
RiMOM Results for OAEI 2009

Xiao Zhang, Qian Zhong, Feng Shi, Juanzi Li and Jie Tang

Department of Computer Science and Technology, Tsinghua University, Beijing, China
zhangxiao,zhongqian,shifeng,ljz,tangjie@keg.cs.tsinghua.edu.cn

Abstract. In this report, we give a brief explanation of how RiMOM obtains the
results at OAEI 2009 Campaign, especially in the new Instance Matching track.
At first, we show the basic alignment process of RiMOM and different alignment
strategies in RiMOM. Then we give new features in instance matching compared
with traditional ontology matching (schema matching) and introduce the specific
techniques we used for the 3 different subtracks of Instance Matching Track. At
last we give some comments on our results and discuss some future work about
RiMOM.

1 Presentation of the system

Ontology matching is the key technology to reach interoperability over ontologies. In
recent years, much research work has been conducted for finding the alignment of on-
tologies[1]. Many automatic matching algorithms achieves good results in real world
data. With the development of Linked Data[2], huge amount of semantic data are avail-
able through the web. Thus instance matching, a special branch of ontology matching,
draws lots of research interest recent years.

RiMOM is a multiple strategy dynamic ontology matching system implemented in
Java [3]. In RiMOM, we implement several different matching strategies. Each strategy
is defined based on one kind of ontological information. Moreover, we investigate the
differences between the strategies and compare the performances of different strategies
on different matching tasks. We propose a mechanism in RiMOM to choose appropriate
strategies (or strategy combination) according to the features and the information of the
ontologies. RiMOM can deal with unbalanced ontology matching [4]. We also try to
bring user interaction into RIMOM [5]. This year We modified the RiMOM system to
make it with better support for instance matching.

1.1 State, purpose, general statement

RiMOM is a framework for ontology matching. Different kinds of alignment strategies
can be added into RiMOM. Based on the features of the input ontology and the de-
fined rules, appropriate strategies are chosen to apply for the matching task. The basic
matching process of RiMOM is shown in figure 1.

There are six major steps in a general alignment process of RiMOM.

– Ontology Preprocessing and Feature Factors Estimation. The input ontologies are
loaded into the memory and the ontology graph is constructed. Some redundant or
useless information are removed. Then the three ontology feature factors used in
strategy selection are estimated.



Fig. 1. The Alignment Process of RiMOM

– Strategy Selection. The basic idea of strategy selection is that if two ontologies have
some same feature, then strategies based on these feature information are employed
with high weight; and if some feature factors are two low, then these strategies may
be not employed. For example, the string based strategy will be used when the label
Similarity factor is high while the WordNet [6] based stratey will not be used when
the label meaningful factor is low.

– Single strategy execution. We get the selected strategies to find the alignment inde-
pendently. Each strategy outputs an alignment result.

– Alignment combination. In this phase RiMOM combines the alignment results
obtained by the selected strategies. The combination is conducted by a linear-
interpolation method.

– Similarity propagation(Optional). If the two ontologies have high structure simi-
larity factor, RiMOM employs a similarity propagation process to refine the found
alignment and to find new alignment according to the structural information.

– Alignment refinement. It refines the alignment results from the previous steps. We
defined several heuristic rules to remove the ”unreliable” alignments.

1.2 Specific techniques used

This year we participate four tracks of the campaign: Benchmark, Anatomy, Oriented
Matching and Instance Matching. The Benchmark and Anatomy dataset is almost the
same as last year. The Oriented Matching dataset is very similar to the Benchmark one.
We focused on the new and challenging Instance Matching Track.

Benchmark and Anatomy Track The strategy we use for Benchmark and Anatomy
track is almost the same for OAEI 2008, more detailed explanation of the strategies
used could be found in [7] [8].



Oriented Matching Track The dataset of oriented matching track is derived from
the benchmark dataset. Naturally, we combined the methods we use in the benchmark
track and the sub relation in the ontology graph. Since RiMOM’s performance for the
Benchmark Track is fairly good, the result shows that the combination also works for
the Oriented Matching Track. This technique is also applied for the schema matching
phase of the Instance Matching Track.

Instance Matching Track The Instance Matching Track is introduced into the cam-
paign this year. The traditional ontology matching focus on the schema matching and
the ontology may contain no individual. If there are small amount of individuals, the
alignment of individuals are usually used to enhance the alignment of concepts and
properties. Previous OAEI campaigns also evaluated the performance of Matching Sys-
tems according to the schema matching results. By analyzing the datasets, we found
some differences between the traditional ontology matching and instance matching. We
summarize the differences as following:

– Ontology is used as a formal, explicit specification of a shared conceptualization[9].
It defines the concepts of the domain and the relation between the concepts. That
is to say, it describe the domain in the concept layer. However, the instance is the
instantiation of the ontology, it is composed of concrete values of the domain, and
has rich practical semantic information. As we observe, some attribute values may
clearly different from others. How to find the key attributes and key values of in-
stances to facilitate the process of ontology matching is a very challenging issue.

– The ontology can be viewed as a whole ontology graph and some graph based al-
gorithms are employed in ontology matching. However, a concept may have lots of
instances and all the instances are with almost the same structure. The graph algo-
rithm with the whole ontology graph is not suitable for the instance matching task.
For a given instance, some other instances related to it may contain information
about it through object properties. Moreover, the information in the instance may
be not symmetric as in the ontology. For instance, an instance A of the “Author”
concept is “list author in” an instance B of the “Scientific Publication” concept.
However, the statement is only written in B’s description. How to find the complete
information of a given instance is also very important.

– The scale of instance matching is usually much more larger than ontology match-
ing. The sweto data and the dbpedia data file both contain more than 800,000 in-
stances which seems impossible in ontology matching. As a result, the efficiency
of the instance matching strategies becomes a major concern. Some complicate
algorithm can not be employed.

– The schema ontology for most instance files are available. So the result of ontology
matching is a very good background knowledge for instance matching. Instinc-
tively, the instance pair of not matched concept pair have no chance to be matched.
So with the ontology alignment, the number of instance matching candidates can
be pruned greatly. However, sometimes the ontology itself is not very well defined.
For example, The DBpedia ontology does not cover all the instances in the instance
file, so the ontology itself should be enriched with instance type information.



With regard to the different characteristics of the three different subtracks of In-
stance Matching (We do not take part in the vlcr subtrack), we employ some different
strategies to solve the three tasks.

The A-R-S benchmark includes three datasets containing instances from the domain
of scientific publications. The three data file are quite different in size, especially the
DBLP file is really large. So we use some light-weight method in this subtrack. On the
other hand, all the three data files are mainly in the scientific publication domain. At
first, we choose some data-type properties as the key attributes carefully. These proper-
ties are of two types. The first type is the “sufficient” property group: if the values of the
properties between two instances are matched respectively, the two instances are con-
sidered as matched. The second type is the “necessary” property group: if two instances
are marked as matched, the corresponding values should be matched. The “sufficeint”
properties, such as {foaf:name} are employed in a edit-distance strategy to find the ini-
tial alignment. The “necessary” properties, such as the opus:year, are employed to refine
the initial alignment. In the second step, a structure based matching method is used to
propagate the similarities among the instances according to the object properties. For
example, we can refine the “person” matches with the “document” alignments in terms
of the {opus:author} property.

Compared with the A-R-S benchmark which is restricted to the scientific publica-
tion domain, the T-S-D benchmark covers much more wider domains. The DBpedia
data is encyclopedia-like knowledge base. This makes it difficult to find particular at-
tributes and values, so we take another strategy. First of all, we compute the schema
matching results with RiMOM, check the incorrect alignments and add the missing
ones carefully. Then for every instance, we generate a vector to describe the information
contained in the instance. The vector contains labels of the instance, data-type property
values of the instance, labels and property values of the instances related to the un-
derlying one through object-type properties. Then the similarity of the instance pair of
matched concept pair is calculated by a vector based algorithm. The weight of respec-
tive element of the vector is designated by heuristic rules defined based on the structure
of the instance. The instance pairs of non-matched concept pairs are discarded directly.
In the DBpedia data file, there are some instances missing the rdf:type information. We
try to match these instances with all source instances in the reference file.

The IIMB benchmark, on the other hand, is systematically generated. The dataset is
constituted using one data file by modifying it according to various criteria. The varia-
tion can be sorted into three types: value transformation, structural transformation and
logical transformation. The purpose of value transformation is to simulate typographi-
cal errors, so edit-distance strategy employed on the relevant property values between
instances is effective enough. In structural transformation, some data-type properties
may transformed in the form of object-type property. We design an property value pass-
ing approach to cope with this kind of modification. The data-type property value of the
instance are passed to the instances connected with it through a object-type property.
We also consider structural information when matching instances. If two instances have
more property values on the same properties, they will be considered more similar. In
logical transformation, the TBox is modified, so we matching the TBox first to find
the find the relations between concepts in the TBoxes, then we try to match instances



according to the type information. In addition, some instance pairs with very similar
property values but with non-matched concepts are checked. If they can match each
other, then we consider their concepts are matched to enhance the TBox alignment.
When the two-direction matching process convergence to a stable matching result, we
take it as the final output.

1.3 Adaptations made for the evaluation

To reduce the number of matching candidate in T-S-D benchmark subtrack of Instance
Matching Track, the schema matching alignments is refined manually by correcting
some incorrect alignments and adding missing ones.

1.4 Link to the system and parameters file

The RiMOM System can be found at http://keg.cs.tsinghua.edu.cn/project/
RiMOM/

1.5 Link to the set of provided alignments (in align format)

The results for OAEI 2009 Campaign are available at http://keg.cs.tsinghua.
edu.cn/project/RiMOM/OAEI2009/

2 Results

As mentioned above, RiMOM takes part in four tracks of campaign in OAEI 2009.
Normally RiMOM uses OWL-API[10] to parse RDF and OWL Files. RiMOM also uses
Jena API[11] to convert N3 format files into RDF files and to deal with some large scale
instance files. The Benchmark, Oriented Matching and IIMB matching tasks are carried
out on a PC running Window XP with AMD Athlon 64 X2 4200+ processor(2.19GHz)
and 2GB memory. To run the large scale matching tasks, Anatomy, A-R-S benchmark
and T-S-D benchmark, the experiments are carried out on a server running Ubuntu
Server 8.10 with two 4-core Intel Xeon E5440 processors(2.83GHz) and 32GB mem-
ory.

2.1 Benchmark

There are in total 111 alignment tasks defined on the benchmark data set. RiMOM takes
exactly the general process of matching. However, on the tasks where the labels are ab-
solutely random strings, the WordNet based strategy and edit-distance based strategy
are not used. The vector-similarity based strategy is always employed. RiMOM main-
tains the high performance on benchmark as previous years.



2.2 Anatomy

The anatomy data set contains two large scale anatomy ontologies. RiMOM first extract
the labels of all concepts from rdfs:label and oboInOwl:Synonym property. The match
process first employs edit-distance based strategy on labels to get the initial mapping,
then RiMOM propagates the similarity on both the concept hierarchy ant the object
property “UNDEFINED part of” to get the alignments which cannot be extracted by
just comparing the labels simply. Since the structure of the two ontologies is somehow
not that similar, we restricted the propagation for every concept locally.

2.3 Oriented Matching

Because our strategy in oriented matching is the combination of the strategy in the
Benchmark dataset and structure based stratedy by using the rdfs:subclass property.
The result relies heavily on the Benchmark strategy and shows the same characteristics
as in the Benchmark dataset. Except in the files the name of the entities are totally ran-
dom string and nearly no other information are available, RiMOM achieves satisfying
results.

2.4 Instance Matching

The result for A-R-S benchmark is as Table 1 shows. RiMOM produces alignments all
with an F-Measure in the range of about 0.75+. The result relate to eprints data have
both high precision than the rexa-dblp one.

Table 1. Result of A-R-S Benchmark

Data Precision Recall F-Measure
eprints-rexa 0.928 0.699 0.797
eprints-dblp 0.930 0.671 0.780

rexa-dblp 0.805 0.725 0.763

The T-S-D benchmark is a blind test, so we do not know the final results for it now.
According to our observation on our alignment, about 30% to 50% of the instances in
the reference files are matched. It seems indeed that most of instances in the reference
can not find a correspondence. Since we choose a relatively high threshold in the final
alignment extraction, we believe the result is of high precision.

Except the dataset 028 which seems missing some correct alignments and the dataset
029 which do not contain a reference alignment, the result for IIMB benchmark is as
Table 2 shows. We can see that RiMOM can achieve perfect alignment in more than half
of the dataset. Only for the dataset 017 in which the information is severely suppressed,
RiMOM can only get an F-Measure less than 0.90. RiMOM is quite successful in IIMB
dataset.



Table 2. Result of A-R-S Benchmark

Dataset Precision Recall F-Measure
001 - 014 1.0 1.0 1.0

015 1.0 0.991 0.995
016 1.0 0.910 0.953
017 0.993 0.626 0.768
018 1.0 0.986 0.993
019 1.0 0.883 0.938

020 - 027 1.0 1.0 1.0
030 1.0 1.0 1.0
031 1.0 0.892 0.943

032 - 037 1.0 1.0 1.0

3 General comments

Except for performing the ontology matching tasks like the previous years, this year we
concentrate on the new and interesting Instance Matching Track. We first modify the
infrastructure of RiMOM to make it to support instance matching naturally. The results
shows that now RiMOM can handle instance matching tasks with good performance.
But there are still many future works to do:

– Although instance matching is regarded as a subtask of ontology matching, the
model of instance matching is different from traditional schema matching to some
extent. Some algorithms in schema matching can not be imported into instance
matching directly. In addition, instance matching seems more close to practical use
than schema matching. This makes it a very attractive research topic.

– The scalability problem is very critical in instance matching. The scale of instance
files are greatly larger than the schema files and the execution times and memory
needs grows very fast as the input scale increases. For example, our strategy for
A-R-S benchmark consumes more than 36 hours to generate the alignment on our
8-core server while the strategy itself is not that complicated. How to solve this
problem is a big challenge. We may try to introduce the database-like techniques
into RiMOM to make it support the large scale instance data better.

– Because the instance data are retrieved from the real web data, so it usually contains
more semantic information than the theoretically designed schemas. However, most
of our approaches are string based comparisons and so on. How to dig the deeperthe
semantics in the instance is another work.

4 Conclusion

In this report, we give aa briefly explanation of how we employed RiMOM to obtain the
alignment results in OAEI 2009 Campaign. We have presented the alignment process
of RiMOM and explained the strategy defined in RiMOM. We focus on the Instance
Matching Track, analyzing the feature of instance matching and introduce the strategies



we use in this track. The experiments illustrates that our system RiMOM can achieve
good results in both schema matching and instance matching tracks. We also discuss
the future work we will do to improve our system.

Acknowledgement

The work is supported by the National Natural Science Foundation of China (No.
60973102 and No. 60703059), the National Basic Research Program of China (973 Pro-
gram) (No. 2007CB310803), the National High-tech R&D Program (No. 2009AA01Z138),
and the Chinese Young Faculty Research Fund (No. 20070003093).It is also supported
by IBM SUR joint project.

References

1. J. Euzenat and P. Shivako. Ontology Matching. Springer-Verlag, Berlin Heidelberg (DE),
2007.

2. http://linkeddata.org/.
3. J. Li, J. Tang, Y. Li, and Q. Luo. RiMOM: A dynamic multi-strategy ontology alignment

framework. IEEE Transaction on Knowledge and Data Engineering, 21(8):1218–1232, Aug
2009.

4. Q. Zhong, H. Li, J. Li, G. Xie, and J. Tang. A Gauss Function based approach for unbal-
anced ontology matching. In Proc. of the 2009 ACM SIGMOD international conference on
Management of data (SIGMOD’2009), Jul 2009.

5. F. Shi, J. Li, and J. Tang. Actively learning ontology matching via user interaction. In Proc.
of the 8th International Conference of Semantic Web (ISWC’2009), Oct 2009.

6. http://wordnet.princeton.edu/.
7. Y. Li, J. Li, D. Zhang, and J. Tang. Results of ontology alignment with RiMOM. In Proc. of

the Second International Workshop on Ontology Matching (OM’07), Nov 2007.
8. X. Zhang, Q. Zhong, J. Li, J. Tang, G. Xie, and H. Li. RiMOM results for OAEI 2008. In

Proc. of the Third International Workshop on Ontology Matching (OM’08), 2008.
9. T. R. Grubber. A translation approach to portable ontology specification. Knowledge Acqui-

sition, 5:199–200, 1993.
10. http://owlapi.sourceforge.net/.
11. http://jena.sourceforge.net/.


