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1. Motivation

• Larger and larger bodies of knowledge being formalized
• Sheer size of, say, medical ontologies requires methods for

structuring and modularizing KBs
• Wealth of existing logical tools to model ontologies, actions,

interactions, dynamic processes, forms of human reasoning, ...
• Single all-purpose formalism not in sight: necessary to integrate

several formalisms into a single system
• Often done in an ad hoc way for particular pair of formalisms (e.g.

rules and ontologies)
• Can we do this in a more principled way?
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Contexts

• In AI first investigated by John McCarthy (1987), without definition
• Intuitively, a context describes a particular viewpoint, perspective,

granularity, person/agent/database ...
• Here: (almost/somewhat) independent unit of reasoning
• Aspects of multi-context systems:

• Locality: different languages, reasoning methods, logics
• Compatibility: information flow between contexts

• Provide a particular form of information integration

Example: Magic Box
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2. Multi-Context Systems

Historical Background

• Monotonic multi-context systems developed by Giunchiglia,
Serafini et al. in the 90s

• Integrate different monotonic inference systems
• Information flow modeled using bridge rules
• First attempts to make bridge rules nonmonotonic by

Roelofsen/Serafini (2005) and Brewka/Roelofsen/Serafini
(Contextual Default Logic, 2007)

• Resulting system homogeneous: reasoners of same type (namely
logic programs or Reiter’s default logic)
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Our Goals

• Generalize existing approaches

• Define a heterogeneous multi-context framework accommodating
both monotonic and nonmonotonic contexts

• Should be capable of integrating logics like description logics,
modal logics, default logics, logic programs, etc.
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“Logics”

Want to capture the “typical” KR logics, including nonmonotonic logics
with multiple acceptable belief sets (e.g., Reiter’s Default Logic).

Logic
A logic L is a tuple

L = (KBL, BSL, ACCL)

• KBL is a set of well-formed knowledge bases, each being a
set (of formulas)

• BSL is a set of possible belief sets, each being a set (of
formulas)

• ACCL : KBL → 2BSL assigns to each knowledge base a set
of acceptable belief sets

L is called monotonic, if (1) |ACCL(kb)|= 1 and (2) kb⊆ kb′,
ACCL(kb) = {S}, and ACCL(kb′) = {S′} implies S ⊆ S′.
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Example Logics Over Signature Σ

Propositional logic
• KB: the sets of prop. Σ-formulas
• BS: the deductively closed sets of prop. Σ-formulas
• ACC(kb): Th(kb)

Default logic
• KB: the default theories over Σ

• BS: the deductively closed sets of Σ-formulas
• ACC(kb): the extensions of kb

Normal LPs under answer set semantics
• KB: the logic programs over Σ

• BS: the sets of atoms of Σ

• ACC(kb): the answer sets of kb
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Multi-Context Systems

• As in monotonic MCS, information integration via bridge rules
• As in Contextual Default Logic, bridge rules (and logics used) can

be nonmonotonic
• Unlike in Contextual Default Logic, arbitrary logics can be used

Bridge Rules
L = L1, . . . , Ln a collection of logics.
Lk -bridge rule over L (1 ≤ k ≤ n):

s ← (r1 : p1), . . . , (rj : pj),
not (rj+1 : pj+1), . . . , not (rm : pm)

where (1) every kb ∈ KBk fulfills kb ∪ {s} ∈ KBk , (2) each
rk ∈ {1, . . . , n}, and (3) each pk is in some belief set of Lrk .
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Multi-Context Systems, ctd.

Multi-Context System
A Multi-Context System

M = (C1, . . . , Cn)

consists of contexts
Ci = (Li , kbi , bri), i ∈ {1, . . . , n},

where
• each Li is a logic,
• each kbi ∈ KBi is a Li -knowledge base, and
• each bri is a set of Li -bridge rules over M ’s logics.

M can be nonmonotonic because one of its context logics is AND/OR
because a context has nonmonotonic bridge rules.
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Example

Consider the multi-context system M = (C1, C2), where the contexts
are different views of a paper by the authors.

• C1:

• L1 = Classical Logic
• kb1 = {unhappy ⊃ revision }
• br1 = { unhappy ← (2 : work) }

• C2:

• L2 = Reiter’s Default Logic
• kb2 = {good : accepted/accepted }
• br2 = { work ← (1 : revision),

good ← not (1 : unhappy) }
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Acceptable Belief States

• Belief state: sequence of belief sets, one for each context

• Fundamental Question: Which belief states are acceptable?

• Must be based on the knowledge base of a context AND the
information accepted in other contexts (if there are appropriate
bridge rules)

• Intuition: belief states must be in equilibrium:

The selected belief set for each context Ci must be among
the acceptable belief sets for Ci ’s knowledge base together
with the heads of Ci ’s applicable bridge rules.
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Acceptable Belief States, ctd.

Applicable Bridge Rules
Let M = (C1, . . . , Cn). The bridge rule

s ← (r1 : p1), . . . , (rj : pj),
not (rj+1 : pj+1), . . . , not (rm : pm)

is applicable in belief state S = (S1, . . . , Sn) iff
(1) pi ∈ Sri (1 ≤ i ≤ j), and (2) pk 6∈ Srk (j + 1 ≤ k ≤ m).

Equilibrium
A belief state S = (S1, . . . , Sn) of M is an equilibrium iff for
i ∈ {1, . . . , n}

Si ∈ ACCi(kbi ∪ {head(r) | r ∈ bri is applicable in S}).
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Example (ctd)

Reconsider multi-context system M = (C1, C2):

• kb1 = {unhappy ⊃ revision } (Classical Logic)

• kb2 = {good : accepted/accepted } (Default Logic)

• br1 = { unhappy ← (2 : work) }

• br2 = { work ← (1 : revision),
good ← not (1 : unhappy) }

M has two equilibria:

• E1 = (Th({unhappy , revision}), Th({work})) and

• E2 = (Th({unhappy ⊃ revision}), Th({good , accepted}))
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Groundedness

• Problem: self-justifying beliefs

• Present e.g. in Autoepistemic Logic:

L rich ⊃ rich

• Other nonmonotonic formalisms are “grounded,” e.g.
• Reiter’s Default Logic,
• logic programs with Answer Set Semantics (Gelfond & Lifschitz,

91),
• ...

• Equilibria of MCSs are possibly ungrounded, e.g. E1; may be
wanted or not

• Groundedness can be achieved by restriction to special class of
nonmonotonic formalisms

• Generalization of Gelfond/Lifschitz reduct applied to belief state
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3. Argumentation Context Systems

Motivation

• Nonmonotonic MCS neglect 2 important aspects:
• What if information provided by different contexts is conflicting?
• What if a context does not only add information?

• ACS provide an answer to these questions.

• Focus on a particular type of local reasoners: argumentation
frameworks.

• Goals achieved by introducing mediators.
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Argumentation Context Systems: Background

• Work based on Dung’s widely used abstract argumentation
frameworks (AFs).

• Abstract approach: arguments un-analyzed, attacks represented
in digraph; can be instantiated in many different ways.

• Argument accepted unless attacked by an accepted argument.

• Semantics single out appropriate accepted sets of arguments:
• Grounded extension: accept unattacked args, eliminate args

attacked by accepted args, continue until fixpoint reached.
• Preferred extension: maximal conflict free set which attacks each of

its attackers.
• Stable extension: conflict-free set of arguments which attacks each

excluded argument.

• (Value based) preferences captured: modify original AF.

G. Brewka (Leipzig) Nonmonotonic Multi-Context Systems LOG-IC 2009 17 / 36



Limitations

• No distinction between arguments, meta-arguments, sources of
arguments etc.

• Our interest: additional structure and modularity

• Benefits:

• A handle on complexity and diversity
• A natural account of multi-agent argumentation
• Explicit means to model meta-argumentation
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Motivating Example: Conference Reviewing

Consider model of the paper review process for a conference

• Hierarchy consisting of PC chair, area chairs, reviewers, authors.
• PC chair determines review criteria.
• Area chairs make sure reviewers make fair judgements and

eliminate unjustified arguments from reviews.
• Authors give feedback on reviews. Information flow thus cyclic.
• Reviewers exchange arguments in peer-to-peer discussion.
• Area chairs generate a consistent recommendation.
• PC chair takes recommendations as input for final decision.

Need a flexible framework allowing for cyclic structures
encompassing different information integration methods.
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The Short Story

A1

A (lonely) Dung style argumentation framework.
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The Short Story

Med1

A1

An argumentation module equipped with a mediator,
can “listen" to other modules and “talk" to A1:
sets an argumentation context using a context

definition language; handles inconsistency.
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The Short Story

Med3 Med4

Med1 Med2

A1 A2

A3 A4

An argumentation context system.
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More Background

Inconsistency Handling
Use 4 methods for picking consistent subset of

(F1, . . . , Fn), Fi set of formulas (details irrelevant)

Preference based Majority based
Credulous sub� maj
Skeptical subsk ,� majsk

Bridge Rules
Only rules referring to single other module needed
⇒ bridge rules ordinary logic programming rules:

s ← p1, . . . , pj , not pj+1, . . . , not pm (1)

head s a context expression (to be defined), body atoms
arguments pi from a parent argumentation framework.
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Context Based Argumentation

First step: a language for representing context:

a, b args; v , v ′ values; r ∈ {skep, cred}; s ∈ {grnd , pref , stab}

arg(a) / arg(a) a is a valid (invalid) argument
att(a, b) / att(a, b) (a, b) is a valid (invalid) attack

a > b a is strictly preferred to b
val(a, v) the value of a is v
v > v ′ value v is strictly better than v ′

mode(r) the reasoning mode is r
sem(s) the chosen semantics is s

Context C: set of context expressions.
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Contexts as Modifiers

What are extensions of AF A under context C?

C transforms A to AC by (in)validating args and
attacks appropriately using new argument def:

a b c

d

Let C = {arg(a), val(b, v1), val(d , v2), v1 > v2, c > b}. AC is:

def

a b c

d
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Acceptable Extensions

• Transformation handles statements except mode and sem.
• These are captured in the following definition:

Acceptable C-extension
Let sem(s)∈C. S⊆AR is an acceptable C-extension for A, if
either

1 mode(skep) ∈ C and S ∪ {def} is the intersection of all s-
extensions of AC , or

2 mode(cred) ∈ C and S ∪ {def} is an s-extension of AC .

Proposition: Definitions “do the right thing"
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Mediators

• Context information may come from parent modules
• Need to “translate" abstract arguments to context statements⇒

use bridge rules
• Also need to guarantee consistency⇒

use consistency method, potentially preferences on parents

Mediator
A1 and A2, . . . ,Ak AFs. A mediator for A1 based on A2, . . . ,Ak is

Med = (E1, R2, . . . , Rk , choice)
where
• E1 is a set of context statements for A1;
• Ri (2 ≤ i ≤ k) is a set of bridge rules for A1 based on Ai ;
• choice ∈ { sub�, subsk ,�, maj , majsk}, where � is a strict

partial order on {1, . . . , k}.
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Mediators, ctd.

Mediator determines consistent context based on
• arguments accepted by parents and
• chosen consistency method.

Acceptable context
Let Med = (E1, R2, . . . , Rk , choice) be a mediator for A1 based on
A2, . . . ,Ak . A context C for A1 is acceptable wrt. sets of arguments
S2, . . . , Sk of A2, . . . ,Ak , if C is a choice-preferred set for
(E1, R2(S2), . . . , Rk (Sk )).

Here Ri(Si) are the context statements derivable from Si under Ri :
{h | h← a1, ..., aj , not b1, ..., not bn ∈ Ri , each ai ∈ Si , each bm 6∈ Si}
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The Framework

• Put the pieces together
• Take collection of context based argument systems
• Add mediator to each of them
• Connect them in an arbitrary graph
• Use mediator to generate consistent context

(Argumentation) Module
PairM = (A, Med), where A is an AF and Med a mediator for A
based on some AFs A1, . . . ,Ak .

Argumentation context system
Set F = {M1, . . . ,Mn} of modulesMi = (Ai , Medi) such that each
Medi is based only on AFs Ai1 , . . . ,Aik , where ij ∈ {1, . . . , n}
(self-containedness).
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The Module Graph

Module graph
Digraph G(F) = (F , E) whereMj →Mi in E iff Aj is among the
Ai1 , . . . ,Aik Medi is based on.

Med3 Med4

Med1 Med2

A1 A2

A3 A4

An argumentation context system
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Acceptable States

• For each module, pick accepted set of arguments and context
• Must fit together: chosen arguments acceptable given context,

chosen context acceptable given chosen arguments of parents

Acceptable state
State S of F : maps eachMi = (Ai , Medi) to S(Mi) = (Acci , Ci),
Acci a set of arguments of Ai , Ci a context for Ai .
S acceptable, if
• each Acci is an acceptable Ci -extension for Ai , and
• each Ci is an acceptable context for Medi wrt. all Accj for

which G(F) has an arcMj →Mi .
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Some Results

• Existence of acceptable states
• Not guaranteed, even without stable semantics and default negation
• Guaranteed if F hierarchic and sem(stab) does not occur in any

mediator.

• Complexity
• Reasoning tasks related to acceptable states intractable in general.

• Deciding whether ACS F has some acceptable state Σp
3-complete.

• Has lower complexity depending on the various parameters and
graph structure.

• F hierarchic, modules use grounded semantics and either sub� or
maj ⇒ acceptable state computable in polynomial time.

• Complexity of C-extensions dominated by underlying
argumentation framework.

G. Brewka (Leipzig) Nonmonotonic Multi-Context Systems LOG-IC 2009 32 / 36



4. Generalizing MCS and ACS: An Outlook

• Advantage of MCS: cover large variety of logics

• Advantage of ACS: mediators

1 include consistency mechanisms integrating conflicting views

2 allow for KB updates which are more general than just adding
premises

3 can even select the adequate semantics

• Want best of both worlds: Mediator-based MCS
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MMCS: Context Formalisms

• Need updatable logics.
• Need parameterized semantics.

Context formalism
A context formalism L is a tuple

L = (KBL, BSL, SemL = {ACCi
L}, UL, updL}

• KBL and BSL as before.

• SemL a set of possible semantics, each ACCi
L : KBL → 2BSL

assigns to a KB a set of acceptable belief sets.

• UL a context language with adequate notion of consistency.

• updL : KBL × 2UL → KBL × SemL assigns to a KB and a set
of context formulas an updated KB and a semantics.
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MMCS: The Rest

• Acceptable belief set: E acceptable for KB under context C:
E ∈ ACCi(KB′) where upd(KB, C) = (KB′, ACCi).

• Mediator: as in ACS, bridge rules with heads taken from UL and
bodies elements of belief sets of parents.

• MMCS: as in ACS, modules consisting of a KB of particular
formalism and corresponding mediator connecting to parents.

• Acceptable state: context and belief set for each module such that

• belief set acceptable under chosen context,
• context acceptable given belief sets of parents.

G. Brewka (Leipzig) Nonmonotonic Multi-Context Systems LOG-IC 2009 35 / 36



5. Conclusions

• Account of recent/ongoing work on multi-context systems.

• Part I: heterogeneous nonmonotonic systems.

• Part II: generalized updates and consistency mechanisms, focus
on argumentation.

• Part III: try to capture best of both worlds.

• MCS special case (cum grano salis): updates extensions, no
consistency handling

• ACS special case: all formalisms Dung AFs

• MMCS very general and flexible; cover wide range of applications
involving multi-agent meta-reasoning.

THANK YOU!
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