## Nonmonotonic Multi-Context Systems: State of the Art and Future Challenges

#### Gerhard Brewka

Computer Science Institute University of Leipzig brewka@informatik.uni-leipzig.de

joint work with Thomas Eiter

- Larger and larger bodies of knowledge being formalized
- Sheer size of, say, medical ontologies requires methods for structuring and modularizing KBs
- Wealth of existing logical tools to model ontologies, actions, interactions, dynamic processes, forms of human reasoning, ...
- Single all-purpose formalism not in sight: necessary to integrate several formalisms into a single system
- Often done in an ad hoc way for particular pair of formalisms (e.g. rules and ontologies)
- Can we do this in a more principled way?

## Contexts

- In AI first investigated by John McCarthy (1987), without definition
- Intuitively, a context describes a particular viewpoint, perspective, granularity, person/agent/database ...
- Here: (almost/somewhat) independent unit of reasoning
- Aspects of multi-context systems:
  - Locality: different languages, reasoning methods, logics
  - Compatibility: information flow between contexts
- Provide a particular form of information integration

Example: Magic Box



## Outline

### Motivation (done)

### 2 Nonmonotonic MCS

- Background
- Logics and Contexts
- Acceptable Belief States
- 3 Argumentation Context Systems
  - Background
  - Context Dependent Argumentation
  - Mediators
  - The Framework and Acceptable Argumentation States
- 4 Combining MCS and ACS: Outlook
  - Making Logics Context Dependent
  - Mediators and Framework

## 6 Conclusions

★ ∃ ► 4

### Historical Background

- Monotonic multi-context systems developed by Giunchiglia, Serafini et al. in the 90s
- Integrate different monotonic inference systems
- Information flow modeled using bridge rules
- First attempts to make bridge rules nonmonotonic by Roelofsen/Serafini (2005) and Brewka/Roelofsen/Serafini (Contextual Default Logic, 2007)
- Resulting system homogeneous: reasoners of same type (namely logic programs or Reiter's default logic)

< □ > < □ > < □ > < □ >

- Generalize existing approaches
- Define a *heterogeneous* multi-context framework accommodating both *monotonic and nonmonotonic* contexts
- Should be capable of integrating logics like description logics, modal logics, default logics, logic programs, etc.

# "Logics"

Want to capture the "typical" KR logics, including nonmonotonic logics with multiple acceptable belief sets (e.g., Reiter's Default Logic).

### Logic

A logic L is a tuple

#### $L = (\mathbf{KB}_L, \mathbf{BS}_L, \mathbf{ACC}_L)$

- KB<sub>L</sub> is a set of well-formed knowledge bases, each being a set (of formulas)
- BS<sub>L</sub> is a set of possible belief sets, each being a set (of formulas)
- ACC<sub>L</sub> :  $KB_L \rightarrow 2^{BS_L}$  assigns to each knowledge base a set of acceptable belief sets

*L* is called *monotonic*, if (1)  $|ACC_L(kb)| = 1$  and (2)  $kb \subseteq kb'$ ,  $ACC_L(kb) = \{S\}$ , and  $ACC_L(kb') = \{S'\}$  implies  $S \subseteq S'$ .

## Example Logics Over Signature $\Sigma$

### **Propositional logic**

- **KB**: the sets of prop. Σ-formulas
- BS: the deductively closed sets of prop. Σ-formulas
- ACC(kb): Th(kb)

### **Default logic**

- KB: the default theories over Σ
- BS: the deductively closed sets of Σ-formulas
- ACC(kb): the extensions of kb

#### Normal LPs under answer set semantics

- KB: the logic programs over Σ
- BS: the sets of atoms of Σ
- ACC(kb): the answer sets of kb

イロト イヨト イヨト イヨト

# **Multi-Context Systems**

- As in monotonic MCS, information integration via bridge rules
- As in Contextual Default Logic, bridge rules (and logics used) can be nonmonotonic
- Unlike in Contextual Default Logic, arbitrary logics can be used

Bridge Rules $L = L_1, \ldots, L_n$  a collection of logics. $L_k$ -bridge rule over L  $(1 \le k \le n)$ : $s \leftarrow (r_1 : p_1), \ldots, (r_j : p_j),$ <br/>not  $(r_{j+1} : p_{j+1}), \ldots$ , not  $(r_m : p_m)$ where (1) every  $kb \in \mathbf{KB}_k$  fulfills  $kb \cup \{s\} \in \mathbf{KB}_k$ , (2) each<br/> $r_k \in \{1, \ldots, n\}$ , and (3) each  $p_k$  is in some belief set of  $L_{r_k}$ .

### **Multi-Context System**

A Multi-Context System

$$M=(C_1,\ldots,C_n)$$

consists of contexts

$$C_i = (L_i, kb_i, br_i), i \in \{1, \ldots, n\},$$

where

- each L<sub>i</sub> is a logic,
- each  $kb_i \in \mathbf{KB}_i$  is a  $L_i$ -knowledge base, and
- each *br<sub>i</sub>* is a set of *L<sub>i</sub>*-bridge rules over *M*'s logics.

*M* can be nonmonotonic because *one of its context logics* is AND/OR because a context has *nonmonotonic bridge rules*.

## Example

Consider the multi-context system  $M = (C_1, C_2)$ , where the contexts are different views of a paper by the authors.

- *C*<sub>1</sub>:
  - L<sub>1</sub> = Classical Logic
  - $kb_1 = \{ unhappy \supset revision \}$
  - $br_1 = \{ \text{ unhappy} \leftarrow (2: work) \}$

• C<sub>2</sub>:

- L<sub>2</sub> = Reiter's Default Logic
- kb<sub>2</sub> = { good : accepted / accepted }

• 
$$br_2 = \{ work \leftarrow (1 : revision), good \leftarrow not (1 : unhappy) \}$$

- Belief state: sequence of belief sets, one for each context
- Fundamental Question: Which belief states are acceptable?
- Must be based on the knowledge base of a context AND the information accepted in other contexts (if there are appropriate bridge rules)
- Intuition: belief states must be in *equilibrium*:

The selected belief set for each context  $C_i$  must be among the acceptable belief sets for  $C_i$ 's knowledge base together with the heads of  $C_i$ 's applicable bridge rules. Applicable Bridge Rules Let  $M = (C_1, ..., C_n)$ . The bridge rule  $s \leftarrow (r_1 : p_1), ..., (r_j : p_j),$ not  $(r_{j+1} : p_{j+1}), ...,$  not  $(r_m : p_m)$ is applicable in belief state  $S = (S_1, ..., S_n)$  iff (1)  $p_i \in S_{r_i}$   $(1 \le i \le j)$ , and (2)  $p_k \notin S_{r_k}$   $(j + 1 \le k \le m)$ .

### Equilibrium

A belief state  $S = (S_1, ..., S_n)$  of M is an equilibrium iff for  $i \in \{1, ..., n\}$  $S_i \in ACC_i(kb_i \cup \{head(r) \mid r \in br_i \text{ is applicable in } S\}).$ 

< ロ > < 同 > < 回 > < 回 >

Reconsider multi-context system  $M = (C_1, C_2)$ :

- *kb*<sub>1</sub> = { *unhappy* ⊃ *revision* } (Classical Logic)
- *kb*<sub>2</sub> = { *good* : *accepted* / *accepted* } (Default Logic)

• 
$$br_1 = \{ \text{ unhappy } \leftarrow (2: work) \}$$

• 
$$br_2 = \{ work \leftarrow (1 : revision), good \leftarrow not (1 : unhappy) \}$$

*M* has two equilibria:

- $E_1 = (Th(\{unhappy, revision\}), Th(\{work\}))$  and
- $E_2 = (Th(\{unhappy \supset revision\}), Th(\{good, accepted\}))$

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

- Problem: self-justifying beliefs
- Present e.g. in Autoepistemic Logic:

 $L \, rich \supset rich$ 

- Other nonmonotonic formalisms are "grounded," e.g.
  - Reiter's Default Logic,
  - logic programs with Answer Set Semantics (Gelfond & Lifschitz, 91),
  - ...
- Equilibria of MCSs are possibly ungrounded, e.g. *E*<sub>1</sub>; may be wanted or not
- Groundedness can be achieved by restriction to special class of nonmonotonic formalisms
- · Generalization of Gelfond/Lifschitz reduct applied to belief state

### Motivation

- Nonmonotonic MCS neglect 2 important aspects:
  - What if information provided by different contexts is conflicting?
  - What if a context does not only add information?
- ACS provide an answer to these questions.
- Focus on a particular type of local reasoners: argumentation frameworks.
- Goals achieved by introducing mediators.

# Argumentation Context Systems: Background

- Work based on Dung's widely used abstract argumentation frameworks (AFs).
- Abstract approach: arguments un-analyzed, attacks represented in digraph; can be instantiated in many different ways.
- Argument accepted unless attacked by an accepted argument.
- Semantics single out appropriate accepted sets of arguments:
  - *Grounded extension*: accept unattacked args, eliminate args attacked by accepted args, continue until fixpoint reached.
  - *Preferred extension*: maximal conflict free set which attacks each of its attackers.
  - *Stable extension*: conflict-free set of arguments which attacks each excluded argument.
- (Value based) preferences captured: modify original AF.

- No distinction between arguments, meta-arguments, sources of arguments etc.
- Our interest: additional structure and modularity
- Benefits:
  - A handle on complexity and diversity
  - A natural account of multi-agent argumentation
  - Explicit means to model meta-argumentation

# Motivating Example: Conference Reviewing

Consider model of the paper review process for a conference

- Hierarchy consisting of PC chair, area chairs, reviewers, authors.
- PC chair determines review criteria.
- Area chairs make sure reviewers make fair judgements and eliminate unjustified arguments from reviews.
- Authors give feedback on reviews. Information flow thus cyclic.
- Reviewers exchange arguments in peer-to-peer discussion.
- Area chairs generate a consistent recommendation.
- PC chair takes recommendations as input for final decision.

Need a flexible framework allowing for cyclic structures encompassing different information integration methods.



### A (lonely) Dung style argumentation framework.

G. Brewka (Leipzig)

Nonmonotonic Multi-Context Systems

LOG-IC 2009 20 / 36

イロト イヨト イヨト イヨ



An argumentation module equipped with a mediator, can "listen" to other modules and "talk" to  $A_1$ : sets an argumentation context using a context definition language; handles inconsistency.

LOG-IC 2009 21 / 36

# The Short Story



#### An argumentation context system.

G. Brewka (Leipzig)

Nonmonotonic Multi-Context Systems

LOG-IC 2009 22 / 36

æ

イロト イヨト イヨト イヨト

### **Inconsistency Handling**

Use 4 methods for picking consistent subset of  $(F_1, \ldots, F_n)$ ,  $F_i$  set of formulas (details irrelevant)

|           | Preference based    | Majority based    |
|-----------|---------------------|-------------------|
| Credulous | sub⊱                | maj               |
| Skeptical | sub <sub>sk,≻</sub> | maj <sub>sk</sub> |

### **Bridge Rules**

Only rules referring to single other module needed  $\Rightarrow$  bridge rules ordinary logic programming rules:

$$s \leftarrow p_1, \dots, p_i, \operatorname{not} p_{i+1}, \dots, \operatorname{not} p_m$$
 (1)

head *s* a context expression (to be defined), body atoms arguments  $p_i$  from a parent argumentation framework.

First step: a language for representing context:

*a*, *b* args; *v*, *v'* values;  $r \in \{skep, cred\}$ ;  $s \in \{grnd, pref, stab\}$ 

| $arg(a) / \overline{arg}(a)$       | <i>a</i> is a valid (invalid) argument |  |
|------------------------------------|----------------------------------------|--|
| $att(a,b) / \overline{att}(a,b)$   | (a, b) is a valid (invalid) attack     |  |
| a > b                              | a is strictly preferred to b           |  |
| <b>val</b> ( <i>a</i> , <i>v</i> ) | the value of <i>a</i> is <i>v</i>      |  |
| v > v'                             | value $v$ is strictly better than $v'$ |  |
| mode(r)                            | the reasoning mode is r                |  |
| sem(s)                             | the chosen semantics is <i>s</i>       |  |

Context C: set of context expressions.

What are extensions of AF A under context C? C transforms A to  $A^C$  by (in)validating args and attacks appropriately using new argument **def**:



Let  $C = \{\overline{arg}(a), val(b, v_1), val(d, v_2), v_1 > v_2, c > b\}$ .  $A^C$  is:



- Transformation handles statements except mode and sem.
- These are captured in the following definition:

## Acceptable C-extension

Let  $sem(s) \in C$ .  $S \subseteq AR$  is an acceptable C-extension for A, if either

- mode(skep) ∈ C and S ∪ {def} is the intersection of all sextensions of A<sup>C</sup>, or
- **2** mode(*cred*)  $\in$  *C* and *S*  $\cup$  {def} is an *s*-extension of  $\mathcal{A}^{C}$ .

### Proposition: Definitions "do the right thing"

A (10) A (10) A (10)

## **Mediators**

- Context information may come from parent modules
- Need to "translate" abstract arguments to context statements  $\Rightarrow$  use bridge rules
- Also need to guarantee consistency ⇒ use consistency method, potentially preferences on parents

### **Mediator**

 $\mathcal{A}_1$  and  $\mathcal{A}_2, \dots, \mathcal{A}_k$  AFs. A mediator for  $\mathcal{A}_1$  based on  $\mathcal{A}_2, \dots, \mathcal{A}_k$  is  $Med = (E_1, R_2, \dots, R_k, choice)$ 

where

- $E_1$  is a set of context statements for  $A_1$ ;
- $R_i$  ( $2 \le i \le k$ ) is a set of bridge rules for  $A_1$  based on  $A_i$ ;
- choice ∈ { sub<sub>≻</sub>, sub<sub>sk,≻</sub>, maj, maj<sub>sk</sub>}, where ≻ is a strict partial order on {1,..., k}.

< ロ > < 同 > < 回 > < 回 >

Mediator determines consistent context based on

- arguments accepted by parents and
- chosen consistency method.

### Acceptable context

Let  $Med = (E_1, R_2, ..., R_k, choice)$  be a mediator for  $A_1$  based on  $A_2, ..., A_k$ . A context *C* for  $A_1$  is *acceptable wrt. sets of arguments*  $S_2, ..., S_k$  of  $A_2, ..., A_k$ , if *C* is a *choice*-preferred set for  $(E_1, R_2(S_2), ..., R_k(S_k))$ .

Here  $R_i(S_i)$  are the context statements derivable from  $S_i$  under  $R_i$ : { $h \mid h \leftarrow a_1, ..., a_j$ , **not**  $b_1, ...,$  **not**  $b_n \in R_i$ , each  $a_i \in S_i$ , each  $b_m \notin S_i$ }

## The Framework

#### • Put the pieces together

- Take collection of context based argument systems
- Add mediator to each of them
- · Connect them in an arbitrary graph
- Use mediator to generate consistent context

### (Argumentation) Module

Pair  $\mathcal{M} = (\mathcal{A}, Med)$ , where  $\mathcal{A}$  is an AF and Med a mediator for  $\mathcal{A}$  based on some AFs  $\mathcal{A}_1, \ldots, \mathcal{A}_k$ .

#### Argumentation context system

Set  $\mathcal{F} = \{\mathcal{M}_1, \dots, \mathcal{M}_n\}$  of modules  $\mathcal{M}_i = (\mathcal{A}_i, Med_i)$  such that each *Med<sub>i</sub>* is based only on AFs  $\mathcal{A}_{i_1}, \dots, \mathcal{A}_{i_k}$ , where  $i_j \in \{1, \dots, n\}$  *(self-containedness)*.

・ロト ・ 四ト ・ ヨト ・ ヨト

### Module graph

Digraph  $G(\mathcal{F}) = (\mathcal{F}, E)$  where  $\mathcal{M}_j \to \mathcal{M}_i$  in E iff  $\mathcal{A}_j$  is among the  $\mathcal{A}_{i_1}, \ldots, \mathcal{A}_{i_k}$  *Med*<sub>i</sub> is based on.



An argumentation context system

G. Brewka (Leipzig)

Nonmonotonic Multi-Context Systems

LOG-IC 2009 30 / 36

< 3 >

- · For each module, pick accepted set of arguments and context
- Must fit together: chosen arguments acceptable given context, chosen context acceptable given chosen arguments of parents

### Acceptable state

State S of  $\mathcal{F}$ : maps each  $\mathcal{M}_i = (\mathcal{A}_i, Med_i)$  to  $\mathcal{S}(\mathcal{M}_i) = (Acc_i, C_i)$ , Acc<sub>i</sub> a set of arguments of  $\mathcal{A}_i$ ,  $C_i$  a context for  $\mathcal{A}_i$ .

S acceptable, if

- each  $Acc_i$  is an acceptable  $C_i$ -extension for  $A_i$ , and
- each C<sub>i</sub> is an acceptable context for Med<sub>i</sub> wrt. all Acc<sub>j</sub> for which G(F) has an arc M<sub>j</sub> → M<sub>i</sub>.

< ロ > < 同 > < 回 > < 回 >

#### Existence of acceptable states

- Not guaranteed, even without stable semantics and default negation
- Guaranteed if *F* hierarchic and sem(stab) does not occur in any mediator.
- Complexity
  - Reasoning tasks related to acceptable states intractable in general.
  - Deciding whether  $\mathcal{ACS} \mathcal{F}$  has some acceptable state  $\Sigma_3^p$ -complete.
  - Has lower complexity depending on the various parameters and graph structure.
  - *F* hierarchic, modules use grounded semantics and either *sub*<sub>≻</sub> or *maj* ⇒ acceptable state computable in polynomial time.
  - Complexity of *C*-extensions dominated by underlying argumentation framework.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# 4. Generalizing MCS and ACS: An Outlook

### Advantage of MCS: cover large variety of logics

- Advantage of ACS: mediators
  - include consistency mechanisms integrating conflicting views
  - 2 allow for KB updates which are more general than just adding premises
  - 3 can even select the adequate semantics
- Want best of both worlds: Mediator-based MCS

# 4. Generalizing MCS and ACS: An Outlook

- Advantage of MCS: cover large variety of logics
- Advantage of ACS: mediators
  - 1 include consistency mechanisms integrating conflicting views
  - 2 allow for KB updates which are more general than just adding premises
  - 3 can even select the adequate semantics
- Want best of both worlds: Mediator-based MCS

# 4. Generalizing MCS and ACS: An Outlook

- Advantage of MCS: cover large variety of logics
- Advantage of ACS: mediators
  - 1 include consistency mechanisms integrating conflicting views
  - 2 allow for KB updates which are more general than just adding premises
  - 3 can even select the adequate semantics
- · Want best of both worlds: Mediator-based MCS

## MMCS: Context Formalisms

- Need updatable logics.
- Need parameterized semantics.

### **Context formalism**

A context formalism *L* is a tuple

$$L = (\mathsf{KB}_L, \mathsf{BS}_L, \mathsf{Sem}_L = \{\mathsf{ACC}_L^i\}, \mathsf{U}_L, \mathsf{upd}_L\}$$

- **KB**<sub>L</sub> and **BS**<sub>L</sub> as before.
- Sem<sub>L</sub> a set of possible semantics, each ACC<sup>i</sup><sub>L</sub> : KB<sub>L</sub> → 2<sup>BS<sub>L</sub></sup> assigns to a KB a set of acceptable belief sets.
- **U**<sub>L</sub> a context language with adequate notion of consistency.
- upd<sub>L</sub>: KB<sub>L</sub> × 2<sup>U<sub>L</sub></sup> → KB<sub>L</sub> × Sem<sub>L</sub> assigns to a KB and a set of context formulas an updated KB and a semantics.

- Acceptable belief set: *E* acceptable for KB under context *C*:  $E \in ACC^{i}(KB')$  where  $upd(KB, C) = (KB', ACC^{i})$ .
- Mediator: as in ACS, bridge rules with heads taken from U<sub>L</sub> and bodies elements of belief sets of parents.
- MMCS: as in ACS, modules consisting of a KB of particular formalism and corresponding mediator connecting to parents.
- Acceptable state: context and belief set for each module such that
  - belief set acceptable under chosen context,
  - context acceptable given belief sets of parents.

- Account of recent/ongoing work on multi-context systems.
- Part I: heterogeneous nonmonotonic systems.
- Part II: generalized updates and consistency mechanisms, focus on argumentation.
- Part III: try to capture best of both worlds.
- MCS special case (cum grano salis): updates extensions, no consistency handling
- ACS special case: all formalisms Dung AFs
- MMCS very general and flexible; cover wide range of applications involving multi-agent meta-reasoning.

#### THANK YOU!

(A) (B) (A) (B)

- Account of recent/ongoing work on multi-context systems.
- Part I: heterogeneous nonmonotonic systems.
- Part II: generalized updates and consistency mechanisms, focus on argumentation.
- Part III: try to capture best of both worlds.
- MCS special case (cum grano salis): updates extensions, no consistency handling
- ACS special case: all formalisms Dung AFs
- MMCS very general and flexible; cover wide range of applications involving multi-agent meta-reasoning.

#### THANK YOU!

イロト イポト イヨト イヨ

- Account of recent/ongoing work on multi-context systems.
- Part I: heterogeneous nonmonotonic systems.
- Part II: generalized updates and consistency mechanisms, focus on argumentation.
- Part III: try to capture best of both worlds.
- MCS special case (cum grano salis): updates extensions, no consistency handling
- ACS special case: all formalisms Dung AFs
- MMCS very general and flexible; cover wide range of applications involving multi-agent meta-reasoning.

#### THANK YOU!

・ロト ・ 四ト ・ ヨト ・ ヨト

- Account of recent/ongoing work on multi-context systems.
- Part I: heterogeneous nonmonotonic systems.
- Part II: generalized updates and consistency mechanisms, focus on argumentation.
- Part III: try to capture best of both worlds.
- MCS special case (cum grano salis): updates extensions, no consistency handling
- ACS special case: all formalisms Dung AFs
- MMCS very general and flexible; cover wide range of applications involving multi-agent meta-reasoning.

#### THANK YOU!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Account of recent/ongoing work on multi-context systems.
- Part I: heterogeneous nonmonotonic systems.
- Part II: generalized updates and consistency mechanisms, focus on argumentation.
- Part III: try to capture best of both worlds.
- MCS special case (cum grano salis): updates extensions, no consistency handling
- ACS special case: all formalisms Dung AFs
- MMCS very general and flexible; cover wide range of applications involving multi-agent meta-reasoning.

#### THANK YOU!

・ロト ・ 四ト ・ ヨト ・ ヨト

- Account of recent/ongoing work on multi-context systems.
- Part I: heterogeneous nonmonotonic systems.
- Part II: generalized updates and consistency mechanisms, focus on argumentation.
- Part III: try to capture best of both worlds.
- MCS special case (cum grano salis): updates extensions, no consistency handling
- ACS special case: all formalisms Dung AFs
- MMCS very general and flexible; cover wide range of applications involving multi-agent meta-reasoning.

#### THANK YOU!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Account of recent/ongoing work on multi-context systems.
- Part I: heterogeneous nonmonotonic systems.
- Part II: generalized updates and consistency mechanisms, focus on argumentation.
- Part III: try to capture best of both worlds.
- MCS special case (cum grano salis): updates extensions, no consistency handling
- ACS special case: all formalisms Dung AFs
- MMCS very general and flexible; cover wide range of applications involving multi-agent meta-reasoning.

#### THANK YOU!

・ロト ・ 四ト ・ ヨト ・ ヨト

- Account of recent/ongoing work on multi-context systems.
- Part I: heterogeneous nonmonotonic systems.
- Part II: generalized updates and consistency mechanisms, focus on argumentation.
- Part III: try to capture best of both worlds.
- MCS special case (cum grano salis): updates extensions, no consistency handling
- ACS special case: all formalisms Dung AFs
- MMCS very general and flexible; cover wide range of applications involving multi-agent meta-reasoning.

### THANK YOU!

・ロト ・ 四ト ・ ヨト ・ ヨト