, or both onset and offset.
 b. If the use of the foldback is indicated, determine whether or not a reduction in the number of product
 terms occurs by the use of the foldback for instance, if foldback factoring is designated for the onset
 specification, compare the onset implementation with the expander against the offset implementation
 without foldback to determine if use of the foldback results in a reduction in the number of product terms.
 c. If there is a reduction in the number of product terms through use of the foldback, accumulate the number
 of saved product terms for all functions of the clique.

4. Select that expander which yields the optimal savings in number of product terms in the clique

 a. Create a foldback node for that foldback.
 b. For each function in the clique which yields a product term reduction by use of that foldback, form the
 appropriate function implementation having that foldback node as a literal, both onset, offset when
 appropriate.
 c. Remove the designated expander from the list of clique foldbacks.
 d. Perform step 2 on newly created function implementations, that is, determine if the newly factored
 function, with foldback implementation, can be factored again into foldbacks which may have a common
 use in the clique, allowing factoring into multiple foldbacks.

 7

5. Return to step 4.
 IV.3 Foldback cluster assignment
The preparation of the fitting process needs to answer a basic question whether a given foldback cluster candidate
can be assigned to the PAL block.
 IV.3.1 Definitions
Definition 1: The PAL block architecture is defined as the number of inputs, denoted as I, the number of
macrocells, denoted as M and the number of outputs, denoted as O.
Definition 2: In a PAL block, each pin signal is routed to X Muxs. This means that there are X possibilities for
routing each pin signal into a PAL block.
Definition 3: In a PAL block, each feedback is routed to Y Muxs , providing Y possibilities for routing this signal
in to the PAL block.
Definition 4: The number of inputs of the PAL block is equal to the number of Muxs of the switch matrix block.
Definition 5: The foldback cluster, denoted as FBCL , is defined as the set of functions and subfunctions that have
the same foldback. Let)(FBCLIN be the set of inputs or subfunction of FBCL ,)(FBCLMC as the number of
macrocells and)(FBCLOUT as the number of outputs.
 IV.3.2 Problem formulation
The assignment problem for the foldback cluster can be formally stated as follows: given a cluster of the functions
and the basic PAL block , the cluster is assigned to a PAL block. This problem is solved by checking two
conditions: first that the PAL block capacity is respected. Secondly, that if each input (or output, or feedback) of
cluster is affected by one and only one input (or output, or feedback) of the PAL block. Is means finding a free
Mux of the switch matrix in the PAL block to route the input (or output, or feedback). We denote an input (or
output, or feedback) of the foldback cluster as an element.
Definition: Let)(FBCLELT be the set of elements of FBCL .
Property: If a cluster of functions has been assigned to a PAL block, then all the functions of this cluster have the
same foldback.
Proposition: A FBCL is said to be assigned to the PAL block if and only if:
(1). MCLMCICLIN FBFB ≤≤)(,)(and OCLOUT FB ≤)(
(2). Each element of FBCL is assigned to one and only one Mux of the switch
 matrix in a PAL block.
Proposition (1) is a quick and easy check. For proposition (2) we propose the problem formulation. We have a
set of elements of FBCL and a set of Muxs of the PAL block. These are the two kinds of nodes in our bipartite
graph. We know which Mux can be routed with elements of flodback cluster (Definition 2 and Definition 3).
This defines the edges of our bipartite graph. Our aim in the maximum cardinality matching problem is assigning
elements to Muxs in such a way that as many Muxs as possible are used by an element that can handle it. One
element can be assigned to at most one Mux and we can assign at most one element to one Mux. At this point,
the problem can be expressed more naturally in graph theory terms. A bipartite graph G = (U, V, E) with vertex
sets U , V and edge set E, where U is a set of inputs of FBCL , V is a set of Mux of switch matrix in PAL block
and { }V vU,u),(∈∈= vuE . If (u, v) is an edge, i.e, (u,v)∈E, then there exists a possibility of routing the
vertex u by the vertex v (Definition 2 and Definition 3). Obviously, the problem reduces to a classical bipartite
matching problem and the solution consists in performing a maximum matching algorithm in a graph G [10,11].
In conclusion, the foldback cluster can be assigned to the PAL block if there exists a maximum cardinality of a
matching in a graph G equal to)(FBCLELT .

 V. Experimental results
The techniques presented above have been implemented in C language and incorporated in new Atmel EDA tools.
To assess the results produced by Atmel fitters, these were compared to Altera’s MAX+PLUS II tool (version 9.5).
Table 1 shows the analysis of the results for MCNC benchmark circuits. For each benchmark, 2 indications are
given. For Atmel, the first one gives the number of macrocells (NberMC) and the second gives the number of
foldbacks (NberFB). The results of Altera are obtained by trying two different synthesis options with optimization
for area (index 0) : Normal and Fast. NberLC values and NberSE values indicate respectively the number of logic
cells and the number of the shareable expanders. For comparison we used the ATF15xx device from Atmel [16]
and the MAX7000 device from Altera [17]. The two devices have the same logical capacity. Then, a logic cell
(LC) in a MAX7000 is basically equivalent to a macrocell (MC) in a ATF15xx (Fig 2).

 8

Bench

 ATMEL
 synthesis

 ALTERA
 Normal synthesis Fast synthesis

NberMC NberFB NberLC NberSE Gain(%) NberLC NberSE Gain(%)

5xp1 12 9 16 9 33 15 7 25
alu4 81 30 141 29 74 149 26 84
apex3 142 34 154 43 8 168 41 18
apex4 207 36 248 23 20 250 21 21
clip 16 26 22 3 37 19 10 19
cps 163 44 175 88 7 157 62 - 3
duke2 45 25 52 28 16 51 10 13
ex5 64 18 63 23 -1,5 67 8 4
misex3 96 30 225 77 134 220 54 129
rd84 26 17 32 06 23 32 18 23
seq 173 36 266 122 54 237 67 37
t481 7 6 6 6 -14 17 5 143
table3 104 28 139 102 34 127 25 22
table5 90 23 125 77 39 118 34 31
vg2 10 13 16 4 60 16 0 60
Total avrage Gain 34% 39%

Table 1: Comparison with Altera tool

On average, when the circuits in Table1 are fitted using the Altera tool, they require 34% to 39% more logic cells
than the Atmel fitters targeted to the ATF15xx.

VI. Conclusion

The overall design flow for a CPLD is organized around processing for innovative features. The Xor synthesis based
on algebraic matching and foldback processing creates initial foldback clusters. Once the clusters are defined, the
clustering step explores a bipartite matching method of cluster assignment to PALs. This flow has been fully
implemented and validated on the ATMEL flow.
In conclusion, it has been shown during the last two decades that successful topic synthesis is a combination of
fundamental successful achievements (ROBDD ...) and device-specific features requiring permanently innovative
heuristics.

VII. References
[1] J. H. Anderson, S. D. Brown, “Technology Mapping for Large Complex PLDs, ” in Proc.
 35 th ACM/IEEE Design Automation Conference 1998, pp 698-703.
[2] D. Chen, J. Cong, M. Ercegovac and Z. Huang, “Performance-Driven Mapping for CPLD
 Architectures, ” IEEE Trans. on Computer-Aided Design, oct. 2003,Vol. 22, No. 10, pp.
 1424-1431.
[3] J. Cong, H. Huang, and X. Yuan, “Technology mapping for k/m-macrocell based FPGA’s,”
 in Proc. ACM/SIGDA Int. Symp. Field Programmable Gate Arrays, San Jose, CA, Feb
 2000, pp. 51-59.
[4] S.L. Chen, T.T Hwang and C.L Liu “A Technology Mapping Algorithm for CPLD
 Arcitectures, ” in Proc. IEEE. Int. Conf. on Fiel-Programmable Technology, Hong Kong,
 Dec. 2002, pp. 204-210.
[5] J. Cong and Y. Ding, “FlowMap: An Optimal Technology Mapping Algorithm for Delay
 Optimization in Lookup-Table Based FPGA Designs, ” IEEE Trans. On Computer-Aided
 Design, Jan. 1994, Vol. 13, No. 1, pp. 1-12.
[6] K. C. Chen, J. Cong, Y. Ding, A. Kahng, and P. Trajmar, “DAG-Map: Graph-based
 FPGA technology mapping for delay optimization,” IEEE Design Test Comput., pp. 7–20,
 Sept.1992.
[7] H.Eisenmann and F.Johannes, “Generic Global Placement and Floorplanning,” in Proc.35 th
 ACM/IEEE Design Automation Conference 1998.
[8] S.A Senouci, A. Amoura, H. Krupnova and G. Saucier, “Timing-Driven Floorplanning on
 Programmable Hierarchical Targets,” in Proc. ACM/SIGDA Int. Symp. Field
 Programmable Gate Arrays, San Jose, CA, 1998, pp. 85-92.

 9

[9] R. Murgai, B.K. Brayton, A.S Vincentelli, “An improved synthesis algorithm for
 multiplexor-based PGA’s,” in Proc.29th ACM/IEEE DAC 1992, pp 380-386.
[10] H. Alt, N. Blum, K. Mehlhorn, M. Paul, “Computing a maximum cardinality matching in
 a bipartite graph in time O(n1.5(m log n)0.5) ,” Information Processing Letters, Vol. 37,
 No. 4, 237-240, 1991
[11] N. Sherwani, Algorithms for VLSI Physical Design Automation, Third edition. 1999 by
 Kluwer Academic Publishers.
[12] D. Kania, “A technology mapping algorithm for PAL-based devices using multi-output
 function graphs,” in Proc. 26th Euromicro Conf., Sept. 2000, pp. 146–153.
[13] V. Solovjev and M. Chyzy, “The Universal Algorithm for Fitting Targeted to Complex
 Programmable Logic Devices,” in Proc. 25th Euromicro Conf., Sept. 1999, pp. 286–289.
[14] S. Krishnamoorthy and R. Tessier , “Technology Mapping Algorithms for Hybrid
 FPGAS Containing Lookup Tables and PLAs, ”IEEE Trans. on Computer-Aided Design,
 may. 2003,Vol. 22, No. 5, pp. 545-559.
[15] V. Ciriani, “Logic Minimization using Exclusive OR Gates ,” in Proc 38st ACM/IEEE Design
 Automation Conference 2001.
[16] The ATF15xx Family Data Sheet, Atmel Corporation, 2000.
[17] MAX 7000B Programmable Logic Device Family, the Altera Data Book, Altera
 Corporation, 2000.

