
A model to Coordinate UAVs in urban environments
using defeasible logic

Ho-Pun Lam1,2, Subhasis Thakur1,3, Guido Governatori1 and Abdul Sattar1,3

1 NICTA, Australia
2 ITEE, The University of Queensland, Brisbane, Australia

3 IIIS, Griffith University, Brisbane, Australia

Abstract. In this paper we show how a non-monotonic rule based system (de-
feasible logic) can be integrated with numerical computation engines. To this end
we simulate a physical system from which we obtain numerical information. The
physical system perceives information from its environment and it sends some
predicates which are used by the defeasible logic reasoning engine to make de-
cisions and then these decisions are realized by the physical system as it takes
action based on the decision made by the reasoning engine. We consider a sce-
nario where UAVs have to navigate through an urban environment. The UAVs
are autonomous and there is no centralized control. The goal of the UAVs is to
navigate without any collisions with each other or with any building. In case of
a possible collision, the concerned UAVs communicate with each other and use
background knowledge or some travel guidelines to resolve the conflicts.

1 Introduction

Typically complex systems have to manipulate and to react to different types of data
(e.g., numerical and Boolean), and in many scenarios we have to integrate different
types of reasoning processes. For example in a UAV (Unmanned Autonomous Vehicle)
scenario, a UAV has to use some sensing devices to determine its position and the posi-
tion of obstacles and the other information about other UAVs (maybe represented as a
vector indicating the speed, direction of a UAV). Based on this data a UAV has to decide
whether to change its course of direction or to continue with its trajectory. Accordingly,
given two vectors, the UAV has to compute the intersection of the lines determined by
the two vectors, and determine whether the two UAV will reach the intersection point at
the same time (or within a proximity threshold). These two operations typically require
some numerical computation. In case the previous computation returns that a collision
is possible the UAV has to decide whether to change direction and how to change di-
rection. While it is possible to use non logical methods for these two tasks, experience
tell us that these are better handle by rule based methods4.

4 If you are not convinced about this, please, spend few seconds thinking about it the next time
that (1) drive your car home after work, (2) take some form of public transportation, (3) simply
cross the road. For a concrete case consider rule 162 of the Australian Civil Aviation Regula-
tions 1988: “When two aircraft are on converging headings at approximately the same height,
the aircraft that has the other on its right shall give way, except that (a) power-driven heavier-
than-air aircraft shall give way to airships, gliders and balloons; . . . ”

UAV coordination is a large research topic and a huge literature is dedicated to this.
However, the focus of this paper is not on modelling UAV. Indeed, the novelty of this
paper is, how a (non-monotonic) rule based system can be used for coordination, which
constantly seeks information from some numeric manipulation units which can be hard-
ware such as radar, different engine monitors, GPS etc. The advantages of using a rule
based system are (1) it can be modified by an external user for different scenarios as new
constraints are introduced about how the UAVs should behave (2) the decision making
system has linear computational complexity, it can even be modelled as hardware.

The physical system of a UAV gathers data such as its current position, and the po-
sition, velocity and travel direction of UAVs nearby and the alternative path(s) available
as contextual information, and will be used to determine whether a possible collision
will occur. If it is the case then some of these information will be “transformed” into
a set of rules and then merged to some pre-defined guidelines (which appears as a set
of rules in a logic and is available to all UAVs) so that the reasoning engine can reason
to determine how to evade the possible collision and to arrive the desired destination
safely.

The paper is organized as follows: In Section 2 we briefly introduce the scenario
that we deal with; then in Section 3 we motivate the reasons why we use defeasible
logic and an informal introduction about the subject will be provided. In Section 4 we
illustrate the various reasoning techniques used to model the UAV navigation by means
of the system we have developed.

2 UAV coordination problem

To illustrate the combination of techniques used to model UAVs we have the following
problem scenario:

Given a map of city and specific targets, a group of UAVs have to navigate
through the city from a start location to a desired destination without colliding
with other UAVs.

In the light of this we have implemented a UAVs navigation system to simulate this
situation. Figure 2 captures the essence of components of our UAV navigation system.
Each UAV is equipped with a GPS application engine and a reasoner. The application
engine is used to request and receive information from the GPS monitor. In each rea-
soning cycle (see below for details), the application engine will issue request to the
GPS monitor on the current traffic situation and information of the UAVs nearby; and
if, on the other hand, an accident has occured at a particular location, the GPS monitor
will also issue acknowledgement to the UAVs (which are close to the accident location)
about the accident.

The reasoning engine is used to control the behavior of a UAV. It share certain
aspects of consciousnes and the doctorine behind how the UAVs render their decision
under different context. Simply speaking, the UAV’s traffic is regulated by a set of ‘road
rules’ (the knowledge base) determining which UAVs have the right of way in case they
are travelling to the same location and has a high probability to collide.

Fig. 1. UAV system overview

The UAVs navigation system uses the following reasoning cycle:

1. A UAV gathers data about its current location, travel direction and inforamtion of
UAVs nearby from the GPS monitor.

2. The UAV detects if there is any possible collision (Section 4.2).
3. In case of possible collision, the UAV utilize the ‘right-of-way’ rules to reason the

next direction of travel, or to stop its motion for a while. The ‘right-of-way’ rules
are modelled in Defeasible Logic (See Section 3 for a short introduction to the
logic).

4. If the resulted travel direction D is changed, except the case of stop moving, the
UAV should then select a new path (using shortest path length, least number of
turns, etc) along the set of paths in the new direction and continuous its travel

5. Go back to step 1 until the UAV reaches its desired destination.

3 Defeasible Logic

The coordination of the UAV is achieved by a set of norms creating the convention
UAVs have to follow to prevent collision. Given that the behaviour of the UAVs is
governed by a set of norms, we believe that the best choice to formalised the rules
encoding the norms is with a logic that has proved able to handle norms. Thus we
have decided to encode such rules in Defeasible logic. Defeasible logic is a simple

and efficient skeptical rule-based non-monotonic formalism, and it has been argued
that it is suitable to represent and reasons with norms [2–4]. Two important features of
Defeasible logic are its ability to represent exceptions (and typically normative systems
leave room for exceptions) and it is possible to draw (tentative) conclusions with partial
information.

A Defeasible theory [1] D is a triple (F,R,>) where F is a finite set of facts, R is a
finite set of rules, and > is a superiority relation on R. The language of defeasible logic
consists of a finite set of literals, l, and their complement ∼l.

A rule r in R is composed of an antecedent (body) A(r) and a consequent (head)
C(r), where A(r) consists of a finite set of literals and C(r) contains a single literal. A(r)
can be omitted from the rule if it is empty. There are three types of rules in R, namely
→ (strict rules),⇒ (defeasible rules), and ; (defeaters). Furthermore, Defeasible logic
is equipped with a binary relation between the set of rules, called superiority relation
(<), to be used to determine the relative strength of two rules. The superiority relation
is used when we have to conflicting rules that fire simultaneously, and it tells us that
one rule prevails over the other, thus its conclusion has to be derived.

A conclusion derived from the theory D is a tagged literal and is categorized ac-
cording to how the conclusion can be proved:

– +∆q: q is definitely provable in D.
– −∆q: q is definitely unprovable in D.
– +∂q: q is defeasibly provable in D.
– −∂q: q is defeasibly unprovable in D.

Provability is based on the concept of a derivation (or proof) in D = (F,R,>). Infor-
mally, definite conclusions can be derived from strict rules by forward chaining, while
defeasible conclusions can be obtained from defeasible rules iff all possible “attacks”
are rebutted due to the superiority relation or defeater rules. A derivation is a finite se-
quence P = (P(1), . . . ,P(n)) of tagged literals satisfying proof conditions (which corre-
spond to inference rules for each of the four kinds of conclusions). P(1..i) denotes the
initial part of the sequence P of length i. For a full presentation and proof conditions of
DL refer to [1].

The set of conclusions of a defeasible theory is finite5, and it can be computed in
linear time [6]. The reasoning engine can be also implemented as a chip [7]. For the
application at hand we have the SPINdle Java implementation of defeasible logic [5].
SPINdle is able to handle defeasible theories with over 1,000,000 rules [5].

4 UAV Navigation Problem

In this section we present a novel version of UAV navigation problem to illustrate the
framework that we have developed in the pape. We will also describes some of the
rules that appeared in our knowledge base, and will show to the reader under what
circumstance new rule(s) will be added to the knowledge base to rebute the norms.

5 It is the Herbrand base that can be built from the literals occurring in the rules and the facts of
the theory.

The objective of our framework is to have all UAVs traveled to the destination (in a
city environment) without colliding with each others. To simplify our framework, we
considered only four values of travel directions, namely: NORTH, EAST, WEST and
SOUTH, as shown in Figure 4 below.

1 2

3

4

5

6

1

1

N

E

Fig. 2. City with UAVs

4.1 The Knowledge Base

As described in Section 2 a UAV will gather different types of data from the GPS mon-
itor within a proximate range and detects if a possible collision may occur. In case of
possible collisionthe UAV will then utilize the information in its Knowledge Base (KB)
andd to reason on the next travel direction, or to stop its motion. The KB contains the in-
formation about a UAV and is a well-documentated (doctrine) limited set of behavioral
interactions that describes the behavior of the UAV under diffferent situation. To be
able to travel from one location, and to aviod collision with other UAVs, a UAV should
incorporate into the KB the set of context-related information (such as traffic situation,
information of other UAVs) and derive a safe direction of travel when a possible col-
lision occur. (Consider the scenario as shown in Figure 4 that V1 and V2 are moving
towards to the same location and collisions may occur if none of the UAVs alter their
travel directions. (the same also applies to (the same also applies to V3, V4 and V5))

A UAV instance at a particular time is a tuple U = (t,T,L,V,θ) where: t is the time,
T is the vehicle type (emergency or non-emergency), L, V and θ are the location, ve-
locity and travel direction of U at time T respectively. These information, together with
other context-related information will be added to the knowledge base using defeasible
rules, as shown below:

EM01 :⇒¬isEmergencyVehicle
DIR01:⇒ currentDirectionTravelSafe
STT01:⇒ safeToTravel(X)
TJ01 :⇒¬trafficJam(X)
CM01 :→ currentMove(EAST)

The above rules6 describe the propositional concerns of a particular UAV at a par-
ticular context of travel. It is assumed that the UAV is not an emergency vehicle and
belived that there exist paths at different directions which is safe to travel and with no
traffic jam, and is currently travelling to the EAST.

DIR04: currentDirectionTravelSafe⇒ continuousTravel
DIR05: continuousTravel→¬changeDirection
CD01 : continuousTravel,safeToTravel(X),currentMove(X)⇒ Move(X)
VC01 : vehicleCollisionAt(X)→¬safeToTravel(X)
DIR11: ¬safeToTravel(X),currentMove(X)→¬currentDirectionTravelSafe
DIR03: ¬currentDirectionTravelSafe⇒ changeDirection
CD11 : changeDirection,sa f eToT ravel(X),pathTo(X),¬trafficJam(X)⇒ Move(X)
CD21 : changeDirection,currentMove(X)⇒¬Move(X)
DIR05> DIR03
CD21 > CD11

So, under normal situation, if no traffic jam occurs at the current travel direction
and the current travel direction is safe to travel, the UAV should then continues its
travel without any change of its direction (rules DIR04, DIR05 and CD01). However,
if a traffic jam appears in the current travel direction or if the current travel direction is
not safe to travel (for example, a collision will occurs, i.e., the UAV will collide with
another UAV if both continues with their current travel directions, see Section 4.2 below
for the details), then the UAV should consider to alter its travel direction (rules VC01
to CD21).

4.2 Collision detection

Now consider two UAVs (U1 and U2) traveling through the city to different destinations.
Using their current location and travel direction, and with the help of some simple ge-
ometry methods, an interception location Lint between the two UAVs can be calculated.

Let tint be the time required for a UAV to travel from the UAV’s current location to
Lint . So, two UAVs are considered to be possibly collided if their time required to travel
from their respective locations to Lin f is more-or-less the same. That is, in our case,
if |tint1 − tint2 | < tlimit , where tlimit is the time boundary, then a possible collision may
occur between the two UAVs and a new rule indicating this situation will be added to
the KB, to indicate the current situation. For example, if there exist a possible collision
at direction EAST, the following rule will be added to the KB:

ST T 11 :⇒¬safeToTravel(East)
ST T 11 > ST T 01

The above rule tells the UAV that it is not safe to travel to EAST and thus should
forbidding it from traveling to that direction. Moreover, if the UAV is traveling towards
the EAST, it should also consider alter its travel direction, or to stop for a while, as well.

6 The value of X in DIR01 and STT01 should be interpreted as the four directions of travel that
we are considering, i.e. EAST, SOUTH, WEST and NORTH.
Please also note that all rules above (except CM01) are defeasible since they are the common
norms that stored in every UAVs. Information about a particular UAV should be added to the
KB to rebute the norms as necessary.

4.3 Right of way

However, things in reality are much more complex. We may have some emergency ve-
hicles traveling through the city that cannot afford to pay the price of changing their
path. In this situation, vehicles which are not emergency should give their way to the
emergency vehicles, which can be represented in defeasible logic as follows:

EM02: emergencyVehicleComing, isEmergencyVehicle⇒ negotiatePathWIthEmergencyVehicle
EM03: emergencyVehicleComing, ¬isEmergencyVehicle⇒ changeDirection
EM04: ¬emergencyVehicleComing, ¬isEmergencyVehicle⇒ negotiatePathWithVehicle
EM06: ¬emergencyVehicleComing, isEmergencyVehicle⇒ requestVehicleToChangeDirection

The above rules stated that if the vehicle is not an emergency vehicle, than it should
give the right of travel to an emergency vehicle. However, if both vehicle are (not) emer-
gence vehicles, them they should negotiate on who should change their travel direction.

After gathering all the contextual information, as mentioned before, new rules will
be added to the KB. The UAV will thus start to to reason out the action on how to
evade the possible collision. In most cases, as we are expected, the UAV will alter its
travel direction, to avoid possible collision and gives the ‘rights-of-way’ to emergency
vehicles. However, there are in some situations when the UAV(s) has no direction safe
to travel, it will stop for a while and let other UAVs to continuous their journery first.

5 Conclusion

In this paper we have demonstrated how to use a combination of numerical computation
methods and rule based logic computation to simulate a complex environment such
as UAV navigation. Future work includes the study of UAV negotiation, the use of
Temporal Defeasible Logics, and integrating the rule-based system with reaction-based
mechanism.

Acknowledgements

NICTA is funded by the Australian Government as represented by the Department of
Broadband, Communications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program

References

1. Antoniou, Grigoris and Billington, David and Governatori, Guido and Maher, Michael J.
Representation Results for Defeasible Logic. ACM Transactions on Computational Logic,2,
255-287, 2001.

2. Antoniou, Grigoris and Billington, David and Governatori, Guido and Maher, Michael J.
On the Modeling and Analysis of Regulations. Proceedings of the Australian Conference
Information Systems, 1999.

3. Governatori, Guido. Representing Business Contracts in RuleML. International Journal of
Cooperative Information Systems, 14, 181-216, 2005.

4. Governatori, Guido Antonino Rotolo and Giovanni Sartor. Temporalised Normative Posi-
tions in Defeasible Logic. 10th International Conference on Artificial Intelligence and Law,
2005.

5. Lam, Ho-Pun and Governatori, Guido. The Making of SPINdle. 3rd International RuleML
Symposium, 2009.

6. Maher, Michael J.. Propositional Defeasible Logic has Linear Complexity. Theory and
Practice of Logic Programming, 1, 691-711, 2001.

7. Song, Insu and Governatori, Guido Hardware Implementation of Temporal Nonmonotonic
Logics. 19th Australian Joint Conference on Artificial Intelligence, 2006.

