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Abstract. The explicit recognition of the relationships between interacting ob-
jects can improve the understanding of their dynamic model.
In this work, we investigate the use of Relational Dynamic Bayesian Networks
to represent the dependencies between objects behavior in the context of multi-
target tracking. We propose a new formulation of the transition model that ac-
commodates for First-Order Logic relations and we extend the Particle Filter al-
gorithm in order to directly track relations between targets.
Many applications can benefit from this work, as activities recognition, traffic
monitoring, strategic analysis, sports coaching and others. We present some re-
sults about activity recognition in monitoring Canadian costal borders.
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1 Introduction and Motivations

Context interpretation and context-based reasoning have been shown to be key factors
for Computer Vision in the development of algorithms for object recognition [3]. In this
domain the context is the scene where objects are located andthe knowledge about it is
expressed by the beliefs over the scene [4].

In this paper we deal with moving objects and we refer the concept of context to
“what is happening around the object we are tracking”. Knowing the scene can im-
prove the objects recognition task and the knowledge about the identity of the objects
improves the belief over the scene; knowing what is happening in the scene (which “re-
lations” are believed to be true in the scene) can improve thetracking and the knowledge
about the state of the objects can improve our knowledge about the relation between the
objects in the scene (i.e. the context).

Consider, for example, the situation in which we have a groupof people walking in
a park. If we know they are walking together (i.e. if we have a certain belief over their
relation), we know they will have a similar behavior or a similar motion. This will help
us in tracking them. Moreover, taking into account the relations between objects can
also allow us to recognize complex activities like, for example, the activity of “going
to a pub together”: single persons walking can be a simple fragment of a more com-
plex activity that includes some people meeting, going in the same direction, waiting



each other at different points and entering together into the pub. Dealing with relations
between moving objects allows us to recognize a complex activity like this one from
another similar one that can be the “catching the subway during rush hour”: this com-
plex activity also includes a group of people walking together in the same direction but
those people will not wait for each other. In the last years Computer Vision has mostly
dealt with the recognition of activities composed by the repetition of simple movements
[12], instead those are examples of more complex activitiesthat involve relations be-
tween objects and/or single actions during time.

In our work we model thecontextas a set of First-Order Logic relations using them
in two principal ways:

– We will userelations to improve the efficiency of the tracking.The information con-
tained in the relationships can improve prediction, resulting in a better estimation
of objects trajectories.

– We will monitor relations as a goal in itself.This is the case in many applications
like traffic prediction or consumer monitoring, anomaly detection or activity recog-
nition.

In this work we considerRelational Dynamic Bayesian Networks(RDBNs)1, an
extension ofProbabilistic Relational Model[5] to dynamic domains, as a formalism
to monitor relations between moving objects. In our RDBN-based model, relationships
are considered as random variables whose values may change over time. While tracking
the objects in the domain, we also track the evolution of their relationships. For this
purpose, in the next sections we propose a formalization of anew dynamic model able to
predict the future state of the objects taking into account their relations and we introduce
a new version of Particle Filter (that we callRelational Particle Filter) that adapts to
these settings. After presenting some preliminary resultsobtained on the Intelligent
System Challenge 2008-2009 data set2, and a brief review of the literature, we conclude
with some final remarks.

2 Modeling and Inference

A relational domainis a set of objects with relations between them. We will call the
states of a relational domainrelational state, and we define it as the set of instantia-
tions of all the objects and their relations in the domain. Therefore, we can divide the
relational state in two parts: thestate of the objects3 so and thestate of the relationssr

and we will write:s = [so, sr].
A Relational Bayesian Network(RBN) is a directed acyclic graph whose nodes are

First-Order Logic attributes or relations between objectsin the relational domain and
whose structure represents the causality between the nodes.

1 The authors are aware of the works of Sanghai, Weld and Domingos on
RDBNs; however the paper presenting their work has been retracted. Refer to:
http://www.aaai.org/Library/JAIR/Vol24/jair24-019.php

2 http://www.intelligent-systems-challenge.ca/home/index.html
3 We will use the termsstate of objectsandstate of instantiationsinterchangeably.



When we deal with dynamic, relational states evolve with time and RBNs has to be
extended to RDBNs. ARelational Dynamic Bayesian Networkis structured as a pair
of RBNs (B0, B→), whereB0 represents the probability distribution over the state of
the relational domain at time0 andB→ is a RBN of nodes at timet whose parent are
predicates at timet − 1 or predicates at timet and nodes at timet − 1 without their
parents.

In order to make inference in a multi-target setting, we needto extend the algorithms
traditionally used in tracking to represent relations. As in classic tracking, the aim is
to estimate the current posterior distribution of the statespacest conditioned to the
sequence of observationsz1:t up to timet: p(st|z1:t). This distribution is often called
thetarget’s belief(bel(st)).

The trackerpredicts the probability distribution of the future statest, given the
knowledge about the current statest−1, by means of astate transition modelp(st|st−1).
Once measurements about the state at timet (zt) are acquired, the state isfilteredusing
thesensor modelp(zt|st) that relates (potentially noisy) measurements to the state.

Fig. 1.Relational Transition Model. Arrows indicate probabilistic dependence between variables.

To extend the traditional tracking algorithms to representrelations we introduce the
following components:

The relational transitional model p(st|st−1) = p(so
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bility of the state of all instances and relations. We assumethat the state of relations
is not directly affected by the state of the objects at the previous time step (see Fig-
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p(so
t , s

r
t |s

o
t−1, s

r
t−1) = p(so

t |s
o
t−1, s

r
t−1)p(sr

t |s
r
t−1, s

o
t ). (1)

The sensor modelp(zt|st) gives the probability of the state at timet given the mea-
surements obtained at the same time. We assume the relationsto be not directly
measurable, so the observationzt is independent of the relations between objects:

p(zt|st) = p(zt|s
o
t , s

r
t ) = p(zt|s

o
t ). (2)

Under the Markov assumption and the conditional independence of the data given
the state, we can use aBayesian filter algorithmto compute the belief of the relational



state:

bel(st) = α p(zt|s
o
t ) b̃el(st) (3)

whereα is a normalization constant and̃bel(st) is the prediction done over the system
(p(so

t , s
r
t |z1:t−1)) that can be computed as:

b̃el(st) =

∫
p(so

t , s
r
t |s

o
t−1, s

r
t−1)bel(st−1)dst−1. (4)

According to the state transition model (Equation 1), we canwrite Equation (4) as:

b̃el(st) =

∫
p(so

t |s
o
t−1, s

r
t−1)p(sr

t |s
r
t−1, s

o
t )bel(st−1)dst−1. (5)

In the most general case we can represent the two partial transition models of Equa-
tion (1) by a First Order Logic Tree (FOPT)4. We will introduce an example of FOPT
when dealing with the experiments.

2.1 Relational Particle Filter

The specific and complex probabilistic nature of the presented setting makes impossible
to use filters that require a probabilistic function in closed form, such as the Kalman
filter. To solve this issue we developed an extension of the Particle Filter (PF) algorithm
whose properties are appealing for our case.

The PF algorithm [1] is a Monte Carlo method that approximates the required poste-
rior density function by a set of random samples with associated weights and computes
estimates based on these samples and weights. As the number of samples becomes very
large, the Monte Carlo approximation to the correct posterior improves and the PF ap-
proaches the optimal Bayesian estimate.

We integrate the relational transitional model introducedin Equation (1) in a new
Relational Particle Filter(RPF), shown in Algorithm (1).

Algorithm 1 : Pseudo Code for the Relational Particle Filter algorithm
bel(st) = RPF (bel(st−1), zt)
for all m = 1 : M do

1. xo
t,(m) ∼ p(so

t |s
o
t−1, s

r
t−1); hypothesis for the state of instantiations

2. xr
t,(m) ∼ p(sr

t |s
r
t−1, s

o
t = xo

t,(m)); hypothesis for the state of relations
3. ω(m) = p(zt|x

o
t,(m)); weights computation

for all m = 1 : M do
4. ω̃(m) =

ω(m)∑
M

m=1 ω(m)
; weights normalization

5. Resamplebel(st) from {[xo
t,(m), x

r
t,(m)]} according to weights{ω̃(m)} with repetition.

4 A FOPT (also known as First Order Decision Diagram [2]) is Probabilistic Tree whose nodes
are First Order Logic formulas.



A particle (xt,(m)) is a representation of the state. For this reason, in our setting,
it is divided in two parts: the part of the objectsxo

t,(m) and the part of the relations
xr

t,(m). (see Figure 2(a)). The part of the particle relative to the instantiations is sampled
according top(so

t |s
o
t−1, s

r
t−1) (Line 1), subsequently the part of the particle relative to

the relations is sampled according to the second part of the relational transition model
(Line 2). When the measurement is acquired, particles are weighted according to the
sensor model (Line 3). The sensor model takes into account only the part of the parti-
cles relative to the objects, since the particles are composed by two parts, also the parts
associated to the relations are weighted. After the weighting step, weights are normal-
ized (Line 4) and the set of particles for the next iteration is extracted according to the
normalized weights in the resampling step (Line 5).

(a) Particle representation. (b) First step of hypothesis.

(c) Second step of hypothesis. (d) Particle weighting.

Fig. 2. Cartoon representation of the proposed algorithm.

3 Experiments

We evaluated the proposed method on a synthetic data set thatis based on the Intelli-
gence System Challenge 2008-2009 data set. We chose to use this data set because it
is easier than a real data set but still challenging. The dataset contains the description
of the events happened in the sea; each element of the data setreports the tracks of two
boats participating in an event (i.e. Rendezvous, PickUp and Avoidance) together. At
each time interval at most one event takes place.

We are particularly interested in the case where there is uncertainty about the par-
ticipants taking part in an event, in order to demonstrate the advantage of maintaining



beliefs over the set of possible relations. In order to test our relational particle filter
algorithm for activity recognition in a more challenging scenario with multiple targets,
we use the original data set to build a new synthetic data set of 120 situations (either
rendezvous or avoidance), obtained by pairing two encounters randomly sampled from
the original data set. In this way, four ships are present at the same time in the scene.

In the experiment, we consider the task of detecting a rendezvous between a yacht
and a fisher ship. After describing the setting of our experiments, in the next subsection,
we report some results.

3.1 Settings and Results
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Fig. 3.Example of Rendezvous.
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Fig. 4.Example of no relation.



We used the data set to estimate the prior for the event Rendezvous between a Fisher
and a Yacht (33/80). Then, we examined the data relative to the encounters in order to
acquire information about the two different events (rendezvous or avoidance) that can
be used to predict the relation. In particular, we focused onthe variation of speed of
the two targets. Consider for example, the rendezvous in Figure (3): the two ships come
closer and both progressively reduce their speed until a nearly-zero value. Different
is the case of ships that are avoiding each other (thus not in relation according to our
model), one maintains its speed and the other decelerates (Figure (4)).

From the images it is also possible to notice the three-phases which characterize the
event of rendezvous: ships approach each other reducing their speed in the first phase,
they travel in the same direction with nearly-zero speed in the second phase and finally
they go apart and at least one of them change its speed. Our relational transition model
takes into account these three different phases allowing todetect when the event starts
and when it finishes but also allowing to understand if two ships can be in relation (since
a ship can be in relation only with another ship).

An example of the relational transition model used in our experiments is given in
Figure (5) and in Figure (6) .

Fig. 5. FOPT forp(so
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o
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t−1).

We ran the experiments on each of the 120 sets of four tracks inthe data set. In
table (1) we show the accuracy of our method for the rendezvous detection compared



Fig. 6. FOPT forp(sr
t |s

r
t−1, s

o
t ).

to the accuracy of a method that randomly choses which boats are in relation. In the
table it is also reported the average tracking error of the RPF algorithm compared to a
PF algorithm that does not take into account relations. The tracking error is computed
as the distance between the trajectories acquired by the particle filter (at each time-step,
it averages the position considering the states of all particles) and the real trajectories.

method TP ration TN ratioTracking Error(km, mean)
RPF 0.4545 0.7235 1.8379
PF 3.3906

random choice 0.4444 0.4841
Table 1. In columns TP ratio and TN ratio the ratio over the 120 set of tracks of true positive
and true negative is reported for our method and a random choice method. In the last column
the average tracking error for our method (RPF) and a method that does not take into account
relations (PF) is reported.



3.2 Related Works

Our work is at the intersection of work in Probabilistic Relational Models, that to our
knowledge have never before considered applications in tracking, and Computer Vision,
where often heuristics are used to improve tracking, but notwith a systematic account
of relationships between targets.

Recently there has been increasing interest in models that extend probabilistic rea-
soning to First Order Logic to exploit redundancies observed in the worlds ([5], [6]).
In this setting, many relational inference algorithms proceed by first fully instantiat-
ing the First-Order relations and then working at the propositional level. In [10] an
inference algorithm that instantiates relations only as needed is presented, but this al-
gorithm can deal only with static domains as the relations are not supposed to change
over time. Moreover, our model is different from the one presented in [9], where the
concept of class is used to develop an inference system able to deal with a large number
of heterogenous objects. We use First-Order Logic to explicitly represent relationships
between objects to improve the inference task. Our method ispotentially applicable to
situations with a large number of objects as well.

Hybrid states models have been used to deal with complex tracking tasks [7]. They
combined continuous-valued dynamic with a discrete state of the world (context) en-
coding which switching dynamic is performed jointly with tracking. Our system uses
relations as representations of the context of each object instead of the context of the
entire world. The explicit recognition of the relations of each object allows us to deal
with much more complex tracking tasks. Moreover, the use of First Order Logic (as
opposed to predicative logic) generalizes our models to different domains.

In [8] the recognition of complex activity (temporally extended activities that can
be fragmented in simple ones) is based on context-free grammar. They decouple the
recognition task in two levels: a lower level that detects single simple activities that are
the inputs for the stochastic context-free grammar used as a“bag of words” for a parsing
mechanism. Instead, our approach does not decouple the recognition task, but seek to
take advantage from the tracking, that provides the detection of simple activities, to
recognize the temporally extended activity and from the knowledge about the complex
activity to improve the tracking.

In [11], the authors address the problem of activity recognition using First Order
Logic rules and Markov Logic Networks to represent common sense domain knowl-
edge. Differently from the method we are proposing, the inference task is performed
off-line: they perform probabilistic inference for input queries about events of interest
already happened. We seek, instead, to perform an on-line probabilistic inference of
both the state of the domain and the activities.

4 Conclusions

In this paper we presented a technique based on relational Bayesian reasoning in order
to address the problem of activity recognition and tracking. We presented an extension
of particle filter, called relational particle filter, that can be used to make inference. From
our preliminary results we can conclude that our method can help to identify the type of



encounter that the targets are engaging. Moreover we have shown how using relations as
context can improve the tracking task. Compared to hybrid state model techniques, we
are able to model the problem with a single dynamic model and the state representation
is much more compact.

There are a number of possible applications of this approachin problems where
there is the need of monitoring a situation from sensed data (video surveillance, homeland-
security, etc.) that we are interested to consider for future works.
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