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Abstract. The explicit recognition of the relationships between iatéing ob-
jects can improve the understanding of their dynamic model.

In this work, we investigate the use of Relational Dynamig&aan Networks
to represent the dependencies between objects behavioe tohtext of multi-
target tracking. We propose a new formulation of the trasmsitmodel that ac-
commodates for First-Order Logic relations and we exteedRarticle Filter al-
gorithm in order to directly track relations between tasget

Many applications can benefit from this work, as activitiesagnition, traffic
monitoring, strategic analysis, sports coaching and etha&ke present some re-
sults about activity recognition in monitoring Canadiastebborders.

Key words: Multi Target tracking, Probabilistic Relational Modelsayesian
Filtering, Particle Filtering.

1 Introduction and Motivations

Context interpretation and context-based reasoning hega bhown to be key factors
for Computer Vision in the development of algorithms forexdijrecognition [3]. In this
domain the context is the scene where objects are locatethahktowledge about it is
expressed by the beliefs over the scene [4].

In this paper we deal with moving objects and we refer the ephof context to
“what is happening around the object we are tracking”. Kmmathe scene can im-
prove the objects recognition task and the knowledge alhauidientity of the objects
improves the belief over the scene; knowing what is happgeinithe scene (which “re-
lations” are believed to be true in the scene) can improve#oking and the knowledge
about the state of the objects can improve our knowledgetdbeuelation between the
objects in the scene (i.e. the context).

Consider, for example, the situation in which we have a gafygeople walking in
a park. If we know they are walking together (i.e. if we haveegain belief over their
relation), we know they will have a similar behavior or a $anmotion. This will help
us in tracking them. Moreover, taking into account the refeg between objects can
also allow us to recognize complex activities like, for exden the activity of “going
to a pub together”: single persons walking can be a simpignient of a more com-
plex activity that includes some people meeting, going enghme direction, waiting



each other at different points and entering together inégtlb. Dealing with relations
between moving objects allows us to recognize a complexipctike this one from
another similar one that can be the “catching the subwaydutish hour”: this com-
plex activity also includes a group of people walking togetin the same direction but
those people will not wait for each other. In the last yearm@oter Vision has mostly
dealt with the recognition of activities composed by theetémn of simple movements
[12], instead those are examples of more complex activitiasinvolve relations be-
tween objects and/or single actions during time.

In our work we model theontextas a set of First-Order Logic relations using them
in two principal ways:

— We will userelations to improve the efficiency of the trackifige information con-
tained in the relationships can improve prediction, résglin a better estimation
of objects trajectories.

— We will monitor relations as a goal in itselfhis is the case in many applications
like traffic prediction or consumer monitoring, anomalyedtgion or activity recog-
nition.

In this work we consideRelational Dynamic Bayesian Network@DBNSs), an
extension ofProbabilistic Relational Mode]5] to dynamic domains, as a formalism
to monitor relations between moving objects. In our RDBNdshmodel, relationships
are considered as random variables whose values may cheggee. While tracking
the objects in the domain, we also track the evolution ofrthelationships. For this
purpose, in the next sections we propose a formalizatiomefiadynamic model able to
predict the future state of the objects taking into accoueit relations and we introduce
a new version of Particle Filter (that we c&klational Particle Filte) that adapts to
these settings. After presenting some preliminary resalitsined on the Intelligent
System Challenge 2008-2009 data’seind a brief review of the literature, we conclude
with some final remarks.

2 Modeling and Inference

A relational domainis a set of objects with relations between them. We will dadl t
states of a relational domaimelational state and we define it as the set of instantia-
tions of all the objects and their relations in the domairerBffiore, we can divide the
relational state in two parts: tretate of the objectss® and thestate of the relations”
and we will write:s = [s°, s"].

A Relational Bayesian Netwo(lRBN) is a directed acyclic graph whose nodes are
First-Order Logic attributes or relations between objéctthe relational domain and
whose structure represents the causality between the nodes

!The authors are aware of the works of Sanghai, Weld and Dasingn
RDBNs; however the paper presenting their work has beenaatenl. Refer to:
http://www.aaai.org/Library/JAIR/\oI24/jair24-01%p

2 http://lwww.intelligent-systems-challenge.ca/home¢ix html

% We will use the termstate of objectandstate of instantiationsterchangeably.



When we deal with dynamic, relational states evolve withetemd RBNs has to be
extended to RDBNs. ARelational Dynamic Bayesian Netwoidk structured as a pair
of RBNs (By, B—_,), whereB, represents the probability distribution over the state of
the relational domain at tim@and B_, is a RBN of nodes at timewhose parent are
predicates at timeé — 1 or predicates at timé and nodes at time — 1 without their
parents.

In order to make inference in a multi-target setting, we rteexktend the algorithms
traditionally used in tracking to represent relations. Aglassic tracking, the aim is
to estimate the current posterior distribution of the stgiaces; conditioned to the
sequence of observations; up to timet: p(s:|z1.+). This distribution is often called
thetarget's belief(bel(s)).

The trackerpredictsthe probability distribution of the future statg, given the
knowledge about the current state 1, by means of atate transition model(s;|s;—1).
Once measurements about the state at tifpg) are acquired, the statefiteredusing
thesensor modeb(z:|s;) that relates (potentially noisy) measurements to the.state

Fig. 1. Relational Transition Model. Arrows indicate probabitisiependence between variables.

To extend the traditional tracking algorithms to represelations we introduce the
following components:

The relational transitional model p(s:|s:—1) = p(s¢, s7|s7_,,s;_,) is ajoint proba-
bility of the state of all instances and relations. We asstiratthe state of relations
is not directly affected by the state of the objects at th&iptes time step (see Fig-
ure 1). Therefore the transition model can be rewritten as:

p(sgv S:|Sg717 5;71) = p(5g|8571, ngl)p(sﬂsgflv Sg) (1)

The sensor modelp(z;|s;) gives the probability of the state at timeyiven the mea-
surements obtained at the same time. We assume the reladidnesnot directly
measurable, so the observatigns independent of the relations between objects:

p(2t|st) = p(ztls?, s7) = p(2sf). )

Under the Markov assumption and the conditional indepecelenthe data given
the state, we can useBayesian filter algorithnto compute the belief of the relational



state: .
bel(st) = o p(ze|sy) bel(st) 3)

wherea is a normalization constant ar@(st) is the prediction done over the system
(p(s¢, s7|21.t—1)) that can be computed as:

bel(se) = [ p(st 515ty sf1Jbelsi1 ). (4)

According to the state transition model (Equation 1), wewsdte Equation (4) as:

bel(sq) = / P15 1. 55 )p(sS 155y, 59)bel (501 )dsi—1. (5)

In the most general case we can represent the two partialticanmodels of Equa-
tion (1) by a First Order Logic Tree (FOPT)We will introduce an example of FOPT
when dealing with the experiments.

2.1 Relational Particle Filter

The specific and complex probabilistic nature of the presgsetting makes impossible
to use filters that require a probabilistic function in cldgerm, such as the Kalman
filter. To solve this issue we developed an extension of thedRaFilter (PF) algorithm
whose properties are appealing for our case.

The PF algorithm [1] is a Monte Carlo method that approxirs#te required poste-
rior density function by a set of random samples with assediaeights and computes
estimates based on these samples and weights. As the nuihsberles becomes very
large, the Monte Carlo approximation to the correct postemproves and the PF ap-
proaches the optimal Bayesian estimate.

We integrate the relational transitional model introduce&quation (1) in a new
Relational Particle Filter(RPF), shown in Algorithm (1).

Algorithm 1: Pseudo Code for the Relational Particle Filter algorithm
bel(s¢) = RPF (bel(si—1), zt)
forall m=1:M do
1. ) () ~ p(sf]si-1,5:-1); hypothesis for the state of instantiations
2. Ty ~ P(silsio1, 87 = @] (,n)): NypoOthesis for the state of relations
3. wim) = plze|zf () Weights computation
forall m=1:M do

@ (m)

4. O = ==
SN OF

5. Resampléel(s:) from {[z7 (., 1, (m)]} @ccording to weight$i ., } with repetition.

; weights normalization

4 A FOPT (also known as First Order Decision Diagram [2]) istRailistic Tree whose nodes
are First Order Logic formulas.



A particle (¢ (,,,)) is a representation of the state. For this reason, in otinget

it |s divided in two parts: the part of the object§ m) and the part of the relations

i (m)- (see Figure 2(a)). The part of the particle relatlve to tistaintiations is sampled
according top(s?|s¢_4, s}_;) (Line 1), subsequently the part of the particle relative to
the relations is sampled according to the second part ofelagéanal transition model
(Line 2). When the measurement is acquired, particles arghtel according to the
sensor model (Line 3). The sensor model takes into accouytlos part of the parti-
cles relative to the objects, since the particles are coatpbyg two parts, also the parts
associated to the relations are weighted. After the weighdtep, weights are normal-
ized (Line 4) and the set of particles for the next iterat®extracted according to the
normalized weights in the resampling step (Line 5).

o
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(a) Particle representation. (b) First step of hypothesis.
.) p(zt|x%)
~ pP(X't,(m)| 8%t = Xt (m),S"-1)
(c) Second step of hypothesis. (d) Particle weighting.

Fig. 2. Cartoon representation of the proposed algorithm.

3 Experiments

We evaluated the proposed method on a synthetic data sés thased on the Intelli-
gence System Challenge 2008-2009 data set. We chose toisiskath set because it
is easier than a real data set but still challenging. The slttaontains the description
of the events happened in the sea; each element of the daggpeds the tracks of two
boats participating in an event (i.e. Rendezvous, PickUpAroidance) together. At
each time interval at most one event takes place.

We are particularly interested in the case where there isntgiaty about the par-
ticipants taking part in an event, in order to demonstrageattivantage of maintaining



beliefs over the set of possible relations. In order to testrelational particle filter
algorithm for activity recognition in a more challengingsario with multiple targets,
we use the original data set to build a new synthetic datafsE2® situations (either
rendezvous or avoidance), obtained by pairing two encosind@domly sampled from
the original data set. In this way, four ships are presertasame time in the scene.

In the experiment, we consider the task of detecting a ramierbetween a yacht
and a fisher ship. After describing the setting of our expenits, in the next subsection,
we report some results.

3.1 Settings and Results
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Fig. 3. Example of Rendezvous.
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Fig. 4. Example of no relation.



We used the data set to estimate the prior for the event Reodgbetween a Fisher
and a Yacht (33/80). Then, we examined the data relativegt@ticounters in order to
acquire information about the two different events (revdes or avoidance) that can
be used to predict the relation. In particular, we focusedhenvariation of speed of
the two targets. Consider for example, the rendezvous urEiB): the two ships come
closer and both progressively reduce their speed until ayseearo value. Different
is the case of ships that are avoiding each other (thus nefa@ton according to our
model), one maintains its speed and the other deceleratps€i4)).

From the images it is also possible to notice the three-ghab&h characterize the
event of rendezvous: ships approach each other reducimgsfieed in the first phase,
they travel in the same direction with nearly-zero speetiénsecond phase and finally
they go apart and at least one of them change its speed. @tiorell transition model
takes into account these three different phases allowinigtect when the event starts
and when it finishes but also allowing to understand if twslaian be in relation (since
a ship can be in relation only with another ship).

An example of the relational transition model used in ouregitpents is given in
Figure (5) and in Figure (6) .

reduceSpeed(x)=3
&

reduceSpeed(y,)=0

[ ———— === ==

dir(x,, )=dir(y,, ) |

! X =Xhxdtre | phase(x, =3 | | Xt II X, =X+ dtte |
! l hase{y,,,)=3 & ! 1
------ 'p (yt+1)_ 1 y —— o — -

phase(x,, )=2
phase(y,.,)=2

|

| t+1
——————— I | approach 0

|

|

o — -

Fig.5.FOPT forp(s?|s?_1,8;_1).

We ran the experiments on each of the 120 sets of four trackseimlata set. In
table (1) we show the accuracy of our method for the rendezdetection compared
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Fig. 6. FOPT forp(sy|si_1, s?).

to the accuracy of a method that randomly choses which boatmaelation. In the

table it is also reported the average tracking error of thE RIgorithm compared to a
PF algorithm that does not take into account relations. Taeking error is computed
as the distance between the trajectories acquired by thielpdiiter (at each time-step,
it averages the position considering the states of allgdasj and the real trajectories.

method | TP ration TN ratigTracking Error(km, mean)
RPF 0.4545 0.7235 1.8379
PF 3.3906

random choice 0.4444 0.4841
Table 1. In columns TP ratio and TN ratio the ratio over the 120 set afks of true positive
and true negative is reported for our method and a randontehuethod. In the last column
the average tracking error for our method (RPF) and a methaddpes not take into account
relations (PF) is reported.




3.2 Related Works

Our work is at the intersection of work in Probabilistic Redaal Models, that to our
knowledge have never before considered applicationsékitrg, and Computer Vision,
where often heuristics are used to improve tracking, butniibt a systematic account
of relationships between targets.

Recently there has been increasing interest in models xtexie probabilistic rea-
soning to First Order Logic to exploit redundancies obsgiivethe worlds ([5], [6]).
In this setting, many relational inference algorithms gext by first fully instantiat-
ing the First-Order relations and then working at the prajmosl level. In [10] an
inference algorithm that instantiates relations only asdee is presented, but this al-
gorithm can deal only with static domains as the relatioesnat supposed to change
over time. Moreover, our model is different from the one presd in [9], where the
concept of class is used to develop an inference systematiésat with a large number
of heterogenous objects. We use First-Order Logic to eiiyliepresent relationships
between objects to improve the inference task. Our methpdtentially applicable to
situations with a large number of objects as well.

Hybrid states models have been used to deal with complekitgtasks [7]. They
combined continuous-valued dynamic with a discrete sththeoworld (context) en-
coding which switching dynamic is performed jointly wittatking. Our system uses
relations as representations of the context of each objettad of the context of the
entire world. The explicit recognition of the relations @fob object allows us to deal
with much more complex tracking tasks. Moreover, the useist ©rder Logic (as
opposed to predicative logic) generalizes our models ferdifit domains.

In [8] the recognition of complex activity (temporally exidged activities that can
be fragmented in simple ones) is based on context-free geanirhey decouple the
recognition task in two levels: a lower level that detectgy simple activities that are
the inputs for the stochastic context-free grammar usedtzegpof words” for a parsing
mechanism. Instead, our approach does not decouple thgnioa task, but seek to
take advantage from the tracking, that provides the deteaf simple activities, to
recognize the temporally extended activity and from theidedge about the complex
activity to improve the tracking.

In [11], the authors address the problem of activity rectigniusing First Order
Logic rules and Markov Logic Networks to represent commamssedomain knowl-
edge. Differently from the method we are proposing, therariee task is performed
off-line: they perform probabilistic inference for inputigries about events of interest
already happened. We seek, instead, to perform an on-lmgapilistic inference of
both the state of the domain and the activities.

4 Conclusions

In this paper we presented a technique based on relatiogakia reasoning in order
to address the problem of activity recognition and trackivg presented an extension
of particle filter, called relational particle filter, thambe used to make inference. From
our preliminary results we can conclude that our method edmto identify the type of



encounter that the targets are engaging. Moreover we havwendiow using relations as
context can improve the tracking task. Compared to hybateshodel techniques, we
are able to model the problem with a single dynamic model hadtate representation
is much more compact.

There are a number of possible applications of this appraagmnoblems where
there is the need of monitoring a situation from sensed datad surveillance, homeland-
security, etc.) that we are interested to consider for &uuorks.
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