
EDUTELLA: Searching and Annotating Resources
within an RDF-based P2P Network

Wolfgang Nejdl, Boris Wolf
L3S and Knowledge Based Systems

University of Hannover
30167 Hannover, Germany

fnejdl,wolfg@kbs.uni-hannover.de

Steffen Staab, Julien Tane
L3S and Institute AIFB

76128 Karlsruhe, Germany

fsst,jtag@aifb.uni-karlsruhe.de

ABSTRACT
P2P applications for searching and exchanging information over
the Web have become increasingly popular. This has lead to a num-
ber of (usually thematically) focused communities, which allow
efficient searching within such communities, and which use spe-
cific metadata sets to specify the resources stored within the P2P
network. By concentrating on domain and application specific for-
mats for metadata and query languages, however, current P2P net-
works appear to be fragmenting into non-interoperable niche mar-
kets. This contribution describes the open source project Edutella
which builds upon metadata standards defined for the WWW and
aims to provide an RDF-based metadata infrastructure for P2P ap-
plications, building on the recently announced JXTA Framework.
We describe one basic service (query) and an Edutella application
(annotation) within this network, both being built on a common
query language exchange format, and specify the main architecture
and APIs of the Edutella P2P network.

1. BACKGROUND
The advantage of the WWW is that it constitutes a pre-

dominantly decentral paradigm storing information resources in
hypertext like structures. Searching in the WWW, however, typ-
ically follows a client-server model, viz. browser vs. search engine
[16], inheriting the corresponding benefits and pitfalls. To name
some problems, search engines cover only a decreasing percentage
of the information available on the Web and their content is often
not up to date because of the time required for crawling of the Web.

In contrast, information resources in P2P networks are stored
on numerous peers waiting to be queried for these resources. The
querying of peer-to-peer networks allows the comprehensive re-
trieval of up-to-date resources stored at relevant sites. But in order
to achieve this, it requires a query mechanism using some descrip-
tion of the resources managed by these peers.

While in the server/client-based environment of the World Wide
Web metadata are useful and important, for Peer-to-Peer (P2P)
environments that come without underlying hypertext structures
metadata are absolutely crucial. Such metadata are easy to pro-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission by the authors.
Submission to Semantic Web Workshop 2002 Honolulu, Hawaii, May 7,
2002
Copyright by the authors.

vide for specialized cases, but non-trivial for general applications.
The core concern of our research therefore is to develop a general
infrastructure for combining metadata with P2P networks.

In the context of educational resources for example, which we
are currently focusing on, P2P-based approaches are more flexi-
ble than centralized approaches like Client-Server computing, with
several advantages for the participating institutions. As content
providers in a P2P network they do not loose control over their
learning resources but still provide them for use within the net-
work. As content consumers, both teachers and students, benefit
from having access not only to a local repository, but to a whole
network, using queries over the metadata distributed within the net-
work to retrieve required resources.

Recent P2P applications have been very successful for special
cases like exchanging audio files. However, retrieving MP3 coded
audio files using title and author does not need complex query lan-
guages nor complex metadata, so special purpose formats for these
P2P applications have been sufficient. Metadata in Gnutella are
limited to a file name and a path. This is fine for queries looking
for the song “Madonna - Like a Virgin”, but cannot be extended
to something like “Introduction to Algebra - Lecture 23”. For ed-
ucational resources, queries are more complex and have to build
upon standards like IEEE-LOM/IMS [2] metadata with up to 100
metadata entries, which might even be complemented by domain
specific extensions.

Furthermore, by concentrating on domain specific formats, cur-
rent P2P implementations appear to be fragmenting into niche mar-
kets instead of developing unifying mechanisms for future P2P ap-
plications.

In order to facilitate interoperability and reusability of edu-
cational resources, we need to provide an infrastructure flexible
enough to accommodate complex and varying metadata sets, and
avoid creating another special purpose application suitable only for
a specific application area which is outdated as soon as metadata re-
quirements and definitions change. The Edutella infrastructure [4]
therefore builds on the W3C metadata standard RDF(S) [1], and
uses a standard query model suitable for this formalism, based on
Datalog, to exchange queries throughout the Edutella network.

For the local user, the Edutella network transparently pro-
vides access to distributed information resources, and different
clients/peers can be used to access, retrieve and update these re-
sources. The service and the peer that we will describe in more de-
tail in this paper are querying and annotating resources distributed
in the Edutella P2P network, respectively.

Query Service. The Edutella query service is the most basic
service within the Edutella network. Peers register queries they
may be asked through the query service (i.e. by specifying sup-



ported metadata schemas (e.g. “this peer provides metadata accord-
ing to the LOM 6.1 or DCMI standards”) or by specifying individ-
ual properties or even values for these properties (e.g. “this peer
provides metadata of the form dc title(X,Y)” or “this peer provides
metadata of the form dc title(X,’Artificial Intelligence’)”). Queries
are sent through the Edutella network to the subset of peers who
have registered with the service to be interested in this kind of
query. The resulting RDF models are sent back to the requesting
peer.

Edutella Annotation. In order to be able to meet the require-
ments of being applicable in a wide range of application scenarios,
the Edutella annotation tool must be independent from a particu-
lar domain. For instance, it may not just offer annotation for IEEE
LOM, but rather it must support a wide range of semantic defini-
tions as it is possible in RDF schema. In order to approach this
objective, we investigate two orthogonal dimensions for metadata
creation based on which we may emulate all annotation schemes
we know of.

Building on the JXTA P2P Framework. JXTA is an Open
Source project [5] supported and managed by Sun Microsystems.
In essence, JXTA is a set of XML based protocols to cover typical
P2P functionality. It provides a Java binding offering a layered ap-
proach for creating P2P applications (core, services, applications).
In addition to remote service access (such as offered by SOAP),
JXTA provides additional P2P protocols and services, including
peer discovery, peer groups, peer pipes, and peer monitors.

Figure 1, reproduced from [5], specifies the different layers
within the JXTA architecture.

Figure 1: JXTA Layers

JXTA provides a layered architecture that fits very nicely into the
Edutella application scenarios:

� Edutella Services (described in web service languages like
DAML-S or WSDL, etc.) complement the JXTA Service
Layer, building upon the JXTA Core Layer1, and

� Edutella Peers live on the Application Layer, using the func-
tionality provided by these Edutella services as well as pos-
sibly other JXTA services.

On the Edutella Service layer, we define data exchange formats
and protocols (how to exchange queries, query results and other
metadata between Edutella Peers), as well as APIs for advanced
functionality in a library-like manner. Applications like reposito-
ries, annotation tools or GUI interfaces connected to and accessing
the Edutella network are implemented on the application layer.
1A previous prototype from our group, implemented this summer
to gain experiences with the JXTA and JXTAsearch framework, ex-
tended the JXTAsearch service (the prototype and our experiences
with it are described in [13]), but building directly on the JXTA
Core services makes a more flexible design possible.

In section 2, we discuss the Edutella query service and the
common data model (ECDM), which provides the basis for the
Edutella query exchange language and format implementing dis-
tributed queries over the Edutella network, as well as the basic
Edutella API for query and registration/distribution peers. Sec-
tion 3 discusses the annotation application that connects to the
Edutella network in order to exploit existing metadata as well as
create and provide new metadata to the network.

2. EDUTELLA QUERY SERVICE

2.1 The Query Mechanism
The Edutella Query Service is intended to be a standardized

query exchange mechanism for RDF metadata stored in distributed
RDF repositories and is meant to serve as both query interface for
individual RDF repositories located at single Edutella peers as well
as query interface for distributed queries spanning multiple RDF
repositories. An RDF repository (or knowledge base) consists of
RDF statements (or facts) and describes metadata according to ar-
bitrary RDFS schemas.

To enable a peer to participate in its network, Edutella uses wrap-
pers based on both a common datamodel and a common query ex-
change format. For communication within the Edutella network the
wrapper translates the local data model into the Edutella common
data model (ECDM) and vice versa, and connects to the Edutella
Network using the JXTA P2P primitives, transmitting the queries
based on the ECDM in RDF/XML form. In order to describe
and handle different query capabilities of a particular peer, we de-
fine several RDF-QEL-i exchange language levels with increasing
expressiveness: Currently we have defined language levels RDF-
QEL-1, -2, -3, -4 and -5 (see [11]). The most simple language
(RDF-QEL-1, purely conjunctive queries) can be expressed as un-
reified RDF graph, the more complex ones are more expressive
than RDF itself, and therefore have to be expressed using reified
RDF statements (e.g. RDF-QEL-3 covers relational algebra, RDF-
QEL-4 incorporates Datalog). However, all language levels can be
represented through the same internal ECDM data model.

Figure 2: Knowledge Base as RDF Graph

The example presented throughout our paper, we will use a sim-
ple RDF knowledge base and a simple query on the knowledge base



depicted in Figure 2. Evaluating the query (plain English)

“Return all resources that are a book having the title
’AI’ or that are an AI book.”

we get the query results shown in Figure 3, represented as an
RDF-graph.

Figure 3: Query Results as RDF Graph

2.2 Edutella Common Data Model (ECDM)

2.2.1 Basic Semantics
As common query and datamodel, Edutella peers use Datalog,

a non-procedural query language based on Horn clauses without
function symbols. A Datalog program can be expressed as a set of
rules/implications (where each rule consists of one positive literal
in the consequent of the rule (the head), and one or more negative
literals in the antecedent of the rule (the body)), a set of facts (single
positive literals) and the actual query literals (a rule without head,
i.e. one or more negative literals). Literals are predicate expres-
sions describing relations between any combination of variables
and constants such as title(http://www.xyz.com/book.html, ’Arti-
ficial Intelligence’). Disjunction in a query is expressed by a set of
rules with identical head. A Datalog query then is a conjunction of
query literals plus a possibly empty set of rules.

Datalog queries easily map to relations and relational query lan-
guages like SQL. In terms of relational algebra Datalog is capable
of expressing selection, union, join and projection and hence is a
relationally complete query language. Additional features include
transitive closure and other recursive definitions.

In RDF any statement is considered to be an assertion. We
can view an RDF repository as a set of ground assertions either
using binary predicates as shown above, or as ternary statements
“s(S,P,O)”, if we include the predicate as an additional argument.
In the following query, we use the binary predicate notation.

aibook(X) :- title(X, ’AI’), type(X, Book).
aibook(X) :- type(X, AI-Book).
?- aibook(X).

As our query is a disjunction of two conjunctive subqueries,
its Datalog representation is composed of two rules with identical
heads. The literals in the rules’ bodies directly reflect RDF state-
ments with their subjects being the variable X and their objects
being bound to constant values such as ’AI’. Literals used in the

head of rules denote derived predicates. In our example, the query
expression “aibook(X)” asks for all bindings of X, which conform
to the given Datalog rules and the knowledge base to be queried
(cf. below for results).

2.2.2 ECDM Datamodel and Queries
Figure 4 visualizes the ECDM, as implemented in our current

prototype, as UML diagram. Our Java binding relies on JXTA [5]
and makes extensive use of the Stanford RDF API [10]. The imple-
mentation of all classes shown in figure 4 is found in the Java pack-
age net.jxta.edutella.util.datamodel. All classes
whose names start with RDF represent standard RDF concepts
and correspond to their equivalent counterparts within the Stan-
ford RDF API. These are RDFReifiedStatement, RDFNode,
RDFResource, RDFLiteral and RDFModel.

Queries are represented by EduQuery which ag-
gregates an arbitrary number of rules (EduRule) and
query literals (EduLiteral). EduLiterals are either
RDFReifiedStatements (binary predicates / ternary
statement literals, corresponding to reified RDF statements),
EduStatementLiterals (non-ternary statement literals,
which cannot be expressed as ordinary RDF statements), or
EduConditionLiterals (a condition expression on variables
such as X > 5).

Technically, it is sufficient to define a single instance of
EduLiteral as query literal. However, by using a set of
EduLiteral objects, all query literals together can be interpreted
as the RDF result graph of the EduQuery, as long as the query lit-
erals are all instances of RDFReifiedStatement.

An EduRule consists of an EduStatementLiteral as its
head and an arbitrary number of EduLiterals as its body.
EduStatementLiterals can occur within a rule’s body as
well to allow reuse of other rules and recursion.2

EduVariable objects are ordinary RDF resources with the su-
per class RDFResource. Being of type EduVariable however
marks a resource to be a variable. An additional attribute allows to
specify the label of a variable. Variables may occur in all places
where RDFResources are allowed: As subject, predicate or
object within RDFReifiedStatements as well as arguments
of EduStatementLiterals or EduConditionLiterals.
The class EduVariableBinding introduces a further extension
to EduVariable by providing an actual value for a variable.
Variable values can be either RDFResource or RDFLiteral
objects.

Besides the ECDM data model the Java binding also provides
a package net.jxta.edutella.utilwhich contains classes
for importing queries provided in various languages into the in-
ternal ECDM model or in turn exporting queries from their in-
ternal representation into different syntaxes. The current proto-
type includes the classes SQL (export of SQL queries), Datalog,
RDFQEL1 and RDFQEL3 (all of them supporting import and ex-
port of queries). Any peer can plug in additional classes here to
support further query languages (see [11]).

2Note, that as input format we can even allow arbitrary first order
logic formulas in the body of rules, which then can be transformed
into a set of rules using the Lloyd-Topor transformation [8].



hasHead:EduStatementLiteral
hasBody:EduLiteral

EduRule

hasResult
hasResults:EduResult

EduResultSet

hasBindings:EduVariableBinding

EduTupleResult

RDFModel

EduResult

negated:boolean

EduLiteral

hasBody

hasPredicate:Resource
hasArguments:RDFNode

EduStatementLiteral
variable:Resource
value:RDFNode

EduVariableBinding

hasBindings

RDFNode

value

Literal Resource

variable

Property

op:Operator
arg1:RDFNode
arg2:RDFNode

EduConditionLiteral

subject:Resource
predicate:Property
object:RDFNode

RDFReifiedStatement

hasPredicate

hasArguments

hasRules:EduRule
hasQueryLiterals:EduLiteral
hasResultSet:EduResultSet

EduQuery

hasResultSet

hasRules

hasQueryLiterals

arg1

arg2

object

subject

predicate

hasHead

Figure 4: Edutella Common Data Model (ECDM)

2.2.3 Query Results
As a default, we represent query results as a set of tuples of vari-

ables with their bindings serialized in XML/RDF-format, as speci-
fied in Figure 4, which follows closely the convention of returning
substitutions for variables occuring in queries to logic programs.

Another possibility, which has been explored recently in Web
related languages focusing on querying semistructured data, is the
ability to create objects as query results.

In the simple case of RDF-QEL-1, we can return as answer ob-
jects the graph representing the RDF-QEL-1 query itself with all
Edutella specific statements removed and all variables instantiated.
The results can be interpreted as the relevant sub graph of the RDF
graph we are running our queries against (see Figure 3). When
we use general RDF-QEL-i queries, we assume the structure of the
answer graph to be defined by the subset of binary query literals.
Note, that all variables used in the query literals are assumed to
be existentially quantified, so if they are not instantiated during the
query evaluation, they are represented as anonymous nodes in the
RDF answer graph.

In the ECDM, EduResult is an abstract super class for dif-
ferent forms of query result representations. Results may be ei-
ther represented as tuples (EduTupleResult objects aggregat-
ing an arbitrary number of EduVariableBindings) or as RDF
graphs (RDFModel objects). In terms of relational algebra each
EduResult object can be interpreted as one row in the result set
of a relational database query. Each EduResult object corre-
sponds to one match for a query. EduResultSet objects ag-
gregate an arbitrary number of EduResult objects and repre-

sent a complete result set for an Edutella query. The individual
results may be either EduTupleResult or RDFModel objects
but they are all required to have the same type. When executing a
query all query literals are evaluated using the necessary rules. Af-
ter query execution a EduQuery object references an appropriate
EduResultSet object pointing to all query results.

Classes within net.jxta.edutella.util also allow the
import and export of query results in various other formats. Cur-
rently implemented are the classes SQL (for import of results pro-
vided as JDBC ResultSets) and GraphViz (for export of
graph description files in GraphViz format allowing to use the free
GraphViz tool to visualize query results).

2.3 Registration Service and Mediators
The wrapper-mediator approach introduced in [17], divides the

functionality of a data integration system into two kinds of subsys-
tems. The wrappers provide access to the data in the data sources
using a common data model (CDM) and a common query lan-
guage. The mediators provide coherent views of the data in the
data sources by performing semantic reconciliation of the CDM
data representations provided by the wrappers. Both common data
model (ECDM) and common query language for the Edutella net-
work have been defined in this paper.

Our simple “wrapping” mediators (see Figure 5) distribute
queries to the appropriate peer with the restriction that queries can
be answered completely by one Edutella peer. Complex ’integrat-
ing’ mediators are discussed in [11].

Registration of peer query capabilities is based on (instantiated)
property statements and schema information, basically telling the



CONSUMER

PEER

MEDIATOR

PEER

QEL-WRAPPER

PEER

REGISTRATION

DISTRIBUTED

QUERIES

REGISTRATIONS

CONSUMER

PEER

QEL-WRAPPER

PEER

Figure 5: Query Mediator Wrapper

network, which kind of schema the peer uses, with some possible
value constraints. These registration messages have the same syn-
tax as RDF-QEL-1 queries, which are sent from the peer to the reg-
istration / query distribution hub. Additionally, the peer announces
to the hub, which query level it can handle (RDF-QEL-1, RDF-
QEL-2, etc.) Whenever the hub receives queries, it uses these reg-
istrations to forward queries to the appropriate peers, merges the
results, and sends them back as one result set.

The packages net.jxta.edutella.peer,
net.jxta.edutella.provider,
net.jxta.edutella.hub, net.jxta.edutella.consumer
contain interfaces to handle the distributed query mechanisms

Possible other registration methods would include specific term
hierarchies which can be used as property value. A simple version
could be registerPropertyValue().

The query message contains not only the query itself but also
information about query and result type (e.g. QEL-1, QEL-3 for
queries and RDFModel, EduTupleResult for results). The returned
message contains the original query in addition to its results.

3. EDUTELLA ANNOTATION

3.1 RDF(S) Annotation in a Nutshell
In order to easily provide metadata for a particular document,

the annotation service provides a document viewer. Currently, the
document viewer may display HTML pages, an extension for PDF
documents is underway.

Furthermore, the annotation service provides a browser for RDF
schema. This means that a corresponding definition, e.g. Dublin
Core in RDFS3 is loaded into the annotation tool and may be
browsed. Fields for annotation are displayed according to the
schema definition and may either be filled by typing or by mark-
ing and dragging information from the document viewer.

Thereby, annotations and fields for annotations may take quite
a number of different guises. In our context an annotation is a
set of instantiations attached to an HTML document. We distin-
guish (i) instantiations of RDFS classes, (ii) instantiated properties
from one class instance to a datatype instance, and (iii) instantiated
properties from one class instance to another class instance. Class
instances have unique URIs. Instantiations may be attached to par-
ticular markups in the HTML documents, viz. URIs and attribute
values may appear as strings in the HTML text.

For instance, one may decide, (i), to create an identi-
fier for a person by instantiating HTTP://WWW.AIFB.UNI-
KARLSRUHE.DE/WBS/SHA/#HANDSCHUH from the class
DC:CREATOR and for a course HTTP://WWW.AIFB.UNI-
KARLSRUHE.DE/LEHRVERANSTALTUNGEN/

3http://www.ukoln.ac.uk/metadata/resources/dc/datamodel/WD-dc-rdf/.

WINTER/EBIZ+INTELLIGENTWEB/#COURSE from the class
SWRC:SEMINAR. (ii), one may instantiate the attributes of
the first identifier by names like “Siegfried Handschuh” or “Siggi”.
(iii), one may relate instances, e.g. the first with the second
identifier by the property SWRC:TEACHES.

These types of instantiations may be considered one dimension
in the metadata creation process. Another, orthogonal, dimension
is defined by the way annotations are created, used and maintained:

1. Unlinked facts fill fields of the schema. There is no corre-
spondence to the given document that is recognizable by the
machine.

2. Quotations are excerpts from the document. E.g. a name like
“Tim Berners-Lee” may appear in the document and also fill
a field of the RDF schema description.

3. References are pointers to parts of the document. We use
XPointer to select parts of the document. E.g. one may assert
that a particular cell of a HTML table contains the name of
the president of the U.S.A. — and in the right context one
might expect that it is updated if it changes.

By the combination of these two dimensions (and the corre-
sponding implications) we may emulate the metadata structure of
all the different annotation tools that we currently know of (cf. [6]
for a longer list of free and commercial tools).

3.2 Architecture
The Edutella annotation service is composed of the Edutella Peer

structure and the KAON tool-suite 4 [9] incorporating the OntoMat
Plugin Framework5 and Annotation application [6] (cf. Figure 6).

KAON API

Ont-O-Mat Plugin Structure

Ont-O-Mat
Peer

Config

K-Edutella

Wrapper

Local RDF

Repository

...RQLJDBC

KAON API

Ont-O-Mat Plugin Structure

Ont-O-Mat
Peer

Config

K-Edutella

Wrapper

Local RDF

Repository

...RQLJDBC

Figure 6: Ont-O-Mat as Edutella Peer

KAON is a Semantic Web tool suite originally created in
isolation of Edutella. The OntoMat Framework is part of this
tool suite and provides a java-based plug in structure which
allows for loading services dynamically. One such service is
Ont-O-Mat, which constitutes an annotation tool in the sense
described above. Ont-O-Mat uses the KAON API to query
for RDF schema definitions in order to build up its ontology
browser. It queries for instances, attributes and relationships in
order to let its users explore the current state of the knowledge
base, e.g. in order to directly relate HTTP://WWW.AIFB.UNI-
KARLSRUHE.DE/WBS/SHA/#HANDSCHUH with
HTTP://WWW.AIFB.UNI-KARLSRUHE.DE/LEHRVERANSTALTUNGEN/
WINTER/EBIZ+INTELLIGENTWEB/#COURSE.

The KAON API hides the actual implementation of the reposi-
tory and the query language used. For instance, it allows to connect
4http://kaon.semanticweb.org/
5http://annotation.semanticweb.org/



to a KAON RDF repository via a simple JDBC connection or to a
RQL-based repository. The repository is used in two ways. First, it
stores already available metadata and serves them to Ont-O-Mat via
KAON API in order to allow for coherent metadata. This way, the
chance is increased that there is only one identifier for the person
named “Siegfried Handschuh” at Institute AIFB. Our experiences
have shown that without such service several identifiers for single
persons are created. Second, it stores metadata created by Ont-O-
Mat.

Furthermore, we provide an Edutella Wrapper for KAON (K-
Edutella Wrapper), which — like the corresponding Peer Configu-
rator GUI — is a KAON plugin. The task of the K-Edutella Wrap-
per is to wrap the KAON-API for QEL and vice versa. The K-
Edutella Wrapper calls JXTA lower levels for services like regis-
tration, pipes, etc. in order to connect to the outside world. Thus,
from the point of view of the Ont-O-Mat user, he has a tool that
may directly connect the Edutella network in order to query meta-
data from other peers or provide metadata from his repository.

4. CONCLUSION
Our prototype scenario features a set of (already existing) peers,

which we have extended with the appropriate Edutella wrappers,
and which connect to the Edutella framework with the functionali-
ties local and distributed queries described in Section 2. The first
prototype already contains the QEL query exchange mechanism,
a simple mediatior and the wrapping of different repository peer
types:

1. OLR (Open Learning Repository)[3] based peers using a
subset of IMS/LOM metadata;

2. DbXML-based peers [14] as a prototype for an XML repos-
itory using a simple mapping service to translate from RDF-
QEL-1 queries (conjunctive queries) to Xpath queries over
the appropriate XML-LOM schema;

3. AMOS-II-based peers [15] with local repositories;

4. KAON-based peers [9] allowing remote annotation [6] using
an RDF-based ontology format;

5. Concept-Base, a repository with full datalog capabilities [7].

Moreover the resulting environment will allow the design and
integration of other tools which make use of metadata. In addi-
tion to the Ont-O-Mat, other applications such as Conzilla [12],
which uses graphs to input queries and visualize results, will benefit
from the Metadata enhanced Peer-to-Peer capabilities of Edutella.
These first steps being done, a certain number of ameliorations are
planned. In particular we will have to tackle mechanisms that pro-
vide replication of data implementing a a modification exchange
language (MEL) and that resolve scalability issues like the selec-
tion of appropriate hubs for given queries.

Acknowledgements
The Edutella architecture, its query language and its various aspects
have been defined in numerous discussions with many other partic-
ipants in the Edutella project, and we gratefully acknowledge their
support and important influence for this paper.

5. REFERENCES
[1] Dan Brickley and R. V. Guha. W3C Resource Description

Framework (RDF) Schema Specification.
http://www.w3.org/TR/1998/WD-rdf-schema/, March 2000.
W3C Candidate Recommendation.

[2] IEEE Learning Technology Standards Committee. IEEE
LOM Working Draft 6.1.
http://ltsc.ieee.org/wg12/index.html, April 2001.

[3] Hadhami Dhraief, Wolfgang Nejdl, Boris Wolf, and Martin
Wolpers. Open learning repositories and metadata modeling.
In International Semantic Web Working Symposium (SWWS),
Stanford, CA, July 2001.

[4] The Edutella Project. http://edutella.jxta.org/.
[5] Li Gong. Project JXTA: A technology overview. Technical

report, SUN Microsystems, April 2001.
http://www.jxta.org/project/www/docs/TechOverview.pdf.

[6] Siegfried Handschuh and Steffen Staab. Authoring and
annotating Web pages in CREAM. In Proceedings of
WWW-2002. ACM Press, October 2002.

[7] M. Jarke, R. Gallersdörfer, M. Jeusfeld, M. Staudt, and
S. Eherer. ConceptBase - a deductive object base for meta
data management. Journal on Intelligent Information
Systems, 4(2):167 – 192, 1995.

[8] J. W. Lloyd and R. W. Topor. Making prolog more
expressive. Journal of Logic Programming, 3:225–240, 1984.

[9] Alexander Maedche, Steffen Staab, Rudi Studer, York Sure,
and Raphael Volz. Seal — Tying up information integration
and Web site management by ontologies. IEEE Data
Engineering Bulletin, March 2002.
http://www.research.microsoft.com/research/db/debull/.

[10] Sergey Melnik. RDF API Draft, January 2001.
http://www-db.stanford.edu/ melnik/rdf/api.html.

[11] Wolfgang Nejdl, Boris Wolf, Changtao Qu, Stefan Decker,
Michael Sintek, Ambjörn Naeve, Mikael Nilsson, Matthias
Palmér, and Tore Risch. Edutella: A P2P networking
infrastructure based on RDF. In Proceedings of WWW-2002.
ACM Press, 2002.

[12] Mikael Nilsson and Matthias Palmér. Conzilla — towards a
concept browser. Technical Report CID-53,
TRITA-NA-D9911, Department of Numeri-
cal Analysis and Computing Science, KTH, Stockholm, 1999.
http://kmr.nada.kth.se/papers/ConceptualBrowsing/cid 53.pdf.

[13] Changtao Qu and Wolfgang Nejdl. Exploring JXTAsearch
for P2P learning resource discovery. Technical report,
Learning Lab Lower Saxony, University of Hannover,
November 2001.

[14] Changtao Qu and Wolfgang Nejdl. Towards interoperability
and reusability of learning resources: A SCORM-conformant
courseware for computer science education. Technical report,
Learning Lab Lower Saxony, University of Hannover,
October 2001.

[15] T. Risch and V. Josifovski. Distributed data integration by
object-oriented mediator servers. Concurrency and
Computation: Practice and Experience, 13(11):933 – 953,
2001.

[16] Steve Waterhouse, David Doolin, Gene Kan, and Yaroslav
Faybishenko. Distributed search in p2p networks. IEEE
Internet Computing, 6(1):68–72, January/February 2002.
Special issue on Peer-to-Peer Networking.

[17] Gio Wiederhold. Mediators in the architecture of future
information systems. IEEE Computer, 25(3):38 – 49, 1992.


