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Abstract—We have contributed key elements of a semantically 

based intelligence analysis enterprise workflow architecture: a 

uniformly accessible semantic store conforming to an enterprise-

wide ontology; a branching context representation to organize 

workflow components’ analytical hypotheses; a logic 

programming-based, forward-chaining query language for 

components to access data from the store; and a software toolkit 

embracing all the foregoing to streamline the process of 

introducing additional legacy software components as 

semantically interoperable workflow building blocks.   

We explain these contributions, focusing particularly on the 

toolkit.  For certain widely used input/output formats—e.g., 

comma-separated value (CSV) files—a knowledgeable user can 

quickly “wrap” a newly installed component for workflow 

operation by providing a compact and entirely declarative 

specification that uses the query language to map specific relation 

arguments in the ontology to specific structural elements in the 

component’s native input and output formats. 

Our contributions are built to work with AllegroGraph, from 

Franz, Inc. 

 
Index Terms—Intelligence analysis, enterprise workflow, 

hypothesis representation, branching contexts, semantic 

interoperability, declarative data transformation, software 

component wrapping 

 

I. INTRODUCTION 

WE have contributed key elements of a semantically based 

intelligence analysis enterprise workflow architecture for 

Tangram, a multi-year, multi-contractor threat surveillance and 

alerting research and development program sponsored by the 

United States’ Intelligence Advanced Research Projects 

Agency (IARPA).  Tangram’s objective has been to automate 

routine analysis workflows, so that these can be executed as 

standing processes, on a large scale. 
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To support the rapidly changing needs of an intelligence 

enterprise, a workflow authoring tool must be extremely 

flexible.  The enterprise must be able to rearrange components 

(e.g., pattern matchers, classifiers, group detectors) in the same 

kind of way that a child rearranges Lego bricks.  They must be 

able to introduce new software into the enterprise rapidly.  

However, Lego bricks have a distinct advantage over legacy 

software components from different source: they were all 

created to respect a common interface.  One brute-force 

approach to integrating legacy components is to manually 

develop code that transforms data from one form (e.g., Java 

objects) to another (e.g., flat files); that requires O(n
2
) 

transforms.  Tangram’s approach reduces the required number 

of transforms to O(n), and our toolkit enables knowledgeable 

users to “wrap” legacy components with such transforms, 

making the components workflow-ready quickly. 

To motivate our contributions, we present the (notional, 

simplified) two-component workflow in Fig. 1: a suspicion 

scorer hypothesizes potential terrorists, then a group detector 

clusters the hypothesized terrorists into hypothesized potential 

terrorist groups. 

Suspicion Scoring Component Group Detection Component
 

Fig. 1  A notional intelligence analysis workflow 

 The workflow in Fig. 1 raises some enterprise-level 

architecture issues that our contributions address. 

1) What are components’ input and output data, how is data 

stored, and how do components access it?  We have 

introduced a uniformly accessible semantic store 

conforming to an enterprise-wide ontology and a logic 

programming-based, forward-chaining query language for 

components to access data from the store.  Component 

specifications (see Issue 3 below) indicate what data is 

accessed in particular. 

2) How are the hypotheses that analytical components 

produce distinguished from background data, and how are 

they communicated among components?  As hypotheses, 

analytical components’ outputs must not simply be mixed 

indiscriminately with more uniformly credible evidence 

data or with each other.  Among other considerations, the 

broad body of evidence changes over time (leading to 

different hypotheses), and different components—or 
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different (e.g., control) configurations thereof can lead to 

different hypotheses even for the same inputs.  We 

organize the content of the semantic store into distinct 

RDF graphs that we call “datasets,” and (correlating 

datasets with contexts) represent the outputs of 

successively applied analytical components as branching 

contexts (that incrementally add information).  Our 

component specifications and our query language thus 

include parameters for the datasets that are passed among 

or otherwise accessed by components.  Besides these 

datasets for hypotheses, the store includes one or more 

background, or “evidence,” datasets and for convenience 

some intermediate (i.e., not necessarily hypothetical) 

datasets that result from purely logical queries.  This 

treatment of evidence and hypotheses, together with the 

above-mentioned query language, provide a practical 

implemented solution to meet broad Tangram 

requirements outlined in [6]. 

3) How can legacy components with arbitrary input/output 

formats easily be made to interact with the data?  The 

contributions above are integrated in a software toolkit to 

streamline the process of introducing additional legacy 

software components as semantically interoperable 

workflow building blocks.  For certain widely used 

input/output formats—e.g., comma-separated value (CSV) 

files—a knowledgeable user can quickly wrap a newly 

installed component for workflow operation by providing 

a compact and entirely declarative specification that uses 

the query language to map specific relation arguments in 

the ontology to specific structural elements in the 

component’s native input and output formats.  The toolkit 

also provides some less fully automated interface options 

to address more general input/output situations. 

II. ARCHITECTURAL SCHEME OF A WORKFLOW COMPONENT 

Fig. 2 presents our general scheme for wrapping legacy 

components. 
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Fig. 2  Component wrapping scheme 

Fig. 2 schematizes a single wrapped component that 

executes processes to: 

1) Retrieve input data, expressed in the enterprise’s common 

ontology, from the central semantic store. 

2) Format the input data for the legacy component. 

3) Invoke the legacy component in its “native” (unwrapped) 

form. 

4) Convert the legacy component’s native-format outputs to 

the common ontology, as metadata-bearing hypotheses.   

5) Assert the output hypotheses to the central store. 

We implement the central semantic store using 

AllegroGraph from Franz, Inc.  AllegroGraph is a “quad” store 

that includes, in addition to the “subject,” “predicate,” and 

“object” fields standard to RDF and common to triple stores, a 

“graph” field.  We use this field to distinguish among the 

various datasets that are available as inputs or have been 

produced as outputs of workflow components.   

We provide a knowledge base (KB) query language 

supporting a wrapped component’s query and assertion 

processes and allowing users to define, for specific analytical 

purposes, KB query components (including no legacy process) 

that combine elements from one or more existing datasets into 

one or more output datasets.  We implement legacy component 

wrappers and KB query components using the Prolog and 

Common Lisp interfaces to AllegroGraph. 

Fig. 3 illustrates the meta-data classes (noted in bold) and  

attributes (with multi-valued attributes starred*) that support 

the representation of a dataset’s context lineage.  We take each 

workflow component’s execution, noted in a ProcessExecution 

(PE) object, as the source of the statements in any output 

(hypothesis) dataset; lineage is manifested in the connections 

among datasets, process executions, and workflow executions 

(noted in WorkflowExecution objects).   

WorkflowExecution

hasProcessExecution*

ProcessExecution

hasProcess (e.g., GDA)

hasPEDatasetInput*

hasPEDatasetOutput*

hasPEControlInput*

ProcessExecutionDatasetInput

hasParameterName (consistent with Process)

hasInputDataset

ProcessExecutionControlInput

hasParameterName

hasValue

ProcessExecutionDatasetOutput

hasParameterName (consistent with Process)

hasOutputDataset

 

Fig. 3  Meta-data classes and attributes for hypothesis datasets 

As noted in Section I, the interpretation of datasets as a 

context is incremental along its lineage: in general any 

statement that holds in a dataset that is upstream (workflow-

wise) from a given dataset D created during a workflow also 

(implicitly) holds in D.  The representation is thus space-

efficient.  We have not yet found it necessary to implement 

such transitivity of dataset contexts directly in the KB query 

language; our current workflow components use just 

background (evidence) datasets and datasets that their 

immediate workflow predecessors create.   
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?watchlistGraph ?evidenceGraphGroup Detection Watchlist-Evidence

Dataset Join Component

?linkGraph

Group Detection Component

?outputGraph  
Fig. 4  Use case workflow (see Section III) 

III. USE CASE WORKFLOW 

Fig. 4 presents a use case workflow including both a 

wrapped legacy component and a KB query component. 

In Fig. 4, datasets (graphs) are depicted by square-cornered 

boxes; workflow components are depicted by round-cornered 

boxes.  Each component reads data from one or more input 

graphs and writes to one or more output graphs.  Here, a 

dataset join KB query component is used to select from 

broader evidence (right) just information relevant to 

watchlisted terrorist suspects (left) for processing by a 

downstream legacy group detection component. 

In our toolkit, the defining forms for workflow components 

are Lisp macro calls.  Beyond providing one or more files 

containing such definitions, ToolKit users need never interact 

directly with Lisp or with AllegroGraph, as we provide 

alternative interfaces.   

IV. KB QUERY COMPONENTS AND QUERY LANGUAGE 

The definition for the KB query component used in Fig. 4 

appears below.   

(defKB-query-component  

     group-detection-watchlist-evidence-dataset-join-component  

  ((and (q- ?Event !rdf:type !teo:TwoWayCommunicationEvent 

       evidenceGraph) 

        (q- ?Event !teo:sender ?sender ?evidenceGraph) 

        (q- ?Event !teo:receiver ?receiver ?evidenceGraph) 

        (q- ?sender !rdf:type !teo:Person ?evidenceGraph) 

        (q- ?receiver !rdf:type !teo:Person ?evidenceGraph) 

        (q- ?sender !rdf:type !teo:Person ?watchlistGraph) 

        (q- ?receiver !rdf:type !teo:Person ?watchlistGraph) 

        (a- ?Event !rdf:type !teo:TwoWayCommunicationEvent 

            ?linkGraph) 

        (a- ?Event !teo:deliberateActor ?sender ?linkGraph) 

        (a- ?Event !teo:deliberateActor ?receiver ?linkGraph) 

        (a-- ?sender !rdf:type !teo:Person ?linkGraph) 

        (a-- ?receiver !rdf:type !teo:Person ?linkGraph)))) 

The above component selects events from one dataset 

(denoted by the logic variable ?evidenceGraph) whose 

participants also appear in another dataset (denoted by 

?watchlistGraph) and asserts the links among them in an 

output dataset (represented by the logic variable ?linkGraph) 

for consumption by a group detection component.  Note the 

following. 

• This component performs a single KB query that 

implicitly conjoins (logically) the twelve top-level (q-, a-, and 

a--) forms.   

• A q- conjunct succeeds iff a triple (in subject, predicate, 

object, graph, index—“spogi”—format) exists in the workflow 

KB.  q- is included in the standard Franz Allegro Prolog 

interface to AllegroGraph. 

• a- indicates that a triple is to be written to the specified 

output dataset.  An a- conjunct always succeeds.  a- and its 

duplicate-avoiding twin a-- (below) are our contributions that 

confer the KB query language’s forward chaining character. 

• a-- indicates that a triple is to be written to the workflow 

KB iff it is not already present there.  An a-- conjunct 

always succeeds.   

• !rdf:type is an example of a shorthand that expands to 

http://www.w3.org/1999/02/22-rdf-syntax-ns#type — the 

atom type in the namespace for RDF.  (!teo: refers to an 

application-specific ontology.) 

• ?Event, ?sender, and other symbols beginning with ? are 

logic programming (AKA Prolog) variables.  In the logic 

programming style we support, every logic variable 

becomes bound when the q- conjunct is matched in the 

KB.   

• Prolog will backtrack to execute each conjunct in the KB 

query for every combination of variable bindings for 

which the preceding conjuncts succeed.   

• The KB query language provides a variety of additional 

constructs (e.g., and, or, not) in which the usual 

expressions that appear as top-level conjuncts may be 

embedded—e.g., 

(and (not (q- ?P !rdf:type !teo:Terrorist ?evidenceGraph)) 

     (or (q- ?P1 !rdf:type !teo:Terrorist ?evidenceGraph) 

         (q- ?P2 !rdf:type !teo:Terrorist ?evidenceGraph))). 

• While the repetition of entity type statements—e.g.,  

 (a-- ?sender !rdf:type !teo:Person ?linkGraph)  

—from the input graph is not strictly necessary given our 

context interpretation, the Tangram contractors agreed 

that it would be convenient to include such declarations 

uniformly in all datasets. 

Below are the definitions for some utility KB query 

components that we provide with the toolkit distribution. 

(defKB-query-component 2-input-dataset-union-component 

     (DataUnionProcess) 

  ((query (q- ?S ?P ?O ?sourceGraph1) 

          (a- ?S ?P ?O ?destGraph)) 

   (query (q- ?S ?P ?O ?sourceGraph2) 

          (a- ?S ?P ?O ?destGraph)))) 

(defKB-query-component 3-input-dataset-intersection-component 

     (DataIntersectionProcess) 

  ((query (q- ?S ?P ?O ?sourceGraph1) 

          (q- ?S ?P ?O ?sourceGraph2) 

          (q- ?S ?P ?O ?sourceGraph3) 

          (a- ?S ?P ?O ?destGraph)))) 

(defKB-query-component dataset-de-duplication-component () 

  ((query (q-  ?S ?P ?O ?sourceGraph) 

          (a-- ?S ?P ?O ?destGraph)))) 

The (first) dataset union component writes everything it 

finds in either of its source graphs into its destination graph; 

the (second) intersection component writes anything it finds in 
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all of its sources into the destination.  A workflow author may 

choose to follow either of these up with the (third) dataset de-

duplication component to remove duplicates; note that the 

author could achieve the same effect by using a-- rather than a- 

conjuncts in the union components’ definitions. 

Existing Tangram workflow and process infrastructure 

required that we specify the fixed (e.g., two-input) arities for 

the components above.  This might not be the case in every 

workflow setting of interest (see Section VIII).  Likewise, it 

might not be necessary to name (or permanently 

componentize) every query before it can be used. 

V. WRAPPED LEGACY COMPONENTS 

Toolkit users define wrappers for legacy/native components 

using the Lisp macro  defWrapped-component, which affords 

a choice among three distinct interfaces.  Non-Lisp-

programming ToolKit users will want to use one of the first 

two interfaces described below; Lisp-programming users are 

most likely to use the first or third. 

1) Fully automatic: defWrapped-component writes a comma-

separated value (CSV) or other delimited text file (to be 

consumed by the native component) for each input dataset 

and automatically reads a delimited text file (produced by 

the native component) for each output dataset.  For native 

components with delimited text file-oriented input/output, 

the ToolKit user need provide no additional wrapping 

code.     

2) Semi-automatic: defWrapped-component automatically 

writes an ntriples file for each input dataset and 

automatically reads an ntriples file for each output dataset.  

The ToolKit user provides additional (presumably non-

Lisp), shell-callable wrapping code as necessary to 

mediate between these ntriples files and the native 

component.   

3) Manual: The ToolKit user provides, via an additional 

argument to defWrapped-component, custom Lisp code to 

implement the required native component interface.  Here 

we assume that the Lisp programmer will interact directly 

with AllegroGraph to create suitable inputs for the native 

component.   

In the sequel, we focus primarily on the fully automatic 

interface. 

Consider the GDA group detection algorithm [3] from 

CMU’s Auton Lab), which uses CSV input and output files as 

shown in Fig. 5. The group detector uses event-based linkages 

among individuals to infer groups of associating individuals.  

Each input line indicates evidence that a certain event involves 

a certain individual.  Each output line indicates that a certain 

individual is hypothesized to belong to a certain group. 

Native GDA Input:

Ev-1194,In-10381
Ev-709,In-15840
Ev-709,In-36232
Ev-38749,In-4938
Ev-38749,In-48834
Ev-34121,In-3007
Ev-34121,In-35214
Ev-65474,In-21371
Ev-65474,In-19354
Ev-23484,In-39017
Ev-23484,In-16809

…

Native GDA Output:

group,entity
G0,In-10096
G0,In-15840
G0,In-19354
G0,In-19540
G0,In-19625
G0,In-21371
G0,In-28719
G0,In-37201
G0,In-37733
G0,In-38634
G0,In-47910
G1,In-1002

…  

Fig. 5  CSV input/output files for the GDA group detection component 

Below is a toolkit-based component definition that invokes 

the automatic CSV file interface to wrap GDA.  The 

(completely declarative) definition specifies that GDA-

component-TerroristGroup is an instance of the class 

GroupDetectionProcess (see [9]).  The (keyword) argument 

:native-input-CSV-file-specs specifies the relation of the input 

CSV file (to be named "GDA-input-links.csv") to the input 

dataset (bound to the Prolog variable ?linkGraph).
1
   Note that 

the separating character may be specified, using the :text-

delimiter argument, and the presence of a headerline via the 

:headerline argument.  The argument :native-output-CSV-file-

specs specifies the relation of the output CSV file (to be 

named "GDA-output-groups.csv") to the output dataset (bound 

to ?outputGraph).  The remaining top-level arguments specify 

how to invoke the native component.  Further explanation 

follows the definition. 

(defWrapped-component GDA-component-TerroristGroup  

    (GroupDetectionProcess) 

  :native-input-CSV-file-specs 

    (("GDA-input-links.csv" 

      :query 

        (query 

         (q- ?E !teo:deliberateActor ?P ?linkGraph)) 

      :query-type select 

      :headerline nil 

      :text-delimiter "," 

      :query-template (?E ?P))) 

  :native-output-CSV-file-specs 

    (("GDA-output-groups.csv" 

      :query 

        (query 

         (a- ?G !teo:orgMember ?P ?outputGraph) 

         (a-- ?G !rdf:type !teo:TerroristGroup ?outputGraph) 

         (a-- ?P !rdf:type !teo:Terrorist ?outputGraph)) 

      :headerline t 

      :CSV-template (?G ?P) 

      :namespace-template 

        ("http://anchor/teo#" "http://anchor/teo#"))) 

  :native-component-directory "GDA_DISTRIBUTION" 

  :native-component-command-name "gda_applic" 

  :native-component-command-arguments 

    ("GDA-output-groups.csv" "GDA-input-links.csv"))  

 
1 The full interface supports any number of native input and of native 

output delimited text files and corresponding datasets/graphs. 
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Fig. 6 illustrates how the :native-input-CSV-file-specs 

argument is processed. 

Native GDA Input File:

Ev-1194,In-10381
Ev-709,In-15840
Ev-709,In-36232
Ev-38749,In-4938
Ev-38749,In-48834
Ev-34121,In-3007
Ev-34121,In-35214
Ev-65474,In-21371
Ev-65474,In-19354
Ev-23484,In-39017
Ev-23484,In-16809

…

(q- ?E !teo:deliberateActor ?P ?linkGraph)

(q- !teo:Ev-1194 !teo:deliberateActor !teo:In-10381 ?linkGraph)

General Query Conjunct:

Instantiated Query Conjunct:

(?E ?P)General Query Template:

(!teo:Ev-1194 !teo:In-10381)Instantiated Query Template:

 

Fig. 6  Automatic CSV file input mechanism 

First, we execute the input query against the input dataset 

(graph).  At top right, Fig. 6 illustrates how the query’s single 

(general) conjunct is first specifically instantiated, binding the 

conjunct’s variables to values for which a triple exists in the 

input graph.  The :query-template argument specifies how the 

query’s bound variable values should be ordered in the CSV 

file.  At bottom, Fig. 6 illustrates the intermediate step of 

instantiating the query template, based on the instantiated 

query conjunct.  At left, Fig. 6 shows how we generate one 

CSV file line per query instantiation.
2
   (Note that the RDF 

namespace, !teo:, is removed, as it is not useful to the native 

component.) 

Fig. 7 illustrates how the native component is (next) invoked 

by the workflow execution system.  Execution takes place in a 

temporary directory specific to the given workflow and 

component instance.  

Directory: Command-name:     Command-arguments:

$GU_CORE/GDA_DISTRIBUTION gda_applic GDA-output-groups.csv GDA-input-links.csv  

Fig. 7  Automatic CSV file native component calling mechanism 

Fig. 8 illustrates how the :native-output-CSV-file-specs 

argument is (next) processed. 

Native GDA Output File:

group,entity
G0,In-10096
G0,In-15840
G0,In-19354
G0,In-19540
G0,In-19625
G0,In-21371
G0,In-28719
G0,In-37201
G0,In-37733
G0,In-38634
G0,In-47910
G1,In-1002

…

(a- ?G !teo:orgMember ?P ?outputGraph)

(a- !teo:G0 !teo:orgMember !teo:In-10096 ?outputGraph)

(a-- ?G !rdf:type !teo:TerroristGroup ?outputGraph)

(a-- !teo:G0 !rdf:type !teo:TerroristGroup ?outputGraph)

(a-- ?P !rdf:type !teo:Terrorist ?outputGraph)

(a-- !teo:In-10096 !rdf:type !teo:Terrorist ?outputGraph)

(?G ?P)General CSV / Query Template:

(!teo:G0 !teo:In-10381)Instantiated Query Template:

(G0 In-10381)Instantiated CSV Template:

Query Conjuncts:

Gen.

Inst.

Gen.

Inst.

Gen.

Inst.

 

Fig. 8  Automatic CSV file output mechanism 

The process is here roughly the reverse of that in Fig. 6.  At 

bottom, Fig. 8 illustrates how we first interpret each line of the 

output CSV file (at right) using the template specified (via the 

 
2 This is per the value select specified for the :query-type argument, 

which indicates that duplicate links (useful to GDA) are to be retained in the 

input dataset.  By instead using the (default) value select-distinct, the 

user may alternatively specify one line per unique query instantiation (thus 

removing duplicates). 

:CSV-template argument), instantiating the template and 

binding query variables.  Again, the template indicates the 

order of each bound Prolog variable in each line of the CSV 

file.  Note the final template instantiation step that inserts 

appropriate RDF namespaces (per the :namespace-template 

argument).  At right, Fig. 8 illustrates how these bindings are 

used to instantiate each specified output assertion (query 

conjunct).  Each assertion is executed to add a triple to the 

semantic store (with appropriate treatment of duplicates). 

VI. CONCEIVED FULL AUTOMATION FOR COMPONENTS WITH 

XML INPUT/OUTPUT FILES 

While delimited text input/output formats are quite 

prevalent, they are by no means the only structured formats of 

interest.  We have also designed (not yet implemented) a 

similar, declaratively-specified wrapping capability for 

components with XML file input/output.  The general idea is 

to embed a similar query specification into the XML file where 

data is to be read or written.  Another alternative on the input 

side (only) would be integration of Xpath and Xquery with 

logic programming.  (See [1] for a recent survey.)   

VII. THE WRAPPING PROCESS 

The toolkit’s comprehensive documentation (available from 

the first author) details the following steps included in the end-

to-end process of wrapping and then deploying components.   

1) Install the wrapping toolkit. 

2) Install the native component so that it will be accessible to 

the wrapper. 

3) Define any KB query component(s) needed to select 

appropriate data from any broader dataset(s).   

4) Define the wrapper for the native component.   

5) Test both KB query and wrapped native components to 

ensure effective operation.  We have developed and 

applied a testing framework that includes component 

concurrency (i.e., re-entrance) testing.   

6) Deploy the developed and tested components.   

These steps may of course be undertaken by different 

classes of users.  E.g., in a component wrapping team (of 

which an enterprise may have several), one member (the 

“installer”) may be primarily responsible for software 

installations; another (the “developer”) may be expert with the 

enterprise’s ontology, workflows, and datasets, the KB query 

language, and the component defining forms; still another (the 

“tester”) may primarily have testing and another (perhaps the 

“installer” again) deployment responsibilities.  “Scripters” 

might write custom Lisp wrapping code or shell scripts or 

other command line-callable programs to perform data 

transformations not (yet) supported by toolkit (semi-) 

automation.    

For each component to be wrapped, the wrapping team also 

should include, or at least have access to, a component 

“champion” who knows what enterprise function(s) the 

component must accomplish and understands how the 

component works well enough to address any wrapping issues 
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(e.g., whether duplicate assertions are or are not appropriate, 

what native component control parameters are appropriate).  

The champion should bring one or more exemplary use cases 

(preferably expressed in terms of the enterprise’s datasets and 

ontology) and should help the wrapping team realize the use 

case(s) in component (and workflow) definitions.
3
    

Finally, the component wrapping team always should be 

able to present new requirements to the toolkit development 

team (who may serve multiple enterprises). 

We developed the toolkit during roughly six months of 

concentrated effort, to serve both the broader Tangram 

community and ourselves.  Starting with the use case presented 

in Section III, we developed first the KB query language and 

KB query components, then progressively more automatic 

interfaces with which we wrapped GDA (initially).  We also 

have used (or assisted others to use) the toolkit to wrap the 

ORA group detection algorithm, suspicion scorers based on 

the Proximity [7] and NetKit [5] classifiers, and the pattern 

matchers LAW [9] and CADRE [8].   

We have met the Tangram program’s toolkit usability goals: 

as knowledgeable users, we can usually (for components with 

inputs/outputs amenable to the toolkit’s fully automatic 

interface) complete Steps 3 and 4 of the above wrapping 

process within a single staff hour. 

VIII. RELAXING THE CONTEXT MONOTONICITY ASSUMPTION  

Implicit in the semantics of current Tangram workflow 

processing is the following monotonicity assumption: A 

component’s output graph(s) only add(s), logically, to the 

information in its input graph(s), never delete(s) or retract(s).  

This is not entirely practical.   

The need to manage potentially conflicting source 

information and analytic hypotheses is ubiquitous in an 

intelligence analysis enterprise.  An analyst, surrounded with 

data and applicable tools or methods, may choose to pursue 

one line of reasoning at one time and another later, and 

different analysts may take different approaches and may build 

on each other’s analyses or workflow products.  Each such 

approach—a combination of data, tools, methods, and earlier 

hypotheses—represents a context for analytical reasoning.  It 

is important within the enterprise for each analyst to 

understand the actual context of each piece of information that 

s/he might examine and exploit in further analysis—in which 

s/he may either extend an existing context or branch to create a 

new subcontext.   

Different contexts may arise in workflow-supported 

analytical reasoning for different reasons, including: 

• Differences in supporting data, from: 

o Conflicting original data sources. 

o Time-varying data conditions for a given source, such 

as: 

 
3 Consider that a champion may also bring a new data source that may 

require extensions or other modifications to the enterprise ontology.  

Addressing such issues has been the responsibility of a different Tangram 

contractor. 

� Disbelief in something we earlier had belief in 

(perhaps because it had been supplied in error).   

� Belief in something we did not have belief in 

(perhaps because we had no data about it). 

• Differences in supporting analytical hypotheses, from: 

o Analyst’s conjecture, or “what-if” analysis (that may 

effect belief or disbelief in data as discussed above). 

o Differences in workflow components giving rise to 

different answers, when: 

� A given workflow function has alternative 

realizations in different components. 

� A given component has alternative 

configurations of control parameters.  

We have commenced efforts to address these issues both 

formally and with appropriate workflow system infrastructure. 

IX. CONTRIBUTIONS’ RELEVANCE BEYOND TANGRAM 

The use case workflow in Section III includes a generic 

“Group Detection Component.”  While we’ve noted (in 

Section V) that GDA-component-TerroristGroup is an instance 

of the class GroupDetectionProcess, we haven’t said anything 

yet about how such a specific component instance is selected 

from among the available alternatives for such a general 

process class.  Beyond enabling semantic interoperability of 

enterprise workflow components, IARPA’s broader objectives 

in Tangram have included providing technology for 

characterizing, for a given generic workflow process, the likely 

performance of a given specific component with data inputs 

having certain characteristics, so that the workflow 

management system can select the component likely to 

perform best in any given circumstance.  Our toolkit supports 

this objective by automating the formal description and 

registration of newly defined components in Tangram’s 

process catalog [9]. 

It’s worth noting that all of the toolkit’s other heretofore-

described capabilities remain applicable in the (perhaps more 

pragmatic) setting where users specify particular components 

for all workflows themselves.   
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