
 1

Abstract—We have contributed key elements of a semantically

based intelligence analysis enterprise workflow architecture: a

uniformly accessible semantic store conforming to an enterprise-

wide ontology; a branching context representation to organize

workflow components’ analytical hypotheses; a logic

programming-based, forward-chaining query language for

components to access data from the store; and a software toolkit

embracing all the foregoing to streamline the process of

introducing additional legacy software components as

semantically interoperable workflow building blocks.

We explain these contributions, focusing particularly on the

toolkit. For certain widely used input/output formats—e.g.,

comma-separated value (CSV) files—a knowledgeable user can

quickly “wrap” a newly installed component for workflow

operation by providing a compact and entirely declarative

specification that uses the query language to map specific relation

arguments in the ontology to specific structural elements in the

component’s native input and output formats.

Our contributions are built to work with AllegroGraph, from

Franz, Inc.

Index Terms—Intelligence analysis, enterprise workflow,

hypothesis representation, branching contexts, semantic

interoperability, declarative data transformation, software

component wrapping

I. INTRODUCTION

WE have contributed key elements of a semantically based

intelligence analysis enterprise workflow architecture for

Tangram, a multi-year, multi-contractor threat surveillance and

alerting research and development program sponsored by the

United States’ Intelligence Advanced Research Projects

Agency (IARPA). Tangram’s objective has been to automate

routine analysis workflows, so that these can be executed as

standing processes, on a large scale.

Manuscript submitted August 19, 2009. This work was supported in part

by the U.S. Government.

All authors were with Global InfoTek, Inc., 1920 Association Dr, Suite

600, Reston, VA USA 20191, 703-652-1600, (e-mail:

firstinitialLastname@globalinfotek.com).

C. Long is now with SET Corp., Arlington, VA, 703-738-6214 (email:

clong@setcorp.com).

L. A. Forbes is now with Solutions Made Simple, Inc., Reston, VA (email:

lforbes@sms-fed.com).

To support the rapidly changing needs of an intelligence

enterprise, a workflow authoring tool must be extremely

flexible. The enterprise must be able to rearrange components

(e.g., pattern matchers, classifiers, group detectors) in the same

kind of way that a child rearranges Lego bricks. They must be

able to introduce new software into the enterprise rapidly.

However, Lego bricks have a distinct advantage over legacy

software components from different source: they were all

created to respect a common interface. One brute-force

approach to integrating legacy components is to manually

develop code that transforms data from one form (e.g., Java

objects) to another (e.g., flat files); that requires O(n
2
)

transforms. Tangram’s approach reduces the required number

of transforms to O(n), and our toolkit enables knowledgeable

users to “wrap” legacy components with such transforms,

making the components workflow-ready quickly.

To motivate our contributions, we present the (notional,

simplified) two-component workflow in Fig. 1: a suspicion

scorer hypothesizes potential terrorists, then a group detector

clusters the hypothesized terrorists into hypothesized potential

terrorist groups.

Suspicion Scoring Component Group Detection Component

Fig. 1 A notional intelligence analysis workflow

 The workflow in Fig. 1 raises some enterprise-level

architecture issues that our contributions address.

1) What are components’ input and output data, how is data

stored, and how do components access it? We have

introduced a uniformly accessible semantic store

conforming to an enterprise-wide ontology and a logic

programming-based, forward-chaining query language for

components to access data from the store. Component

specifications (see Issue 3 below) indicate what data is

accessed in particular.

2) How are the hypotheses that analytical components

produce distinguished from background data, and how are

they communicated among components? As hypotheses,

analytical components’ outputs must not simply be mixed

indiscriminately with more uniformly credible evidence

data or with each other. Among other considerations, the

broad body of evidence changes over time (leading to

different hypotheses), and different components—or

Contributions to a Semantically Based

Intelligence Analysis Enterprise Workflow

System

Robert C. Schrag, Jon Pastor, Chris Long, Eric Peterson, Mark Cornwell, Lance A. Forbes, and

Stephen Cannon

 2

different (e.g., control) configurations thereof can lead to

different hypotheses even for the same inputs. We

organize the content of the semantic store into distinct

RDF graphs that we call “datasets,” and (correlating

datasets with contexts) represent the outputs of

successively applied analytical components as branching

contexts (that incrementally add information). Our

component specifications and our query language thus

include parameters for the datasets that are passed among

or otherwise accessed by components. Besides these

datasets for hypotheses, the store includes one or more

background, or “evidence,” datasets and for convenience

some intermediate (i.e., not necessarily hypothetical)

datasets that result from purely logical queries. This

treatment of evidence and hypotheses, together with the

above-mentioned query language, provide a practical

implemented solution to meet broad Tangram

requirements outlined in [6].

3) How can legacy components with arbitrary input/output

formats easily be made to interact with the data? The

contributions above are integrated in a software toolkit to

streamline the process of introducing additional legacy

software components as semantically interoperable

workflow building blocks. For certain widely used

input/output formats—e.g., comma-separated value (CSV)

files—a knowledgeable user can quickly wrap a newly

installed component for workflow operation by providing

a compact and entirely declarative specification that uses

the query language to map specific relation arguments in

the ontology to specific structural elements in the

component’s native input and output formats. The toolkit

also provides some less fully automated interface options

to address more general input/output situations.

II. ARCHITECTURAL SCHEME OF A WORKFLOW COMPONENT

Fig. 2 presents our general scheme for wrapping legacy

components.

Wrapped Component

Transform:

Common

Ontology

����

Native

Format

Transform:

Common

Ontology



Native

Format

Assert to

Semantic

Store

Native

Component

Query

Semantic

Store

Common Semantic Store

Fig. 2 Component wrapping scheme

Fig. 2 schematizes a single wrapped component that

executes processes to:

1) Retrieve input data, expressed in the enterprise’s common

ontology, from the central semantic store.

2) Format the input data for the legacy component.

3) Invoke the legacy component in its “native” (unwrapped)

form.

4) Convert the legacy component’s native-format outputs to

the common ontology, as metadata-bearing hypotheses.

5) Assert the output hypotheses to the central store.

We implement the central semantic store using

AllegroGraph from Franz, Inc. AllegroGraph is a “quad” store

that includes, in addition to the “subject,” “predicate,” and

“object” fields standard to RDF and common to triple stores, a

“graph” field. We use this field to distinguish among the

various datasets that are available as inputs or have been

produced as outputs of workflow components.

We provide a knowledge base (KB) query language

supporting a wrapped component’s query and assertion

processes and allowing users to define, for specific analytical

purposes, KB query components (including no legacy process)

that combine elements from one or more existing datasets into

one or more output datasets. We implement legacy component

wrappers and KB query components using the Prolog and

Common Lisp interfaces to AllegroGraph.

Fig. 3 illustrates the meta-data classes (noted in bold) and

attributes (with multi-valued attributes starred*) that support

the representation of a dataset’s context lineage. We take each

workflow component’s execution, noted in a ProcessExecution

(PE) object, as the source of the statements in any output

(hypothesis) dataset; lineage is manifested in the connections

among datasets, process executions, and workflow executions

(noted in WorkflowExecution objects).

WorkflowExecution

hasProcessExecution*

ProcessExecution

hasProcess (e.g., GDA)

hasPEDatasetInput*

hasPEDatasetOutput*

hasPEControlInput*

ProcessExecutionDatasetInput

hasParameterName (consistent with Process)

hasInputDataset

ProcessExecutionControlInput

hasParameterName

hasValue

ProcessExecutionDatasetOutput

hasParameterName (consistent with Process)

hasOutputDataset

Fig. 3 Meta-data classes and attributes for hypothesis datasets

As noted in Section I, the interpretation of datasets as a

context is incremental along its lineage: in general any

statement that holds in a dataset that is upstream (workflow-

wise) from a given dataset D created during a workflow also

(implicitly) holds in D. The representation is thus space-

efficient. We have not yet found it necessary to implement

such transitivity of dataset contexts directly in the KB query

language; our current workflow components use just

background (evidence) datasets and datasets that their

immediate workflow predecessors create.

 3

?watchlistGraph ?evidenceGraphGroup Detection Watchlist-Evidence

Dataset Join Component

?linkGraph

Group Detection Component

?outputGraph
Fig. 4 Use case workflow (see Section III)

III. USE CASE WORKFLOW

Fig. 4 presents a use case workflow including both a

wrapped legacy component and a KB query component.

In Fig. 4, datasets (graphs) are depicted by square-cornered

boxes; workflow components are depicted by round-cornered

boxes. Each component reads data from one or more input

graphs and writes to one or more output graphs. Here, a

dataset join KB query component is used to select from

broader evidence (right) just information relevant to

watchlisted terrorist suspects (left) for processing by a

downstream legacy group detection component.

In our toolkit, the defining forms for workflow components

are Lisp macro calls. Beyond providing one or more files

containing such definitions, ToolKit users need never interact

directly with Lisp or with AllegroGraph, as we provide

alternative interfaces.

IV. KB QUERY COMPONENTS AND QUERY LANGUAGE

The definition for the KB query component used in Fig. 4

appears below.

(defKB-query-component

 group-detection-watchlist-evidence-dataset-join-component

 ((and (q- ?Event !rdf:type !teo:TwoWayCommunicationEvent

 evidenceGraph)

 (q- ?Event !teo:sender ?sender ?evidenceGraph)

 (q- ?Event !teo:receiver ?receiver ?evidenceGraph)

 (q- ?sender !rdf:type !teo:Person ?evidenceGraph)

 (q- ?receiver !rdf:type !teo:Person ?evidenceGraph)

 (q- ?sender !rdf:type !teo:Person ?watchlistGraph)

 (q- ?receiver !rdf:type !teo:Person ?watchlistGraph)

 (a- ?Event !rdf:type !teo:TwoWayCommunicationEvent

 ?linkGraph)

 (a- ?Event !teo:deliberateActor ?sender ?linkGraph)

 (a- ?Event !teo:deliberateActor ?receiver ?linkGraph)

 (a-- ?sender !rdf:type !teo:Person ?linkGraph)

 (a-- ?receiver !rdf:type !teo:Person ?linkGraph))))

The above component selects events from one dataset

(denoted by the logic variable ?evidenceGraph) whose

participants also appear in another dataset (denoted by

?watchlistGraph) and asserts the links among them in an

output dataset (represented by the logic variable ?linkGraph)

for consumption by a group detection component. Note the

following.

• This component performs a single KB query that

implicitly conjoins (logically) the twelve top-level (q-, a-, and

a--) forms.

• A q- conjunct succeeds iff a triple (in subject, predicate,

object, graph, index—“spogi”—format) exists in the workflow

KB. q- is included in the standard Franz Allegro Prolog

interface to AllegroGraph.

• a- indicates that a triple is to be written to the specified

output dataset. An a- conjunct always succeeds. a- and its

duplicate-avoiding twin a-- (below) are our contributions that

confer the KB query language’s forward chaining character.

• a-- indicates that a triple is to be written to the workflow

KB iff it is not already present there. An a-- conjunct

always succeeds.

• !rdf:type is an example of a shorthand that expands to

http://www.w3.org/1999/02/22-rdf-syntax-ns#type — the

atom type in the namespace for RDF. (!teo: refers to an

application-specific ontology.)

• ?Event, ?sender, and other symbols beginning with ? are

logic programming (AKA Prolog) variables. In the logic

programming style we support, every logic variable

becomes bound when the q- conjunct is matched in the

KB.

• Prolog will backtrack to execute each conjunct in the KB

query for every combination of variable bindings for

which the preceding conjuncts succeed.

• The KB query language provides a variety of additional

constructs (e.g., and, or, not) in which the usual

expressions that appear as top-level conjuncts may be

embedded—e.g.,

(and (not (q- ?P !rdf:type !teo:Terrorist ?evidenceGraph))

 (or (q- ?P1 !rdf:type !teo:Terrorist ?evidenceGraph)

 (q- ?P2 !rdf:type !teo:Terrorist ?evidenceGraph))).

• While the repetition of entity type statements—e.g.,

 (a-- ?sender !rdf:type !teo:Person ?linkGraph)

—from the input graph is not strictly necessary given our

context interpretation, the Tangram contractors agreed

that it would be convenient to include such declarations

uniformly in all datasets.

Below are the definitions for some utility KB query

components that we provide with the toolkit distribution.

(defKB-query-component 2-input-dataset-union-component

 (DataUnionProcess)

 ((query (q- ?S ?P ?O ?sourceGraph1)

 (a- ?S ?P ?O ?destGraph))

 (query (q- ?S ?P ?O ?sourceGraph2)

 (a- ?S ?P ?O ?destGraph))))

(defKB-query-component 3-input-dataset-intersection-component

 (DataIntersectionProcess)

 ((query (q- ?S ?P ?O ?sourceGraph1)

 (q- ?S ?P ?O ?sourceGraph2)

 (q- ?S ?P ?O ?sourceGraph3)

 (a- ?S ?P ?O ?destGraph))))

(defKB-query-component dataset-de-duplication-component ()

 ((query (q- ?S ?P ?O ?sourceGraph)

 (a-- ?S ?P ?O ?destGraph))))

The (first) dataset union component writes everything it

finds in either of its source graphs into its destination graph;

the (second) intersection component writes anything it finds in

 4

all of its sources into the destination. A workflow author may

choose to follow either of these up with the (third) dataset de-

duplication component to remove duplicates; note that the

author could achieve the same effect by using a-- rather than a-

conjuncts in the union components’ definitions.

Existing Tangram workflow and process infrastructure

required that we specify the fixed (e.g., two-input) arities for

the components above. This might not be the case in every

workflow setting of interest (see Section VIII). Likewise, it

might not be necessary to name (or permanently

componentize) every query before it can be used.

V. WRAPPED LEGACY COMPONENTS

Toolkit users define wrappers for legacy/native components

using the Lisp macro defWrapped-component, which affords

a choice among three distinct interfaces. Non-Lisp-

programming ToolKit users will want to use one of the first

two interfaces described below; Lisp-programming users are

most likely to use the first or third.

1) Fully automatic: defWrapped-component writes a comma-

separated value (CSV) or other delimited text file (to be

consumed by the native component) for each input dataset

and automatically reads a delimited text file (produced by

the native component) for each output dataset. For native

components with delimited text file-oriented input/output,

the ToolKit user need provide no additional wrapping

code.

2) Semi-automatic: defWrapped-component automatically

writes an ntriples file for each input dataset and

automatically reads an ntriples file for each output dataset.

The ToolKit user provides additional (presumably non-

Lisp), shell-callable wrapping code as necessary to

mediate between these ntriples files and the native

component.

3) Manual: The ToolKit user provides, via an additional

argument to defWrapped-component, custom Lisp code to

implement the required native component interface. Here

we assume that the Lisp programmer will interact directly

with AllegroGraph to create suitable inputs for the native

component.

In the sequel, we focus primarily on the fully automatic

interface.

Consider the GDA group detection algorithm [3] from

CMU’s Auton Lab), which uses CSV input and output files as

shown in Fig. 5. The group detector uses event-based linkages

among individuals to infer groups of associating individuals.

Each input line indicates evidence that a certain event involves

a certain individual. Each output line indicates that a certain

individual is hypothesized to belong to a certain group.

Native GDA Input:

Ev-1194,In-10381
Ev-709,In-15840
Ev-709,In-36232
Ev-38749,In-4938
Ev-38749,In-48834
Ev-34121,In-3007
Ev-34121,In-35214
Ev-65474,In-21371
Ev-65474,In-19354
Ev-23484,In-39017
Ev-23484,In-16809

…

Native GDA Output:

group,entity
G0,In-10096
G0,In-15840
G0,In-19354
G0,In-19540
G0,In-19625
G0,In-21371
G0,In-28719
G0,In-37201
G0,In-37733
G0,In-38634
G0,In-47910
G1,In-1002

…

Fig. 5 CSV input/output files for the GDA group detection component

Below is a toolkit-based component definition that invokes

the automatic CSV file interface to wrap GDA. The

(completely declarative) definition specifies that GDA-

component-TerroristGroup is an instance of the class

GroupDetectionProcess (see [9]). The (keyword) argument

:native-input-CSV-file-specs specifies the relation of the input

CSV file (to be named "GDA-input-links.csv") to the input

dataset (bound to the Prolog variable ?linkGraph).
1
 Note that

the separating character may be specified, using the :text-

delimiter argument, and the presence of a headerline via the

:headerline argument. The argument :native-output-CSV-file-

specs specifies the relation of the output CSV file (to be

named "GDA-output-groups.csv") to the output dataset (bound

to ?outputGraph). The remaining top-level arguments specify

how to invoke the native component. Further explanation

follows the definition.

(defWrapped-component GDA-component-TerroristGroup

 (GroupDetectionProcess)

 :native-input-CSV-file-specs

 (("GDA-input-links.csv"

 :query

 (query

 (q- ?E !teo:deliberateActor ?P ?linkGraph))

 :query-type select

 :headerline nil

 :text-delimiter ","

 :query-template (?E ?P)))

 :native-output-CSV-file-specs

 (("GDA-output-groups.csv"

 :query

 (query

 (a- ?G !teo:orgMember ?P ?outputGraph)

 (a-- ?G !rdf:type !teo:TerroristGroup ?outputGraph)

 (a-- ?P !rdf:type !teo:Terrorist ?outputGraph))

 :headerline t

 :CSV-template (?G ?P)

 :namespace-template

 ("http://anchor/teo#" "http://anchor/teo#")))

 :native-component-directory "GDA_DISTRIBUTION"

 :native-component-command-name "gda_applic"

 :native-component-command-arguments

 ("GDA-output-groups.csv" "GDA-input-links.csv"))

1 The full interface supports any number of native input and of native

output delimited text files and corresponding datasets/graphs.

 5

Fig. 6 illustrates how the :native-input-CSV-file-specs

argument is processed.

Native GDA Input File:

Ev-1194,In-10381
Ev-709,In-15840
Ev-709,In-36232
Ev-38749,In-4938
Ev-38749,In-48834
Ev-34121,In-3007
Ev-34121,In-35214
Ev-65474,In-21371
Ev-65474,In-19354
Ev-23484,In-39017
Ev-23484,In-16809

…

(q- ?E !teo:deliberateActor ?P ?linkGraph)

(q- !teo:Ev-1194 !teo:deliberateActor !teo:In-10381 ?linkGraph)

General Query Conjunct:

Instantiated Query Conjunct:

(?E ?P)General Query Template:

(!teo:Ev-1194 !teo:In-10381)Instantiated Query Template:

Fig. 6 Automatic CSV file input mechanism

First, we execute the input query against the input dataset

(graph). At top right, Fig. 6 illustrates how the query’s single

(general) conjunct is first specifically instantiated, binding the

conjunct’s variables to values for which a triple exists in the

input graph. The :query-template argument specifies how the

query’s bound variable values should be ordered in the CSV

file. At bottom, Fig. 6 illustrates the intermediate step of

instantiating the query template, based on the instantiated

query conjunct. At left, Fig. 6 shows how we generate one

CSV file line per query instantiation.
2
 (Note that the RDF

namespace, !teo:, is removed, as it is not useful to the native

component.)

Fig. 7 illustrates how the native component is (next) invoked

by the workflow execution system. Execution takes place in a

temporary directory specific to the given workflow and

component instance.

Directory: Command-name: Command-arguments:

$GU_CORE/GDA_DISTRIBUTION gda_applic GDA-output-groups.csv GDA-input-links.csv

Fig. 7 Automatic CSV file native component calling mechanism

Fig. 8 illustrates how the :native-output-CSV-file-specs

argument is (next) processed.

Native GDA Output File:

group,entity
G0,In-10096
G0,In-15840
G0,In-19354
G0,In-19540
G0,In-19625
G0,In-21371
G0,In-28719
G0,In-37201
G0,In-37733
G0,In-38634
G0,In-47910
G1,In-1002

…

(a- ?G !teo:orgMember ?P ?outputGraph)

(a- !teo:G0 !teo:orgMember !teo:In-10096 ?outputGraph)

(a-- ?G !rdf:type !teo:TerroristGroup ?outputGraph)

(a-- !teo:G0 !rdf:type !teo:TerroristGroup ?outputGraph)

(a-- ?P !rdf:type !teo:Terrorist ?outputGraph)

(a-- !teo:In-10096 !rdf:type !teo:Terrorist ?outputGraph)

(?G ?P)General CSV / Query Template:

(!teo:G0 !teo:In-10381)Instantiated Query Template:

(G0 In-10381)Instantiated CSV Template:

Query Conjuncts:

Gen.

Inst.

Gen.

Inst.

Gen.

Inst.

Fig. 8 Automatic CSV file output mechanism

The process is here roughly the reverse of that in Fig. 6. At

bottom, Fig. 8 illustrates how we first interpret each line of the

output CSV file (at right) using the template specified (via the

2 This is per the value select specified for the :query-type argument,

which indicates that duplicate links (useful to GDA) are to be retained in the

input dataset. By instead using the (default) value select-distinct, the

user may alternatively specify one line per unique query instantiation (thus

removing duplicates).

:CSV-template argument), instantiating the template and

binding query variables. Again, the template indicates the

order of each bound Prolog variable in each line of the CSV

file. Note the final template instantiation step that inserts

appropriate RDF namespaces (per the :namespace-template

argument). At right, Fig. 8 illustrates how these bindings are

used to instantiate each specified output assertion (query

conjunct). Each assertion is executed to add a triple to the

semantic store (with appropriate treatment of duplicates).

VI. CONCEIVED FULL AUTOMATION FOR COMPONENTS WITH

XML INPUT/OUTPUT FILES

While delimited text input/output formats are quite

prevalent, they are by no means the only structured formats of

interest. We have also designed (not yet implemented) a

similar, declaratively-specified wrapping capability for

components with XML file input/output. The general idea is

to embed a similar query specification into the XML file where

data is to be read or written. Another alternative on the input

side (only) would be integration of Xpath and Xquery with

logic programming. (See [1] for a recent survey.)

VII. THE WRAPPING PROCESS

The toolkit’s comprehensive documentation (available from

the first author) details the following steps included in the end-

to-end process of wrapping and then deploying components.

1) Install the wrapping toolkit.

2) Install the native component so that it will be accessible to

the wrapper.

3) Define any KB query component(s) needed to select

appropriate data from any broader dataset(s).

4) Define the wrapper for the native component.

5) Test both KB query and wrapped native components to

ensure effective operation. We have developed and

applied a testing framework that includes component

concurrency (i.e., re-entrance) testing.

6) Deploy the developed and tested components.

These steps may of course be undertaken by different

classes of users. E.g., in a component wrapping team (of

which an enterprise may have several), one member (the

“installer”) may be primarily responsible for software

installations; another (the “developer”) may be expert with the

enterprise’s ontology, workflows, and datasets, the KB query

language, and the component defining forms; still another (the

“tester”) may primarily have testing and another (perhaps the

“installer” again) deployment responsibilities. “Scripters”

might write custom Lisp wrapping code or shell scripts or

other command line-callable programs to perform data

transformations not (yet) supported by toolkit (semi-)

automation.

For each component to be wrapped, the wrapping team also

should include, or at least have access to, a component

“champion” who knows what enterprise function(s) the

component must accomplish and understands how the

component works well enough to address any wrapping issues

 6

(e.g., whether duplicate assertions are or are not appropriate,

what native component control parameters are appropriate).

The champion should bring one or more exemplary use cases

(preferably expressed in terms of the enterprise’s datasets and

ontology) and should help the wrapping team realize the use

case(s) in component (and workflow) definitions.
3

Finally, the component wrapping team always should be

able to present new requirements to the toolkit development

team (who may serve multiple enterprises).

We developed the toolkit during roughly six months of

concentrated effort, to serve both the broader Tangram

community and ourselves. Starting with the use case presented

in Section III, we developed first the KB query language and

KB query components, then progressively more automatic

interfaces with which we wrapped GDA (initially). We also

have used (or assisted others to use) the toolkit to wrap the

ORA group detection algorithm, suspicion scorers based on

the Proximity [7] and NetKit [5] classifiers, and the pattern

matchers LAW [9] and CADRE [8].

We have met the Tangram program’s toolkit usability goals:

as knowledgeable users, we can usually (for components with

inputs/outputs amenable to the toolkit’s fully automatic

interface) complete Steps 3 and 4 of the above wrapping

process within a single staff hour.

VIII. RELAXING THE CONTEXT MONOTONICITY ASSUMPTION

Implicit in the semantics of current Tangram workflow

processing is the following monotonicity assumption: A

component’s output graph(s) only add(s), logically, to the

information in its input graph(s), never delete(s) or retract(s).

This is not entirely practical.

The need to manage potentially conflicting source

information and analytic hypotheses is ubiquitous in an

intelligence analysis enterprise. An analyst, surrounded with

data and applicable tools or methods, may choose to pursue

one line of reasoning at one time and another later, and

different analysts may take different approaches and may build

on each other’s analyses or workflow products. Each such

approach—a combination of data, tools, methods, and earlier

hypotheses—represents a context for analytical reasoning. It

is important within the enterprise for each analyst to

understand the actual context of each piece of information that

s/he might examine and exploit in further analysis—in which

s/he may either extend an existing context or branch to create a

new subcontext.

Different contexts may arise in workflow-supported

analytical reasoning for different reasons, including:

• Differences in supporting data, from:

o Conflicting original data sources.

o Time-varying data conditions for a given source, such

as:

3 Consider that a champion may also bring a new data source that may

require extensions or other modifications to the enterprise ontology.

Addressing such issues has been the responsibility of a different Tangram

contractor.

� Disbelief in something we earlier had belief in

(perhaps because it had been supplied in error).

� Belief in something we did not have belief in

(perhaps because we had no data about it).

• Differences in supporting analytical hypotheses, from:

o Analyst’s conjecture, or “what-if” analysis (that may

effect belief or disbelief in data as discussed above).

o Differences in workflow components giving rise to

different answers, when:

� A given workflow function has alternative

realizations in different components.

� A given component has alternative

configurations of control parameters.

We have commenced efforts to address these issues both

formally and with appropriate workflow system infrastructure.

IX. CONTRIBUTIONS’ RELEVANCE BEYOND TANGRAM

The use case workflow in Section III includes a generic

“Group Detection Component.” While we’ve noted (in

Section V) that GDA-component-TerroristGroup is an instance

of the class GroupDetectionProcess, we haven’t said anything

yet about how such a specific component instance is selected

from among the available alternatives for such a general

process class. Beyond enabling semantic interoperability of

enterprise workflow components, IARPA’s broader objectives

in Tangram have included providing technology for

characterizing, for a given generic workflow process, the likely

performance of a given specific component with data inputs

having certain characteristics, so that the workflow

management system can select the component likely to

perform best in any given circumstance. Our toolkit supports

this objective by automating the formal description and

registration of newly defined components in Tangram’s

process catalog [9].

It’s worth noting that all of the toolkit’s other heretofore-

described capabilities remain applicable in the (perhaps more

pragmatic) setting where users specify particular components

for all workflows themselves.

REFERENCES

[1] Almendros-Jiménez, J. M., Becerra-Terón, A., Enciso-Baños, F. J.:

Querying XML documents in logic programming, Theory Pract. Log.

Program. 8, 3 (May. 2008), 323–361.

[2] Carley, K. M., Dereno, M.: ORA—Organizational Risk Analyzer. Tech.

rep. CMU-ISRI-06-113, Carnegie Mellon University, August 2006.

[3] Kubica, J.; Moore, A.; Schneider, J., Tractable group detection on large

link data sets, Third IEEE International Conference on Data Mining

(ICDM-2003), pp. 573–576, 19–22 Nov. 2003

[4] Macskassy, S. A., Provost, F.: NetKit-SRL: A Toolkit for Network

Learning and Inference, In Proceedings of the NAACSOS Conference,

June 2005.

[5] Murray, K., Harrison, I., Lowrance, J., Rodriguez, A., Thomere, J.,

Wolverton, M.: PHERL: an Emerging Representation Language for

Patterns, Hypotheses, and Evidence, in Proceedings of the AAAI

Workshop on Link Analysis, 2005.

[6] Neville, J., Jensen, D.: Dependency networks for relational data. In

Proceedings of the 4th IEEE International Conference on Data Mining,

2004.

[7] Pioch, N.; Hunter, D.; Fournelle, C.; Washburn, B.; Moore, K.; Jones,

E.; Bostwick, D.; Kao, A.; Graham, S.; Allen, T.; Dunn, M.: CADRE:

 7

continuous analysis and discovery from relational evidence,

International Conference on Integration of Knowledge Intensive Multi-

Agent Systems, 2003. pp. 555–561, 30 Sept.–4 Oct. 2003.

[8] Wolverton, M., Berry, P., Harrison, I., Lowrance, J., Morley, D.,

Rodriguez, A., Ruspini, E., Thomere, J.: LAW: A Workbench for

Approximate Pattern Matching in Relational Data. In Proceedings of the

Fifteenth Innovative Applications of Artificial Intelligence Conference

(IAAI-03), 2003.

[9] Wolverton, M., Martin, D., Harrison, I., Thomere, J.: A Process Catalog

for Workflow Generation, in The Semantic Web—7th International

Semantic Web Conference, Springer, vol. 5318/2008, pp. 833–846,

2008.

