
Towards a Usability Assessment of
Process Modeling Languages

Kathrin Figl†, Jan Mendling‡, Mark Strembeck†
†Vienna University of Economics and Business (WU Vienna)

Augasse 2-6, A-1090 Wien, Austria
firstname.lastname@wu.ac.at
‡Humboldt-Universität zu Berlin

Unter den Linden 6, 10099 Berlin, Germany
jan.mendling@wiwi.hu-berlin.de

Abstract: Visual process models provide support for analyzing and improving com-
plex organizational processes. In this paper, we discuss differences of process mod-
eling languages according to their ease of use and quality of user experience. These
aspects are of importance for learning a modeling language, creating models, and un-
derstanding models. Modeling languages can be compared according to criteria as
representational clarity, perceptual discriminability, perceptual immediacy, visual ex-
pressiveness, and graphic parsimony which are likely to influence cognitive effective-
ness. In particular, we analyze the symbols sets of UML Activity Diagrams, YAWL,
BPMN, and EPCs according to these criteria and discuss their strengths and weak-
nesses. Based on our findings, we propose a preliminary evaluation of the cognitive
effectiveness of these modeling languages, which provides a basis for empirical stud-
ies.

1 Introduction

Business process models play an important role for the documentation of organizational
processes and for the specification of information systems requirements. Although process
modeling can be traced back at least to office automation research in the 1970s [Ell79],
there is surprisingly little consensus on which elements should be covered by a process
modeling language. Since the invention of EPCs in the early 1990s [KNS92, Sch00], there
have been several other languages proposed including Petri nets [Mur89], UML Activity
Diagrams [OMG09b], YAWL [AH05], and BPMN [OMG09a]. Yet, the preference for a
particular language or the intervention of yet another language is often (not always) based
on claims about usability (see [FLM+09]). However, usability considerations provide a
good angle for checking the superiority of a language from an empirical perspective.

An important reference discipline to discuss usability issues of process modeling lan-
guages is cognitive research. This area deals with insights on how humans process in-
formation, create knowledge, and solve problems. A central property of the human brain
is that it works with specialized areas. Sensory information from eyes and ears is transmit-

138

ted to the sensory memory, which holds an after-image of that information for a moment.
This after-image is analyzed and key concepts are held in short-term memory for some
minutes. Visual perception enables understanding of sensory information. Those aspects
that can be linked to other prior knowledge can become part of long-term memory. All
these three different memory parts have different characteristics, which are the foundation
of various theories of comprehension, learning, and problem solving. Several of these
theories have been applied to information systems modeling, among others cognitive load
theory [Swe88], cognitive fit theory [Ves91], the cognitive dimensions framework for no-
tational systems [GP96], and the theory of multimedia learning [May01]. All of them
identify perspectives that can also be considered for discussing advantages and drawbacks
of process modeling languages.

There are many orthogonal characteristics of process modeling languages that can be sub-
ject to a cognitive investigation. In this paper we focus on a recent framework proposed
by Moody and Van Hillegersberg [MH08] who discuss desirable properties of notation
elements from a perceptual perspective. Such a perspective is particularly appealing for
process modeling languages since many of the prominent languages share a rather large
common subset. Different workflow pattern analyses have shown (see, e.g., [Men08]) that
UML Activity Diagrams, YAWL, BPMN, and EPCs share actions and different routing
elements including different types of splits and joins. Our contribution is a discussion of
how the principles of Moody and Van Hillegersberg can be used to identify strengths and
weaknesses of process modeling languages. Furthermore, we synthesize them in terms of
propositions, which speculate on the cognitive effects of these strength and weaknesses.
In this way, we pave the way towards an empirical investigation of their arguments in an
experimental setting.

The remainder of this paper is structured as follows. In Section 2, we summarize the major
arguments on usability of modeling languages. Section 3 discusses cognitive theories
which are relevant for understanding process modeling languages. Section 4 then turns
to the work by Moody and Van Hillegersberg, which we utilize in Section 5 to discuss
strengths and weaknesses of process modeling languages. Finally, Section 6 concludes the
paper and gives an outlook on future research.

2 Theoretical Background

Usability in general can be described as the measure of the ease of use and quality of the
user experience when interacting with a device the user can operate in some way or an-
other [Nie09]. Similarly, according to the ISONORM 9241/11, usability is defined by the
“extent to which a product can be used by specified users to achieve specified goals with
effectiveness, efficiency and satisfaction in a specified context of use” (see [Int98]). In
the context of modeling, effectiveness means how well the modeling technique assists in
accomplishing modeling goals and efficiency refers to the resources needed to use a par-
ticular modeling technique (see [GW04]). Since the benefit of using a specific language
for communication between analysts, developers and users largely depends on the cost of
production, learning curve and speed of decay [AEHE07], usability aspects of modeling

139

languages are of practical relevance. Moody [Moo05] notes that in the area of researching
the quality of modeling languages there is lack of recognition of the relevant ISO standards
for quality management and suggests to build on these foundations. ISONORM 9241 is
a multi-part standard entitled ‘Ergonomics of Human System Interaction’ and in the sub
part 9241/110 general usability heuristics for the design, the description and evaluation of
interactive systems are proposed [Int06]. Although these principles were designed for the
interaction between a user and a software system, at least the criteria: suitability for the
task, self-descriptiveness, conformity with user expectations, suitability for individualiza-
tion and suitability for learning also fit to the evaluation of modeling languages (controlla-
bility and error tolerance fit less). Nielsen [Nie09] refers to similar quality characteristics
for usability: learnability, efficiency (time needed to perform a task), memorability (per-
formance after a period without using it), amount of errors made by users and user satis-
faction. When considering the usability of a modeling language, ease-of-use refers to the
effort of learning the language, using the language (active modeling) and understanding
models defined in the respective language [RR07, p. 2022]. Although there are standards
for measuring quality and usability of software, there is no equivalent for models and mod-
eling languages [Moo05]. Therefore, the next section will detail a number of factors that
have to be take into account for an usability evaluation of modeling languages.

3 Cognitive Aspects of Modeling Languages

Basically, two main aspects of modeling can be distinguished (see [GW04]):

• Creating models: Process aspects of creating models include the effort (e.g. time)
required to construct them, subjective ease-of-use, and ease-of-learning. The result
of the modeling process is a model, which can be assessed concerning different
quality aspects (such as correctness, accuracy, detail, completeness, quality, type of
errors).

• Understanding/Interpreting models: In the process of model understanding, much
cognitive activity is involved. The outcome of understanding is cognitive per se, i.e.
it is created in the viewer’s cognition and not directly observable. It can only be mea-
sured indirectly, e.g. via ‘problem-solving’ tasks in which newly developed mental
models have to be used or via comprehension tests (see, e.g., [GW04]). Addition-
ally, recall tests or correctly identified problems can be used to capture ‘understand-
ing’. Models from different modeling languages are likely to differ according to
the effort required to interpret them and develop understanding, as well as in the
perceived difficulty of obtaining information through their visual representation.

Both of these aspects show the complex interplay between human cognitive models and
visual models. Therefore, the ability of a language to support appropriate translations be-
tween cognitive and visual models is probably the most essential criterion for determining
it’s usability. Norman’s theory of action [ND86] can be used to explain differences be-
tween cognitive models of a model creator/viewer and a visually expressed model [GW04,

140

p. 256].

• A ‘gulf of execution’ in modeling is the gap between a user’s goals and the means
that are applied to execute that goal. Discrepancies may, for instance, result from a
modeling language that is not expressive enough and lead to extra effort, i.e. requir-
ing additional thinking and distract from achieving the original modeling goal.

• A ‘gulf of evaluation’ refers to the gap between a stimulus (a model) and the result-
ing comprehension. Comprehension problems causing deviations between cognitive
models and the actual visual representation/the intended meaning can for example
be provoked by ambiguity of a modeling language.

Cognitive theories are central to the usability evaluation of different modeling languages.
Mental processes as visual perception, information processing, reasoning and problem
solving, attention, as well as short and long term memory are affected in learning how to
use specific modeling languages, creating models, and understanding models. Aside from
the fact that e.g. learning a modeling language may demand different mental processes than
understanding a model, we hypothesize that there are specific aspects inherent a language
that are likely to have an impact on all of these cognitive processes.

Up to now a variety of underlying cognitive theories were adopted to the context of model-
ing - often to explore potential benefits of the visual expression - as the dual coding theory
[Pai91], the theory of working memory [BH74], the cognitive load theory [Swe88], the
theory of multimedia learning [May01] and the external cognition theory [SR96].

Since process models usually represent complex relationships and humans have limited
information processing capabilities (see [Ves91, p. 220]), a main goal in the design of
process modeling languages is to reduce cognitive load for users to enable more effective
problem solving. Low cognitive effort is positively related to a variety of quality aspects
of models (see [ST05, p. 352]). Maes et al. [MP07] even define the perceived ease of
understanding of a model as “the degree to which a person believes that using . . . would
be free of mental effort”. Cognitive load is determined by the amount of elements needed
to be paid attention to at a point of time [Kir02]. There is a natural limit of the capacity
of short-term memory of humans of approximately 7 +/- 2 elements [Mil56]. Although
the amount of elements is limited, their size and complexity is not. Chunking expands the
capacity of short-term memory, because information units belonging together are chunked
into one unit [GLC+01]. Short-term memory, refined by Baddely and Hitch [BH74] as
working memory, includes besides a central executive component a phonological loop and
a visuo-spatial sketchpad. Performance on simultaneous tasks requiring separate percep-
tual domains (as visual and verbal) is much higher than for example working with two
different texts. Similarly, the dual coding theory postulates that visual information (e.g.
pictures) and verbal information (e.g. texts) are stored and processed differently via sep-
arate mental channels that do not compete with each other (see [Pai91]). In particular,
research found evidence that learning material combining text and visual images support
learning better than text only. The cognitive multimedia learning theory [May01] proposes
different principles how to combine text and pictures. According to the contiguity princi-
ple, learning is better, when text and pictures are presented spatially near each other. In

141

consequence, text and icons belonging together should be placed near each other in vi-
sual models. However, the combination of text and visual information can also lead to
cognitive overload (split-attention principle).

The cognitive load theory [Swe88] details how the working memory load influences learn-
ing and knowledge acquisition. In experiments, Sweller [Swe88] found out that heavy
cognitive load during problem solving exercises impairs learning, especially schema con-
struction. The theory differs between three types of cognitive load: intrinsic, extraneous
and germane cognitive load. In contrast to intrinsic cognitive load (determined by the com-
plexity of information, i.e. the amount of elements, and their relations and interactions),
the extraneous cognitive load is influenced by the way the information is represented (see
[Kir02, p.4]). While the cognitive load devoted to learning and understanding (germane
cognitive load) should be promoted, extraneous cognitive load should be held low. This
can, for example, be achieved by reducing additional, irrelevant information. By mapping
the cognitive load theory to the context of modeling, it becomes clearer, why modeling
languages might vary in their cognitive effectiveness. If the same information is modeled
in different modeling languages, the resulting models should, to a large extend, have a sim-
ilar intrinsic cognitive load, but they differ in their extraneous cognitive load. The amount
of extraneous cognitive load caused by the modeling languages leads to differences in
learning and understanding (see, e.g., [CS96]).

Due to the complex control flows, the creation and understanding of process models is
likely to demand high cognitive reasoning and effort for logical thinking for human users.
Additionally, users may, for example, want to deduce correct assumptions on how busi-
ness processes are carried out in an organization based on a process model, or determine
what will happen if a process cannot be carried out. Visual models not only demand, but
also support users in their reasoning processes because “cues to the next logical step in
the problem may be present at an adjacent location” [LS87, p.65]. Most research on de-
ductive reasoning focuses on experiments with textual material and little is known about
reasoning involved in visual modeling. Research, has shown, for instance, that there exist
systematic fallacies (so called ‘illusory inferences’) when individuals internally construct
mental models on premises including modeling-level connectives (like conjunctions, in-
clusive, or exclusive disjunctions) and draw conclusions from these mental models (see,
e.g., [KJL09, NJL06]). In correspondence to mental models this may also hold true for
externalized visual process models. In addition, the vast body of literature on error anal-
ysis of process models seems to give a hint on the occurrence of systematic reasoning
fallacies concerning connectors (see, e.g., [MNvdA07, MvdA07, Men07]). Since correct
interpretation of connectors in process models is inevitable for overall understanding, we
hypothesize that the visualisation of connectors may especially affect whether different
process model notations support understandability.

Besides creating and understanding models, learnability is a main factor for the usability of
a modeling language. Learnability of the modeling notation largely depends on the depth
of knowledge someone wants to acquire (e.g. learning the full set of language constructs,
vs. learning a subset that is sufficient for conducting a specific modeling task). Green and
Petre [GP96] point out that ‘consistency’ of visual languages is relevant. This means that
users who have learned a certain part of the language can infer the rest. In more complex

142

languages, as for example BPMN (39 language constructs), it will take longer to acquire
expertise, as in more simple languages, such as EPC (9 language constructs) [RD07, p.
358]. Similar to notations in physics or geometry some knowledge on the conventions of
the notation will be inevitable for understanding the intended meaning of a process model.
Other general aspects regarding learnability include the prior knowledge and experience or
the instruction, which may have more impact on learning than the language per se. Recker
and Dreiling [RD07, p. 351] showed that transfer concerning the ability to understand and
read a model from a specific process modeling notation to another is surprisingly easy.
Students who had solely be trained to EPC models scored equally well in comprehension
tests of BPMN and EPC models.

4 Evaluating Cognitive Quality of Modeling Languages

The form of visual information representation can have a significant impact on the effi-
ciency of information search, explicitness of information, and problem solving (see [LS87]).
Compared to the semantic development, little research has been undertaken in order to im-
prove the visual syntax of modeling languages (see, e.g., [MH08]). One of the key goals
for the visual design of a model is that viewers draw attention to those components crucial
for understanding and cognitive inferencing (see [SR96, p.207]). According to Moody and
Hillersberg [MH08] there are 5 principles for cognitive effective visual design of model-
ing notations: semiotic clarity, perceptual discriminability, perceptual immediacy, visual
expressiveness and graphic parsimony.

• Semiotic/Representational Clarity: This principle points out the importance of a
good fit between the graphical symbols used in a modeling notation and the seman-
tic concepts they refer to. Anomalies like symbol redundancy (more than one sym-
bol represents the same concept), overload (one symbol represents more than one
concept), symbol excess and deficit (there are graphical symbols without a corre-
spondence to a semantic construct or vice versa) should be avoided, since they lead
to ambiguity and additional unnecessary cognitive load for the user (see [MH08,
p. 20]). For cognitive efficiency, graphical constraining will be a goal1. Conse-
quently, notations will also highlight specific aspects of information at the expense
of other aspects (see [GP96]). For evaluating the representational potential of a
process modeling language the Bunge-Wand-Weber model [YR95] can be used. In
a recent comparative analysis (see [RRIG09]), the modeling techniques EPC and
BPMN were compared concerning their ontological completeness and clarity. The
results of this comparison revealed interesting differences that are likely to have an
effect on the cognitive efficiency of these languages.

• Perceptual Discriminability: Perceptual discriminability of symbols determines
how easy it is for a user to distinguish between different symbols and visually rec-

1Graphical constraining is defined by Scaife and Rogers [SR96, p.189] as “the way graphical elements in
a graphical representation are able to constrain the kinds of inferences that can be made about the underlying
represented world”

143

ognize differences between them. It is highly influenced by the amount of visual
variables in which symbols differ (also referred to as visual distance). If visual
symbols are highly unique on a visual variable, they are likely to ‘pop out’ and are
easy to locate in a model [MH08, p. 21]. Low perceptual discriminability can lead
to misunderstandings. Research showed that for instance rectangles and diamonds
in ER diagrams are easily confused (see [NC99]). On the other hand, if different
symbols in a notation have similar attributes as color or shape, they are likely to
be recognized as belonging together. According to the ‘Gestalt law of similarity’,
elements will be grouped together if they have similar attributes (see [Wer38]). In
consequence, symbols in a modeling language should differ sufficiently by visual
variables to be perceptual discriminable. However, sometimes it is intended that
symbols share visual variables if they should be recognised as related to each other.

• Perceptual Immediacy: Perceptual immediacy supports the user’s understanding
of the meaning of graphical symbols and representations, and describes whether
symbols and their corresponding concepts are easily associated. Icons, for example,
are easily associated with their referent real-world concepts. Iconic representations
for classes of activities could improve the understandability of process models as
suggested by [MR08], but are not yet commonly used. Additionally, spatial rela-
tionships of symbols can help to induce specific desired interpretations by a user
(e.g. left-to-right implies sequence). Even a small layout change in the same graph
may transport a different meaning (e.g. centrality vs. hierarchy) (see [AEHE07]).
Both principles, iconic and spatial representation, seem to be related to the concept
of cognitive metaphors [Lak92], which refers to the mapping of a conceptual do-
main in terms of another target domain. Modeling languages are likely to differ
according to the intuitiveness of the visual metaphors they use for expressing real-
world concepts. Theories of long term memory as the spreading activation theory
[And83] assume that internal mental representation consist of associative networks
in the form of a graph. According to Rockwell and Bajaj [BR05], modeling effec-
tiveness and efficiency will be higher if the symbols used in a modeling notation
are more similar to “the concept of node-relationship arc depiction of information”.
Therefore, it can be hypothesised that process modeling notations with nodes and
edges are likely to be intuitively understandable (because of their compatibility with
internal mental representations).

• Visual Expressiveness: Modeling notations which fully exploit the range of visual
variables (spatial dimensions like horizontal and vertical, as well as shape, size,
colour, brightness, orientation, and texture) have higher visual expressiveness. In
comparison to a textual representation (words), which are encoded verbally in their
reading direction, visual symbols are internally encoded in their spatial arrangement
(see [San77]). Therefore, it is of importance to assess spatial dimensions of mod-
eling notations. Using swimlanes in activity diagrams, for example, includes both
planar variables for depicting information on who is working on an activity (see
[MH08, p. 29]).

• Graphic Parsimony: Model complexity is determined by “the use of embedded
symbols and distinct graphic symbols” [NC99, p. 141]. High graphic complexity of

144

a modeling notation may impair understanding and therefore should be avoided. On
the other hand there will be a tradeoff between complexity and expressiveness.

5 Language Differences

5.1 Basic Elements of Process Modeling Languages

In general, process modeling languages include a number of basic, generic, and consensual
elements that allow to define process flows. Below we briefly introduce these basic ele-
ments, before the subsequent sections discuss how different process modeling languages
define these generic elements.

Start A start node defines the initial node of a process. A start node may have one or
more outgoing edges.

End An end node defines the final node of a process or sub-process. An end node does
only have incoming edges.

Tasks Different variants of task nodes exist. In general, a task node models a clearly
defined action or process step. Tasks can be conducted by human users or software
agents.

Decision A decision node models choices in a process flow. Decision nodes thereby de-
fine alternative routing options in a certain process.

Merge A merge node consolidates different (optional) paths that result from a choice
made by a decision node.

Split A split node models parallel branches in a process. Thus, sub-processes started by
the same split node are performed simultaneously.

Join A join node synchronizes parallel sub-processes. Typically, a join node synchronizes
sub-processes resulting from a split node.

Event An event defines the occurrence of a certain type of ‘incident’. In process models
events are typically used to trigger tasks. In addition, a task may also produce events
which may trigger other tasks.

In Figures 1 and 2, we see five variants of a simplified credit application process modeled
via an UML activity model, BPMN, YAWL, EPC, and as classical Petri net, respectively.

5.2 UML Activity Models

Figure 3 depicts the basic elements of UML2 activity models (see [OMG09b]). The main
element of an activity model is an Activity. The Activity represents a process that con-
sists of Actions and different types of control nodes. Actions thereby define the tasks

145

Credit
application [else]

Credit application process

Credit
application

Check
application form

[Check passed]

[else]

Reject
application

Contract

Contract

[approved]

[Form Ok]

[else]

Check credit
worthiness

Negotiate
contract

Approve contract

Add to
black list

Activity Model (UML)

Check
application form

Check credit
worthiness

Form Ok

Form not Ok

passed

not passed

Reject
application

Add to
black list

Credit
application

Negotiate
contract

Approve
contract

Contract

Contract approved

Contract not approved

Business Process Modeling Notation (BPMN)

Check
application form

Check
credit worthiness

Negotiate
contract

Approve
contract

Add to
black list

Reject
application

Yet Another Workflow Language (YAWL)

Figure 1: An example process modeled via UML, BPMN, and YAWL

146

New
application form

Form Ok

Form not Ok

Check
application form

Check credit
worthiness Check passed

Check not passed

Negotiate
contract

Approve
Contract

Contract ready

Contract
approved

Contract not
approved

Reject
application

Add to
blacklist

Application
rejected

Event-driven Process Chain (EPC)

New
application form

Check
application form

Form
checked

Check
credit worthiness

RejectionA

Reject1 Reject2

Reject
application

Add to
black list

Rejection
sent

Black list
updated

Check
completed

RejectionB

Negotiate
contract

Contract
ready

Approve
contract

Decision
reached

Re-negotiate
contract

Finish
process2

Finish
process1

Classical Petri Net

Figure 2: An example process modeled as EPC and classical Petri net

147

Initial node Activity final node Flow final node

.

Fork node

. . .

Join nodeDecision node Merge node

Action

Invoking activities
(Call behavior action)

Accept event action nodesSend signal action node

...

...
...

Activity name

Activity

Figure 3: Basic elements of UML activity models

(steps) that are performed when executing the corresponding Activity. To model the (syn-
chronous or asynchronous) invocation of other processes from an Activity, one may use
an action symbol (round-cornered rectangle) including a small rake symbol (see Figure 3).
In essence, this modeling element defines that the corresponding step in a process is itself
a process that is modeled via an own Activity model.

Activity models have a token semantics, similar (but not equal) to Petri nets. Each Activ-
ity may have one or more Initial nodes and one or more Final nodes. In case the process
flow reaches an Activity Final node, it immediately stops the execution of all actions and
terminates the respective Activity. In contrast, a Flow Final node only destroys the tokens
flowing into it but does not terminate the Activity. A Decision node is represented by a
diamond-shaped symbol and has one incoming and multiple outgoing edges. A Merge
node is represented by a diamond-shaped symbol and has multiple incoming and one out-
going edge. A Fork node is represented via a thick line and has one incoming and multiple
outgoing edges. A Join node is represented via a thick line and has multiple incoming and
one outgoing edge. A Send Signal node is represented by a convex pentagon. Two dif-
ferent types of Accept Event Action nodes exist. An ordinary Accept Event Action node
is represented via a concave pentagon and waits for the occurrence of a particular type of
event. The corresponding event type may result from a signal produced by a Send Signal
node. An Accept Time Event Action node is represented by an hour-glass shaped symbol.

The UML notation partially violates some of the criteria identified by Moody. There is
some gap of representational clarity with different end symbols (activity final and flow
final). On the other hand, the different end symbols have clearly defined and distinct
semantics. Furthermore, start and end nodes look quite similar. A strong point of UML
is the clear discrimination between decisions and concurrency. Both routing elements
are significantly different. A certain degree of immediacy is provided by Send Signal and
Accept Event nodes. The rest of the notation remains rather abstract. Visual expressiveness
is used to distinguish concurrent from alternative branching. Altogether, the notation set
is quite parsimonial although it is quite expressive.

148

5.3 Business Process Modeling Notation (BPMN)

Figure 4 depicts the core process model elements of the BPMN notation [OMG09a]. Note
that there are further symbols, which are more specific, e.g. for throwing exception events.
BPMN uses different types of events for defining the start and end of a process. The
symbols shown in the figure can be extended with additional symbols to describe, for
instance, a message start event or a timer. BPMN also distinguishes different types of end
events. The terminate event explicitly kills all parts of the process that still might be active.
Sending and receiving intermediate events are defined by filled and unfilled symbols within
a circle, respectively. The different steps in a process are captured as tasks. Different types
of tasks exist, e.g. embedded and collapsed sub-processes. Finally, there are gateways for
specifying routing constraints. Splits and joins both use a diamond shape. XOR gateways
can be drawn without a symbol or with an X inside. AND gateways contain a plus sign.

Start Event End Event Terminate Send Receive

Task

Task

XOR Split XOR Join AND Split AND Join Sub-Process
Embedded

Sub-Process

Collapsed

+

Task
Task

Figure 4: Basic elements of BPMN diagrams

The BPMN notation exhibits different weaknesses. Representational clarity is partially
violated. XOR gateways can be described with different symbols (blank diamond and X
diamond). This maybe confusing to model readers. Furthermore, there is little perceptual
discrimination between different pairs of elements. Start, end, and intermediate events
are only distinguished by their border (thin, bold, double-lined). Also XOR gateways
as X diamonds are difficult to distinguish from AND gateways with a plus. This may
lead to confusion, too. Intermediacy is rather low with the blank set of symbols. On
the other hand, many event subtype symbols (e.g. envelop for message event) are very
intuitive. Visual expressiveness is somewhat limited for the standard set of symbols: tasks
and gateways are both quadrangles and gateways are circles. However, a rich set of shapes
is used as symbols for event subtypes along with varying brightness for throwing (filled
black) and catching of events (not filled). Texture and color is not used in the standard
symbol set, but is often introduced by modeling tools for highlighting tasks. Finally, there
is hardly any graphic parsimony. BPMN uses an extensive set of symbols and subtype
symbols. This might make it difficult to learn the language.

149

5.4 Yet Another Workflow Language (YAWL)

The core elements of YAWL are shown in Figure 5. YAWL uses a unique start and end
condition to mark the beginning and termination of a process. Conditions are used to
separate tasks (similar to places in Petri nets), yet they do not need to be explicitly drawn.
Tasks are depicted as rectangles. There are variants of tasks, e.g. multiple instance tasks
and sub-process tasks. Routing behavior is defined by thin blocks on the left-hand and
right-hand side of tasks. Both XOR and AND splits and joins use triangle symbols.

Start
Condition

End
Condition Condition Task

XOR Split XOR Join AND Split AND Join Sub-Process

Multiple
Instance Task

Figure 5: Basic elements of YAWL diagrams

The criteria by Moody point to potential problems of the YAWL notation. Representa-
tional clarity is violated, because a decision and a simple merge can be described either by
conditions with multiple incoming and outgoing arcs, or with XOR joins and splits. There
is also no direct support for events in YAWL. Thus, catching and throwing of events have
to be defined using tasks. There is also a serious problem with discrimination of AND and
XOR splits and joins. They share the same symbol. The semantics have to be identified
also based on the position on the split/join block along with the number of incoming and
outgoing arcs to the respective task. YAWL is also a quite abstract notation. However, start
and end conditions provide a good intuition of their semantics based on an audio player
metaphor. There is little visual expressiveness due to little variation in shape and size.
Filled shapes are only used for starts and ends. On the other hand, the notation is quite
parsimonial, at least when compared to BPMN.

5.5 Event-driven Process Chains (EPCs)

The EPC notation contains three types of symbols: circles for connectors, rounded rectan-
gles of functions, and hexagons for events. There is no distinction symbol-wise between
different types of events. Different connectors can be distinguished by their symbol, ×
for XOR, ∧ for AND, and ∨ for OR. Beyond that, there are two ways of defining sub-
processes, either by a sub-process symbol on the right bottom corner of the function sym-
bol or as a so-called process interface to start a subsequent process.

150

Start Event End Event Event Function

XOR Split XOR Join AND Split AND Join
Process
Interface

Sub-Process

Start End

Figure 6: Basic elements of EPCs

EPCs also have problems with different usability criteria. The event symbol is heavily
overloaded, which causes problems in terms of clarity. Start, end, intermediate events, and
all kinds of events types map to the same symbol. There is also a problem to easily dis-
criminate AND and OR connectors. They share the same symbol, only mirrored vertically.
Altogether, the symbol set of EPCs is very abstract, such that there is little immediacy and
intuition of the symbols. Visual expressiveness is also limited. Some tools depict events
and functions in red and green color, which helps to distinguish them. The notation is also
parsimonial by using only a small symbol set.

5.6 Petri Nets

Petri nets have the smallest symbol set of the languages discussed here. Transitions cap-
ture tasks, as well as synchronization (multiple in-arcs) and introduction of concurrency
(multiple out-arcs). Places define a partial state, that can also be used to define decision
points and simple merges.

TransitionPlace

Figure 7: Basic elements of Petri nets

Due to the small set of symbols, Petri nets have problems with clarity. Their elements
capture quite different behavior depending on the number of incoming and outgoing arcs.
The two symbols, rectangles for transitions and circles for places, can be easily discrim-
inated, though. Yet, they remain abstract such that there is no intuition or immediacy.
Visual expressiveness only builds on the parameter shape, which is OK for only two sym-

151

bols. Altogether, Petri nets are a language of extreme graphic parsimony using only two
different symbols.

5.7 Evaluation and Discussion

Based on the number and types of issues identified above we can hypothesize about un-
derstanding and learning performance depending on the process modeling language.

Representational Clarity A lack of clarity is likely to result in two problems when cre-
ating a model based on redundant symbols. First, modelers might need more time
to decide which among several alternative elements to use for representing a certain
real-world fact. Second, models created by different modelers may vary signifi-
cantly in terms of the symbols they use for the same facts. These problems are
likely to show up with BPMN and YAWL. On the other hand, symbol overload may
result in corresponding ambiguity for somebody who is reading the model. This is-
sue seems to be more relevant to EPCs and Petri nets. UML activity diagrams seem
to have the highest degree of clarity from the languages being discussed.

Perceptual Discriminability Good discrimination should support fast visual perception
and good recall in short term memory. All languages have some weaknesses in dis-
criminating start and end nodes except YAWL. On the other hand, YAWL is very
weak in discriminating routing elements. This is also partially the case for EPCs
(OR versus AND) and BPMN (X versus +). UML very clearly distinguishes con-
currency and alternative branching with significantly different symbols. Finally,
EPCs have some weaknesses in discriminating functions and events.

Perceptual Immediacy Many language elements are very abstract such that no intuition
is provided. Some counter examples are start and end conditions in YAWL and
certain event types in BPMN. These elements should be easy to identify and to
remember.

Visual Expressiveness The visual expressiveness of process modeling languages is lim-
ited. Most elements only vary in shape and size. Counter examples are again events
in BPMN (throwing versus catching), YAWL start and end, as well as UML concur-
rency and alternative routing.

Graphic Parsimony BPMN is by far the richest language in terms of its symbol set.
Therefore, it should also be the most time consuming to learn. YAWL and UML
also provide a rather large set of symbols. EPCs and Petri nets are lean in terms of
symbols, such that they should be easy to learn notation-wise. On the other hand,
they are the most abstract notations such that they should be the most difficult ones
to be applied correctly.

The different observations on weaknesses of process modeling languages offer the chance
for a comparative evaluation. A particular aspect that is strongly supported by one lan-
guage and weakly by another should directly materialize in a difference in understanding

152

or learning performance. A respective empirical experiment is missing so far, and on our
agenda of future research.

6 Conclusion

Despite increasing consciousness about the need to consider the (non-technical) user’s
point of view in the area of information systems engineering, little research has been un-
dertaken in order to improve and understand the usability of modeling languages. Up to
now, few studies have investigated differences of process modeling languages concern-
ing human factors such as ease-of-use, understandability, or learnability. On that account
we build on cognitive theories to identify different perspectives for discussing usability of
modeling languages. The main contribution of this paper is an analysis of the symbol sets
of the five most prominent process modeling languages according to characteristics which
are likely to have an impact on cognitive effectiveness and usability. The evaluation results
show remarkable differences of languages according to representational clarity, perceptual
discriminability, and graphic parsimony. Consequently, to meaningfully examine and bet-
ter support the choice and development of process modeling languages, future research
should investigate whether these differences of the visual notations in fact influence un-
derstandability or learnability. Further empirical studies including human errors analysis
as well as problem-solving, comprehension, and recall tasks have the potential to provide
new insights concerning the usability of different process modeling languages and to test
our preliminary hypotheses.

References

[AEHE07] J. Aranda, N. Ernst, J. Horkoff and S. M Easterbrook. A Framework for Empirical
Evaluation of Model Comprehensibility. In 29th International Conference on Software
Engineering (ICSE’07). International Workshop on Modeling in Software Engineering
(MiSE-07), Minneapolis, USA, 2007.

[AH05] W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow Lan-
guage. Information Systems, 30(4), June 2005.

[And83] John R. Anderson. A spreading activation theory of memory. Journal of Verbal Learn-
ing and Verbal Behavior, 1983.

[BH74] A.D. Baddeley and G. Hitch. The psychology of learning and motivation: Advances
in research and theory, Jgg. 8, Kapitel Working memory., pp. 47–89. Academic Press,
New York, 1974.

[BR05] Akhilesh Bajaj and Stephen Rockwell. Advanced Topics in Database Research, Kapi-
tel COGEVAL: A Propositional Framework Based on Cognitive Theories To Evaluate
Conceptual Models, pp. 255–282. Idea Group Publishing, 2005.

[CS96] Paul Chandler and John Sweller. Cognitive Load While Learning to Use a Computer
Program. Applied Cognitive Psychology, 10(2):151–170, 1996. 10.1002/(SICI)1099-
0720(199604)10:2¡151::AID-ACP380¿3.0.CO;2-U.

153

[Ell79] C.A. Ellis. Information Control Nets: A Mathematical Model of Office Information
Flow. In Proceedings of the Conference on Simulation, Measurement and Modeling of
Computer Systems, pp. 225–240, Boulder, Colorado, 1979. ACM Press.

[FLM+09] D. Fahland, D. Lübke, J. Mendling, H. Reijers, B. Weber, M. Weidlich and S. Zugal.
Declarative versus Imperative Process Modeling Languages: The Issue of Understand-
ability. In Terry Halpin, John Krogstie, Selmin Nurcan, Erik Proper, Rainer Schmidt,
Pnina Soffer and Roland Ukor, Hrsg., Enterprise, Business-Process and Information
Systems Modeling. Proceedings of the 10th International Workshop, BPMDS 2009,
and 14th International Conference, EMMSAD 2009, Jgg. 29 of Lecture Notes in Busi-
ness Information Processing, 2009.

[GLC+01] Fernand Gobet, Peter C.R. Lane, Steve Croker, Peter C-H. Cheng, Gary Jones, Iain
Oliver and Julian M. Pine. Chunking mechanisms in human learning. Trends in Cog-
nitive Sciences, 5(6):236 – 243, 2001.

[GP96] T.R.G. Green and M. Petre. Usability Analysis of Visual Programming Environments:
A ’Cognitive Dimensions’ Framework. J. Vis. Lang. Comput., 7(2):131174, 1996.

[GW04] Andrew Gemino and Yair Wand. A Framework for Empirical Evaluation of Concep-
tual Modeling Techniques. Requirements Engineering, 9(4):248–260, 2004.

[Int98] International Organization for Standardization. ISO 9241-11:1998 - Ergonomic re-
quirements for office work with visual display terminals (VDTs) – Part 11: Guidance
on usability, 1998.

[Int06] International Organization for Standardization. ISO 9241-110:2006 Ergonomics of
human-system interaction – Part 110: Dialogue principles., 2006.

[Kir02] Paul A. Kirschner. Cognitive load theory: implications of cognitive load theory on the
design of learning. Learning and Instruction, 12(1):1–10, February 2002.

[KJL09] Sangeet Khemlani and P. N. Johnson-Laird. Disjunctive illusory inferences and how
to eliminate them. Memory & Cognition, 37(5):615–623, 2009.

[KNS92] G. Keller, M. Nüttgens and A.-W. Scheer. Semantische Prozessmodellierung auf
der Grundlage “Ereignisgesteuerter Prozessketten (EPK)”. Heft 89, Institut für
Wirtschaftsinformatik, Saarbrücken, Germany, 1992.

[Lak92] George Lakoff. Metaphor and Thought, Kapitel The Contemporary Theory of
Metaphor. Cambridge University Press, 1992.

[LS87] Jill H. Larkin and Herbert A. Simon. Why a Diagram is (Sometimes) Worth Ten
Thousand Words. Cognitive Science, 11(1):65 – 100, 1987.

[May01] Richard E. Mayer. Multimedia Learning. Cambridge University Press, Cambridge,
Massachusetts, 2001.

[Men07] Jan Mendling. Detection and Prediction of Errors in EPC Business Process Models.
Phd thesis, Vienna University of Economics and Business Administration, 2007.

[Men08] Jan Mendling. Metrics for Process Models: Empirical Foundations of Verification,
Error Prediction, and Guidelines for Correctness, Jgg. 6 of Lecture Notes in Business
Information Processing. Springer, 2008.

[MH08] Daniel Moody and Jos Hillegersberg. Evaluating the Visual Syntax of UML: An Anal-
ysis of the Cognitive Effectiveness of the UML Family of Diagrams. Springer-Verlag,
Berlin, Heidelberg, 2008.

154

[Mil56] G.A. Miller. The magical number seven, plus or minus two: some limits on our capac-
ity for processing information. Psychological Review, 63:81–97, 1956.

[MNvdA07] Jan Mendling, Gustaf Neumann and Wil M. P. van der Aalst. Understanding the Oc-
currence of Errors in Process Models based on Metrics. In Robert Meersman and Zahir
Tari, Hrsg., On the Move to Meaningful Internet Systems 2007, Jgg. 4803 of Lecture
Notes in Computer Science, pp. 113–130. Springer, Vilamoura, Portugal, 2007.

[Moo05] Daniel Laurence Moody. Theoretical and Practical Issues in Evaluating the Quality of
Conceptual Models: Current State and Future Directions. Data & Knowledge Engi-
neering, 15(3):243–276, 2005.

[MP07] Ann Maes and Geert Poels. Evaluating Quality of Conceptual Modelling Scripts Based
on User Perceptions. Data & Knowledge Engineering, 63(3):701–724, 2007.

[MR08] Jan Mendling and Jan Recker. Towards Systematic Usage of Labels and Icons in Busi-
ness Process Models. In Terry Halpin, Hendrik Alexander Proper and John Krogstie,
Hrsg., 12th International Workshop on Exploring Modeling Methods in Systems Anal-
ysis and Design, CEUR Workshop Proceedings Series, pp. 1–13, Montpellier, France,
2008. CEUR.

[Mur89] Tadao Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the
IEEE, 77(4):541–580, 1989.

[MvdA07] Jan Mendling and Wil M. P. van der Aalst. Formalization and Verification of EPCs
with OR-Joins Based on State and Context. In John Krogstie, Andreas L. Opdahl and
Guttorm Sindre, Hrsg., Advanced Information Systems Engineering - CAiSE 2007,
Jgg. 4495 of Lecture Notes in Computer Science, pp. 439–453. Springer, Trondheim,
Norway, 2007.

[NC99] J. C. Nordbotten and M. E. Crosby. The effect of graphic style on data model in-
terpretation. Information Systems Journal, 9(2):139–155, 1999. 10.1046/j.1365-
2575.1999.00052.x.

[ND86] Donald A. Norman and Stephen W. Draper. User Centered System Design; New Per-
spectives on Human-Computer Interaction. L. Erlbaum Associates Inc., Hillsdale, NJ,
USA, 1986.

[Nie09] J. Nielsen. Usability 101: Introduction to Usability, 2009.

[NJL06] Mary R. Newsome and P. N. Johnson-Laird. How falsity dispels fallacies. Thinking &
Reasoning, 12(2):214–234, 2006.

[OMG09a] OMG. Business Process Modeling Notation (BPMN). available at:
http://www.omg.org/spec/BPMN/1.2/, January 2009. Version 1.2, formal/2009-01-03,
The Object Management Group.

[OMG09b] OMG Unified Modeling Language (OMG UML): Superstructure. available at:
http://www.omg.org/technology/documents/formal/uml.htm, February 2009. Version
2.2, formal/2009-02-02, The Object Management Group.

[Pai91] Allan Paivio. Dual Coding Theory: Retrospect and Current Status. Canadian Journal
of Psychology, 45(3):255–287, 1991.

[RD07] Jan Recker and Alexander Dreiling. Does It Matter Which Process Modelling Lan-
guage We Teach or Use? An Experimental Study on Understanding Process Modelling
Languages without Formal Education. In Mark Toleman, Aileen Cater-Steel and Dave
Roberts, Hrsg., 18th Australasian Conference on Information Systems, pp. 356–366,
Toowoomba, Australia, 2007. The University of Southern Queensland.

155

[RR07] Jan Recker and Michael Rosemann. Understanding the Process of Constructing Scales
Inventories in the Process Modelling Domain. In Hubert Österle, Joachim Schelp and
Robert Winter, Hrsg., 15th European Conference on Information Systems, pp. 2014–
2025, St. Gallen, Switzerland, 2007. University of St. Gallen.

[RRIG09] Jan Recker, Michael Rosemann, Marta Indulska and Peter Green. Business Process
Modeling- A Comparative Analysis. Journal of the Association for Information Sys-
tems, 10(4), 2009.

[San77] J. L. Santa. Spatial transformations of words and pictures. Journal of Experimental
Psychology: Human Learning & Memory., 3:418–427, 1977.

[Sch00] A.W. Scheer. ARIS - Business Process Modeling, 3rd Edition. Springer Verlag, 2000.

[SR96] Mike Scaife and Yvonne Rogers. External cognition: how do graphical representations
work? Int. J. Hum.-Comput. Stud., 45(2):185–213, 1996.

[ST05] Keng Siau and Xin Tan. Improving the quality of conceptual modeling using cognitive
mapping techniques. Data Knowl. Eng., 55(3):343–365, 2005.

[Swe88] J. Sweller. Cognitive load during problem solving: Effects on learning. Cognitive
Science: A Multidisciplinary Journal, 12(2):257–285, 1988.

[Ves91] I. Vessey. Cognitive Fit: A Theory-Based Analysis of the Graphs Versus Tables Liter-
ature*. Decision Sciences, 22(2):219–240, 1991.

[Wer38] M. Wertheimer. A sourcebook of Gestalt psychology, Kapitel Laws of organization in
perceptual forms, pp. 7188. Routledge and Kegan Paul, London, UK, 1938. Reprinted
from Psychologische Forschung, 4, pp. 301350, 1923.

[YR95] Y. Wand and R. Weber. On the deep structure of information systems. Information
Systems Journal, 5(3):203–223, 1995. 10.1111/j.1365-2575.1995.tb00108.x.

156

