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Preface

This volume contains the papers presented at the International Workshop on
First-Order Theorem Proving (FTP 2009) held in Oslo, Norway, on July 6–7,
2009. First-order theorem proving is widely recognized as a core theme of au-
tomated deduction and has achieved considerable successes in the last decades.
FTP 2009 is the seventh in a series of workshops intended to focus effort on first-
order theorem proving by providing a forum for presentation of recent work and
discussion of research in progress. The FTP workshop is held since 1997; its aim
is to bring together researchers interested in all aspects of first-order theorem
proving. It welcomes original contributions on theorem proving in first-order
classical, many-valued, modal and description logics. Previous editions of FTP
took place in Schloss Hagenberg, Austria (1997); Vienna, Austria (1998); St
Andrews, Scotland (2000); Valencia, Spain (2003); Koblenz, Germany (2005)
and Liverpool, UK (2007).

FTP 2009 was held together with the 18th International Conference on Au-
tomated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX
2009, web page: tableaux09.ifi.uio.no). On July 7, 2009 there was a joint session
with TABLEAUX 2009 with Peter Jeavons as (joint) invited speaker.

The technical program of FTP 2009 consists of two invited talks on by Sil-
vio Ghilardi on “Model-Checking of Array-Based Systems: from Foundations to
Implementation” and one by Peter Jeavons on “Presenting Constraints” (joint
with Tableaux 2009), eight regular papers and two position papers. The topics
of these papers match very well those of the workshop, ranging from the theo-
retical foundations of first-order theorem proving to practical applications, e.g.
in verification and web technology.

Many people contributed to make this workshop possible and we sincerely
thank all of them. First of all, we would like to thank all the scientists who
submitted interesting papers and abstracts to FTP 2009 and the invited speakers
for agreeing to speak at the workshop. Many thanks also to all the attendees
for contributing to the intensive exchange of ideas in the workshop. We also
thank all the members of the Program Committee and the additional reviewers
for their excellent job and for their thorough and quick reviews. We are very
grateful to the local organisers (in particular Roger Antonsen, Martin Giese and
Arild Waaler) for their numerous advices, constant support and for taking care
of practical matters. We thank the Norwegian Research Council and the Dept.
of Informatics at the University of Oslo for their generous financial support. We
also would like to thank the steering committee, in particular Ullrich Hustadt
for their strong support to the FTP workshop series.

Nicolas Peltier and Viorica Sofronie-Stokkermans
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Model Checking of Array-Based Systems:

from Foundations to Implementation

Silvio Ghilardi

Dipartimento di Scienze dell’Informazione,
Università degli Studi di Milano (Italy)

Abstract. We are interested in automatically proving safety properties
of infinite state systems, by combining the classical algebraic approach
of [4] with deductive techniques exploiting, off-the-shelf, SMT solvers.
After briefly recalling the main contributions in [4] leading to the use of
backward reachability analysis to prove safety properties and overviewing
the long line of works stemming from that seminal paper (such as [9, 8,
5–7]), we present the notion of array based systems [10]. Such systems are
declarative abstractions of several classes of parametrised systems and
(sequential) programs manipulating arrays. In the framework of array
based systems, key notions from [4] (such as configuration, configura-
tion ordering, and monotonic transition) can be adapted and reused in
a uniform and simple way. A by-product of this approach is to make
readily available deductive techniques (like the synthesis and the use of
invariants [11]) in the context of the algorithmic verification technique
of backward reachability. This is so because the framework retains the
modularity and the flexibility typical of logic-based approaches to model-
checking (in the same spirit of, e.g., [14]).

The key feature of array-based systems is that a suitable format for
initial/unsafe states and transition formulae can be designed: this for-
mat is sufficiently expressive to cover interesting classes of infinite state
systems and, at the same time, generates proof obligations (during back-
ward analysis) that can be discharged by instantiation and SMT solving
techniques for quantifier-free formulae.

To make the theoretical framework useful in practice, powerful heuristics
are required to obtain adequate performances: these heuristics concern
optimization of the computation of the pre-image [13], (static and dy-
namic) filtration of the instantiations that current SMT solvers cannot
yet handle efficiently, as well as forward/backward simplification rou-
tines [12].

In the last part of the talk, we report our experimental experience with a
prototype tool called mcmt [1], currently under development: we discuss
its architecture (especially the interplay between the generation of proof
obligations, the computation of pre-images, and the various heuristics)
and its integration with the SMT solver Yices [3]; finally we compare
mcmt with some state-of-the-art model checkers based on dedicated tech-
niques like pfs [2].

This is joint work with Silvio Ranise (Università di Verona).



References

1. mcmt. http://homes.dsi.unimi.it/∼ghilardi/mcmt.
2. pfs. http://www.it.uu.se/research/docs/fm/apv/tools/pfs.
3. Yices. http://yices.csl.sri.com.
4. P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decidability theo-

rems for infinite-state systems. In Proc. of LICS, pages 313–321, 1996.
5. P. A. Abdulla, G. Delzanno, N. B. Henda, and A. Rezine. Regular model checking

without transducers. In TACAS, volume 4424 of LNCS, pages 721–736, 2007.
6. P. A. Abdulla, G. Delzanno, and A. Rezine. Parameterized verification of infinite-

state processes with global conditions. In CAV, volume 4590 of LNCS, pages
145–157, 2007.

7. P. A. Abdulla, N. B. Henda, G. Delzanno, and A. Rezine. Handling parameterized
systems with non-atomic global conditions. In Proc. of VMCAI, volume 4905 of
LNCS, pages 22–36, 2008.

8. G. Delzanno, J. Esparza, and A. Podelski. Constraint-based analysis of broadcast
protocols. In Proc. of CSL, volume 1683 of LNCS, pages 50–66, 1999.

9. J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols. In
Proc. of LICS, pages 352–359. IEEE Computer Society, 1999.

10. S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Towards SMT Model-Checking
of Array-based Systems. In Proc. of IJCAR, LNCS, 2008. Full version available as
a Technical Report at http://homes.dsi.unimi.it/∼ghilardi/allegati/GhiNiRaZu-
RI318-08.pdf.

11. S. Ghilardi and S. Ranise. Goal-Directed Invariant Synthesis in Model Checking
Modulo Thoeries. In Proc. of TABLEAUX 09, LNCS, 2009. Full version avail-
able as a Technical Report at http://homes.dsi.unimi.it/∼ghilardi/allegati/GhRa-
RI325-09.pdf.

12. S. Ghilardi and S. Ranise. Model Checking Modulo Theories at work: the integra-
tion of Yices with mcmt. In Proc. of AFM 09, 2009. Available from mcmt web
page.

13. S. Ghilardi, S. Ranise, and T. Valsecchi. Light-Weight SMT-based Model-Checking.
In Proc. of AVOCS 07-08, ENTCS, 2008. Available from mcmt web page.

14. T. Rybina and A. Voronkov. A logical reconstruction of reachability. In Revised Pa-
pers of the 5th Int. A. Ershov Mem. Conf. on Perspectives of Systems Informatics
(PSI 2003), volume 2890 of LNCS, pages 222–237, 2003.



Presenting Constraints

Peter Jeavons

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford UK

Abstract. We describe the constraint satisfaction problem and show that it uni-
fies a very wide variety of computational problems. We discuss the techniques
that have been used to analyse the complexity of different forms of constraint sat-
isfaction problem, focusing on the algebraic approach, explaining the basic ideas
and highlighting some of the recent results in this area.

The above abstract belongs to a joint invited talk at FTP & Tableaux 2009. The
full version of the paper is included in [1].
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Constraint Modelling:

A Challenge for Automated Reasoning

Peter Baumgartner and John Slaney
{firstname.secondname}@nicta.com.au

NICTA⋆ and Australian National University, Canberra, Australia

Abstract. Cadoli et al [BCM04,MC05,CM04] noted the potential of
first order automated reasoning for the purpose of analysing constraint
models, and reported some encouraging initial experimental results. We
are currently pursuing a very similar research program with a view to
incorporating deductive technology in a state of the art constraint pro-
gramming platform. Here we outline our own view of this application
direction and discuss new empirical findings on a more extensive range
of problems than those considered in the previous literature. While the
opportunities presented by reasoning about constraint models are indeed
exciting, we also find that there are formidable obstacles in the way of a
practically useful implementation.

1 Constraint Programming

A constraint satisfaction problem (CSP) is normally described in the following
terms: given a finite set of decision variables v1, . . . , vn with associated domains
D1, . . . , Dn, and a relation C(v1, . . . vn) between the variables, a state is an
assignment to each variable vi of a value di from Di. A state is a solution to
the CSP iff C(d1, . . . , di) holds. In practice, C is the conjunction of a number of
constraints each of which relates a small number of variables. It is common to
seek not just any solution, but an optimal one in the sense that it minimises the
value of a specified objective function.

Logically, C is a theory in a language in which the vi are proper names
(“constants” in the usual terminology of logic). A state is an interpretation of
the language over a domain (or several domains, if the language is many-sorted)
corresponding to the domains of the variables, and a solution is an interpretation
that satisfies C. On this view, CSP reasoning is the dual of theorem proving: it
is seeking to establish possibility (satisfiability) rather than necessity (unsatisfi-
ability of the negation).

Techniques used to solve CSPs range from the purely logical, such as SAT
solving, through finite domain (FD) reasoning which similarly consists of a back-
tracking search over assignments, using a range of propagators appropriate to

⋆ NICTA is funded by the Australian Government’s Backing Australia’s Ability ini-
tiative.



different constraints to force some notion of local consistency after each assign-
ment, to mixed integer programming using a variety of numerical optimisation
algorithms. Hybrid solution methods, in which different solvers are applied to
sub-problems, include SMT (satisfiability modulo theories), column generation,
large neighbourhood search and many more or less ad hoc solver combinations
for specific purposes. The whole area has been researched intensively over the
last half century, generating an extensive literature from the automated reason-
ing, artificial intelligence and operations research communities. The reader is
referred to [DC03,MS98] for an introduction to the field.

Constraint programming is an approach to designing software for CSPs,
whereby the search is controlled by a program written in some high-level lan-
guage (sometimes a logic programming language, but in modern systems often
C++ or something similar) and specific solvers may be used to evaluate particu-
lar predicates or perform propagation steps, or may be passed the entire problem
after some preprocessing. The constraint programming paradigm gives a great
deal of flexibility, allowing techniques to be tailored to problems, while at the
same time accessing the power and efficiency of high-performance CSP solvers.

1.1 Separating Modelling from Solving

Engineering a constraint program for a given problem is traditionally a two-phase
process. First the problem must be modelled. This is a matter of determining
what are the decision variables, what are their domains of possible values and
what constraints they must satisfy. Then a program must be produced to evaluate
the model by using some solver or combination of solvers to search for solutions.
This program may be written by a human programmer, or derived automati-
cally from the model, or some combination of the two. Most of the Constraint
Programming (CP) and Operations Research (OR) literature concerns prob-
lem solving, assuming that “the problem” resulting from the modelling phase is
given.

In recent years, there has been a growing realisation of the importance of
modelling as part of the overall process, so modern CP or Mathematical Pro-
gramming (MP) platforms feature a carefully designed modelling language such
as ILOG’s OPL [Hen99] or AMPL from Bell Labs [FGK02]. Contemporary work
on modelling languages such as ESRA [FPg04], ESSENCE [FGJ+07] and Zinc
[MNR+08] aims to provide a rich representation tool, with primitives for ma-
nipulating sets, arrays, records and suchlike data structures and with the full
expressive power of (at least) first order quantification. It also aims to make the
problem representation independent of the solver(s) so that one and the same
conceptual model can be mapped to a form suitable for solution by mixed integer
programming, by SAT solving or by local search.
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1.2 Zinc

In the present report, the modelling language used will be Zinc, which is part of
the G12 platform currently under development by NICTA (Australia).1

The G12 platform provides a series of languages: Mercury, Cadmium and
Zinc. Mercury is a constraint logic programming language, Cadmium a rather
specialised programming language for syntax transformations based on term
rewriting, and Zinc a modelling language in which problems are specified in
an algorithm-independent way [MNR+08]. It is a typed (mostly) first order lan-
guage, with basic types int, float and bool, and user-defined finite enumerated
types. To these are applied the set-of, array-of, tuple, record and subrange
type constructors. These may be nested, with some restrictions mainly to avoid
such things as infinite arrays and explicitly higher order types (functions with
functional arguments). Zinc also allows a certain amount of functional program-
ming, which is not of present interest. It provides facilities for declaring decision
variables of most types and constants (parameters) of all types. Standard math-
ematical functions such as + and sqrt are built in. Constraints may be written
using the expected comparators such as == and ≤ or user-defined predicates
to form atoms, and the usual boolean connectives and quantifiers (over finite
domains) to build up compounds. Assignments are special constraints whereby
parameters are given their values. The values of decision variables are not nor-
mally fixed in the Zinc specification, but have to be found by some sort of search.

It is normal to place the Zinc model in one file, and the data (parameters,
assignments and perhaps some enumerations) in another. The model tends to
stay the same as the data vary. For example, without changing any definitions
or general specifications, a new schedule can be designed for each day as fresh
information about orders, jobs, customers and prices becomes available.

The user support tools provided by the G12 development environment should
facilitate debugging and other reasoning about models independently of any
data. However, since the solvers cannot evaluate a model until at least the do-
mains are specified, it is unclear how this can be done. Some static visualisation
of the problem, such as views of the Zinc-level constraint graph, can help a little,
but to go much further we need a different sort of reasoning: we need first order
deduction.

1 See http://nicta.com.au/research/projects/constraint programming platform.
We have benefited greatly from being in a team that has included Michael Norrish,
Rajeev Gore, Jeremy Dawson, Jia Meng, Anbulagan and Jinbo Huang, and from the
presence in the same laboratory of an AI team including Phil Kilby, Jussi Rintanen,
Sylvie Thiébaux and others. The G12 project involves well over 20 researchers,
including Peter Stuckey, Kim Marriott, Mark Wallace, Toby Walsh, Michael Maher,
Andrew Verden and Abdul Sattar. The details of our indebtedness to these people
and their colleagues are too intricate to be spelt out here.
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2 Deductive Tasks

There is no good reason to expect a theorem prover to be used as one of the
solvers for the purposes of a constraint programming platform such as G12.
In many practical cases the main issue is optimality, the existence of solutions
being obvious, and it is not clear how theorem proving can help with this. More-
over, the reasoning required to solve CSPs typically amounts to propagation of
constraints over finite domains rather than to chaining together complex infer-
ences, and for this purpose SAT solvers and the like are useful, but traditional
first order provers are not.2 However, for analysing the models before they have
been grounded by data, first order deduction is the only option. Previous work
[BCM04,MC05,CM04] has identified some tasks and practical experiences using
a first-order theorem prover. A serious deficiency of the previous accounts, how-
ever, is the absence of numerical reasoning. Zinc, like other modelling languages,
supports integer domains, and even floating point ones. These are crucial: there
is no hope of dealing adequately with industrial problems of scheduling and re-
source management without numbers. However, as we show below, even very
simple integer arithmetic poses major difficulties for first-order theorem provers.

We are interested in the following problems, which are all capable of automa-
tion.

2.1 Proof that the Model is Inconsistent

Inconsistency can indicate a bug, or merely a problem overconstrained by too
many requirements. It can arise in “what if” reasoning, where the programmer
has added speculative conditions to the basic description or it can arise where
partial problem descriptions from different sources have been combined without
ensuring that their background assumptions mesh.

A traditional debugging move, also useful in the other cases of inconsistency,
is to find and present a [near] minimal inconsistent core: that is, a minimally
inconsistent subset of the constraints. The problem of “axiom pinpointing” in
reasoning about large databases is logically similar, but in the constraint pro-
gramming case the number of possible axioms tends to be comparatively small
and the proofs of inconsistency comparatively long. The advantage of finding
a first order proof of inconsistency, rather than merely analysing nogoods from
a backtracking search, is that a proof can be presented to a programmer, thus
answering the question of why the particular subset of constraints is inconsistent.

2 The “typical” case is not the only case, of course. The satisfiability problem for
Zinc is undecidable, since the language can express Diophantine equations over the
unbounded domain of the integers. For Zinc models (without data) it is even easier
to find undecidable theories, since the problem of deciding whether an arbitrary first
order formula has a finite model is easily encoded, as are special cases like the word
problem for semigroups. Sometimes, therefore, theorem proving may be the best we
can do, but such cases do not arise in industrial process scheduling or other common
CP applications.
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2.2 Proof of Symmetry

The detection and removal of symmetries is of enormous importance to finite
domain search. Where there exist isomorphic solutions, there exist also isomor-
phic subtrees of the search tree. In some cases almost all of the search can be
eliminated if the symmetries are detected early enough. A standard technique
is to introduce “symmetry breakers”, which are extra constraints imposing con-
ditions satisfied by some but not all (preferably by exactly one) of the solutions
in a symmetry class. Symmetry breakers prevent entry to subtrees of the search
tree isomorphic to the canonical one.

It may be evident to the constraint programmer that some transformation
gives rise to a symmetry. Rotating or reflecting the board in the N Queens prob-
lem would be an example. However, other cases may be less obvious, especially
where there are side constraints that could interfere with symmetry. Moreover,
it may be unclear whether the intuitively obvious symmetry has been properly
encoded or whether in fact every possible solution can be transformed into one
which satisfies all of the imposed symmetry breakers.

It is therefore important to be able to show that a given transformation de-
fined over the state space of the problem does actually preserve the constraints,
and therefore that it transforms solutions into solutions. Since symmetry break-
ers may be part of the model rather than part of the data, we may wish to
prove such a property independently of details such as domain sizes. There is an
example in the next section.

2.3 Redundancy Tests

A redundant constraint is one that is a logical consequence of the rest. It is
common to add redundant constraints to a problem specification, usually in order
to increase the effect of propagation at each node of the search tree. Sometimes,
however, redundancy may be unintentional: this may indicate a bug—perhaps
an intended symmetry-breaker which in fact changes nothing—or just a clumsy
encoding.

Where redundant constraints are detected, either during analysis of the model
or during preprocessing of the problem including data, this might usefully be
reported to the constraint programmer who can then decide whether such re-
dundancy is intentional and whether the model should be adjusted in the light
of this information. It may also be useful to report irredundancy where a sup-
posedly redundant constraint has been added: the programmer might usefully
be able to request a redundancy proof in such a case.

2.4 Functional Dependency

Functions may also be redundant, in the sense that the values of certain functions
may completely determine the value of another for all possible arguments. As
in the case of constraint redundancy, functional dependence may be intentional
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or accidental, and either way it may be useful to the constraint programmer to
know whether a function is dependent or not.

Consider graph colouring as an example. It is obvious that in general (that
is, independently of the graph in question) the extensions of all but one of the
colours are sufficient to fix the extension of the final one, but that this is not true
of any proper subset of the “all but one”. In the presence of side constraints,
however, and especially of symmetry breakers, this may not be obvious at all.
In such cases, theorem proving is the appropriate technology.

2.5 Equivalence of Models

It is very common in constraint programming that different approaches to a
given problem may result in very different encodings, expressing constraints
in different forms and even using different signatures and different types. The
problem of deciding whether two models are equivalent, even in the weak sense
that solutions exist for the same values of some parameters such as domain sizes,
is in general hard. Indeed, in the worst case, it is undecidable. However, hardness
in that sense is nothing new for theorem proving, so there is reason to hope that
equivalence can often enough be established by the means commonly used in
automated reasoning about axiomatisations.

Concrete applications of proving equivalence stem from all sorts of trans-
formations of constraint models. For instance, one might (automatically) de-
tect that certain variables must receive different values according to the current
model and pose a global all different constraint instead. Other transforma-
tions are inspired by optimising compiler technology, such as loop-invariants
hoisting (exchange “forall” and “exists” loops), common subexpression elim-
ination, algebraic rewriting (theory specific equational rewriting) and partial
evaluation (see [MKB+05]).

2.6 Simplification

A special case of redundancy, which in turn is a special case of model equivalence,
occurs in circumstances where the full strength of a constraint is not required.
A common example is that of a biconditional (⇔) where in fact one half of it
(⇒) would be sufficient. Näıve translation between problem formulations can
easily lead to unnecessarily complicated constraints such as a < sup(S) which is
naturally rendered as
∃y(∀z((∀x ∈ S(x ≤ z))↔ y ≤ z) ∧ a < y),
while the simpler ∃y ∈ S(x < y) would do just as well. Formal proofs of the
correctness of simplifications can usefully be offered to the programmer at the
model analysis stage.
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int: N;

array[1..N] of var 1..N: q;

constraint forall (x in 1..N, y in 1..x-1)

(q[x] != q[y]

∧ (q[x]+x != q[y]+y

∧ (q[x]-x != q[y]-y);

solve satisfy;

Fig. 1. Zinc model for the N Queens problem

int: N;

array[1..N] of var 1..N: q;

constraint forall (x in 1..N, y in 1..x where x != y)

(q[x] != q[y]

∧ (q[x]+x != q[y]+y

∧ (q[x]-x != q[y]-y);

solve satisfy;

Fig. 2. Alternative model for the N Queens problem

3 Experiments

We conducted some experiments in order to evaluate the feasibility of state of the
art automated reasoning technology to solve deductive proof tasks as explained
in Section 2.

3.1 N-Queens

We consider the N Queens problem, a staple of CSP reasoning. N queens are to
be placed on an a chessboard of size N ×N in such a way that no queen attacks
any other along any row, column or diagonal. The model is given in Figure 1
and the data consists of one line giving the value of N (e.g. ‘N = 8;’).

Index Refinement As a very simple example of equivalence of models, con-
sider the formulation of the n-queens problem in Figure 2. Notice how it differs
slightly from the one in Figure 1 in the use of indexing. One may expect that
re-formulations like these occur frequently and their correctness should be rather
straightforward to establish automatically.

Alldifferent Constraint. The alldifferent constraint on a set of variables
requires them to take pairwise different values. Because specialized, efficient con-
straint solving techniques have been developed for alldifferent, it may make
sense to replace or enrich parts of a given constraint model by an alldifferent

constraint. Clearly, in our example, any solution of the n-queens problem ob-
viously satisfies the alldifferent constraint for {q[1], . . . , q[N ]}. It is easy to
formulate this as a proof task: simply add the constraint
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not(forall (x in 1..N, y in 1..x-1) (q[x] != q[y])) to the con-
straint model and prove unsatisfiability. Of course, a sufficiently rich set of ax-
ioms for the underlying theories (integer arithmetic, e.g.) has to be provided to
the prover as well.

Detecting Symmetries Suppose that as a result of inspection of this problem
for small values of N it is conjectured, either automatically or by the program-
mer, that the transformation s[x] = q[n+1−x] is a symmetry. We wish to prove
this for all values of N . That is, we need a first order proof that the constraints
with s substituted for q follow from the model as given and the definition of s.
Intuitively, this is obvious, as it corresponds to the operation of reflecting the
board, but intuitive obviousness is not proof and we wish to see what a standard
theorem prover makes of it.

One prover we took off the shelf for this experiment was Prover9 by McCune
[McC].3 A certain amount of numerical reasoning is required, for which addi-
tional axioms must be supplied. The full theory of the integers is not needed:
algebraic properties of addition and subtraction, along with numerical order,
suffice. All of this is captured in the theory of totally ordered abelian groups
(see e.g. [MA88]) which is quite convenient for first order reasoning [Wal01].
We tried two encodings: one in terms of the order relation ≤ and the other an
equational version in terms of the lattice operations max and min.

The first three goals:
(1 ≤ x ∧ x ≤ n)⇒ 1 ≤ s(x)
(1 ≤ x ∧ x ≤ n)⇒ s(x) ≤ n
s(x) = s(y)⇒ x = y

are quite easy for Prover9 when s(x) is defined as q(n+ 1− x). By contrast, the
other two

(1 ≤ x ∧ x ≤ n) ∧ (1 ≤ y ∧ y ≤ n)⇒ s(x) + x 6= s(y) + y
(1 ≤ x ∧ x ≤ n) ∧ (1 ≤ y ∧ y ≤ n)⇒ s(x)− x 6= s(y)− y

are not provable inside a time limit of 30 minutes, even with numerous help-
ful lemmas and weight specifications. It makes little difference to these results
whether the abelian l-group axioms are presented in terms of the order relation
or as equations.

To push the investigation one more step, we also considered the transforma-
tion obtained by setting s to q−1. This is also a symmetry, corresponding to
reflection of the board about a diagonal. This time, it is necessary to add an ax-
iom to the Queens problem definition, as the all-different constraint on q is not
inherited by s. The reason is that for all we can say in the first order vocabulary,
N might be infinite—it could be any infinite number in a nonstandard model of
the integers—and in that case a function from {1 . . .N} to {1 . . .N} could be
injective without being surjective.

The immediate fix is to add surjectivity of the ‘q’ function to the problem
definition, after which in the relational formulation Prover9 can easily deduce

3 Previous work [CM04,CM05] user Otter for similar problems in graph coloring; its
successor Prover9 is similar but generally superior.
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the three small goals and the first of the two diagonal conditions. The second is
beyond it, until we add the redundant axiom

x1 − y1 = x2 − y2 ⇒ x1 − x2 = y1 − y2

With this, it finds a proof in a second or so. In the equational formulation, no
proofs are found in reasonable time.

We also tried the Vampire prover (version 8) and came to the same conclu-
sions as with Prover9. With redundant axioms the proof is found easily, without
them, not. One message from this experiment is that care must be taken to avoid
implicit appeal to the fact that domains are finite. Another is that a range of
arithmetical reasoning tricks and transformations will have to be identified and
coded into the system. The above transformation of equalities between differ-
ences (and its counterparts for inequalities) illustrates this.

An encouraging feature is that a considerable amount of the reasoning turns
only on algebraic properties of the number systems, and so may be amenable to
treatment by standard first order provers.

A perhaps even more natural idea is to try theorem provers with native
support for arithmetic reasoning instead of “general” first-order logic theorem
provers. The development of such provers is still an active research topic, see,
e.g., [BFT08,KV07,WP06,Rüm08], but some of the available SMT-solvers (Satis-
fiability Modulo Theories [RT06]) already support the logic and theories that we
need. To explain, the proof obligation in the example is an entailment between
two universally quantified formulas with free functions symbols, over the theory
of linear integer arithmetic. SMT solvers are not full-fledged theorem provers for
first-order logic, and on proof tasks of that form, current SMT solvers need to
rely on (incomplete) instantiation heuristics to remove the universal quantifiers
in the premise of an entailment. Despite that, in the example, the two SMT
solvers that we tried, CVC3 [BT07] and Yices, had no difficulties even with the
original problem formulation, the one without any additional redundant axioms
(runtimes: less than one second). We found this a very encouraging result.

We also tried the default solver that comes with the G12 platform. Like any
constraint solver, it is not a theorem prover and cannot prove that the symmetry
property holds for all values of the board sizeN . However, we found it instructive
to prove, with G12, the symmetry property with specific values for N . The ratio-
nale behind this exercise is the methodology to first try some small instances, to
see if a conjecture is trivially falsified. Of course this is pointless in this example,
but in general it may help to find bugs in the coding, or counterexamples for
non-valid conjectures.

Table 1 summarizes the experimental results, for all problems described
above. The results indicate that the SMT solvers, YICES and CVC3, perform
much better on these problems than the theorem provers. Moreover, the formu-
lations for the theorem provers are highly sensitive to the axiomatization of the
background theory. Without a minimal “right” set of axioms, the proof will not
be found or proof times increase drastically.
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Problem E E-Darwin SPASS Vampire YICES CVC3 G12

alldifferent

implied
- < 1 1 < 1 < 1 < 1 < 1 (N = 10)

5 (N = 12)
137 (N = 14)

> 600 (N = 16)

Index
refinement

- - - (⇔)
6 (⇐)

12 (⇒)

- < 1 < 1 < 1 (N = 10)
8 (N = 12)

242 (N = 14)
> 600 (N = 16)

N-Queens
symmetry

- (-) - (3) - (-) - (6) < 1 < 1 < 1 (N = 10)
6 (N = 12)

182 (N = 14)
> 600 (N = 16)

Table 1. Systems on N-Queens related problems. All times in seconds. An entry “-”
means “no solution found within 100 seconds”. N-Queens symmetry: entries in paren-
thesis “(·)” refer to “tweaked” problem formulations, with redundant axioms; Index
refinement: (⇔): proof obligation is equivalence; (⇐) and (⇒): one direction only. E,
E-Darwin and Vampire can’t prove the latter either.

3.2 Puzzle

A toy example of redundant constraints is found in the following logic puzzle
[Ano]:

Five couples celebrate their wedding anniversaries. Their surnames are John-
stone, Parker, Watson, Graves and Shearer. The husbands’ given names are
Russell, Douglas, Charles, Peter and Everett. The wives’ given names are
Elaine, Joyce, Marcia, Elizabeth and Mildred.

1. Joyce has not been married as long as Charles or the Parkers, but longer
than Douglas and the Johnstones.

2. Elizabeth married twice as long ago as the Watsons, but half as long as
Russell.

3. The Shearers married ten years before Peter and ten years after Marcia.

4. Douglas and Mildred have been married for 25 years less than the Graves
who, having been married for 30 years, are the couple who have been
married the longest.

5. Neither Elaine nor the Johnstones married most recently.

6. Everett has been married for 25 years

Who is married to whom, and how long have they been married?

Parts of clue 1, that Joyce has been married longer than Douglas and also longer
than the Johnstones, are deducible from the other clues. Half of clue 5, that
Elaine has not been married the shortest amount of time, is also redundant. The
argument is not very difficult, and is left for the reader’s amusement. A finite
domain constraint solver has no difficulty with it.
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Presenting the problem of deriving any of these redundancies to Prover9 is
not easy. The small amount of arithmetic involved is enough to require a painful
amount of axiomatisation, and even when the addition table for the natural
numbers up to 30 is completely spelt out, the derivation is beyond the abilities
of the prover.

If the fact that the numbers of years are all in the set {5, 10, 15, 20, 25, 30} is
given as an axiom, and extra arguments are given to all function and relation
symbols to prevent unification across sorts, then of course the redundancy proofs
become easy for the prover. However, it is unreasonable to expect that so much
help will be forthcoming in general. Even requiring just a little of the numerical
reasoning to be carried out by the prover takes the problem out of range.

Part of the difficulty is due to the lack of numerical reasoning, but as before,
forcing the problem statement into a single-sorted logic causes dramatic inef-
ficiency. It is also worth noting that the proofs of redundancy are long (some
hundreds of lines) and involve nearly all of the assumptions, indicating that ax-
iom pinpointing is likely to be useless for explaining overconstrainedness at least
in some range of cases.

3.3 Radiation

The background for this example was given in [BBBS07], which considers the
problem of decomposing an integer matrix into a positively weighted sum of bi-
nary matrices that have the so-called consecutive-ones property. We do not need
the details of this problems here. Instead it suffices to say that the problem is
well-known and of practical relevance. It has an important application in cancer
radiation therapy treatment planning: the sequencing of multileaf collimators
to deliver a given radiation intensity matrix, representing (a component of) the
treatment plan.

The proof task here is along the lines as described in Section 2.6 above. It
requires to show that an occurrence of the “max” function between integers can
be replaced by stipulating the existence of a lower bound instead. This leads to
more efficient constraint solving. The solutions are preserved, essentially, because
the objective is to compute minimal solutions, and maxima and upper bounds
leading to minimal solutions coincide then (in this example).

Besides having to prove that minimal solutions are preserved, an additional
complication comes from a rather syntactically deep embedding of the max func-
tion in the constraint model. Furthermore, it occurs within a summation formula,
and this way stands for a parametric number n, the summation bound, of usages.
In addition, it occurs within a predicate definition, whose arguments are unary
arrays, and the predicate is “invoked” by taking sub-arrays of certain globally
defined non-unary arrays. Because it is a non-trivial exercise already to recast
this constraint model in a predicate logic formula we started with a coarse ab-
straction of the model. We defined five proof tasks, whose differences are shown
in the following table:
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Problem# model max(x, y, n)⇔ model ub(x, y, n)⇔

(1) n = max(x, y) ub(x, y, n)

(2) max(x, y) ≤ n ∃z (ub(x, y, z) ∧ z ≤ n)

(3) sum(max(x, y)) ≤ n ∃z (ub(x, y, z) ∧ sum(z) ≤ n)

(4) c + max(x, y) ≤ n ∃z (ub(x, y, z) ∧ c + z ≤ n)

(5) c + sum(max(x, y)) ≤ n ∃z (ub(x, y, z) ∧ c + sum(z) ≤ n)

The second and third column define different abstractions of the original
constraint model, models in terms of “max” and of “upper bound”, respectively.
It is not difficult to define minimal solutions. For the “max” version, for instance,
one defines:

∀x, y, z minsol model max(x, y, n)⇔

(model max(x, y, n) ∧ ∀z (model max(x, y, z)⇒ n ≤ z)) .

The definition for “minsol model ub(x, y, n)”, the minimal solutions in terms of
upper bounds, is given analogously. The proof task then is to show that together
with a (straightforward) axiomatization of “max” and “ub”, and possibly more
axioms, the equivalence

∀x, y, z (minsol model max(x, y, n)⇔ minsol model ub(x, y, n))

follows. Table 3.3 contains the results.

Conclusions

While, as noted, the investigation is still preliminary, some conclusions can al-
ready be drawn. Notably, work is required on expanding the capacities of con-
ventional automatic theorem provers:

1. Numerical reasoning, both discrete and continuous, is essential. The the-
orems involved are not deep—showing that a simple transformation like
reversing the order 1 . . .N is a homomorphism on a model or restricting
attention to numbers divisible by 5—but are not easy for standard theorem
proving technology either. Theorem provers will not succeed in analysing
constraint models until this hurdle is cleared.

2. Other features of the rich representation language also call for specialised
reasoning. Notably, the vocabulary of set theory is pervasive in CSP models,
but normal theorem provers have difficulties with the most elementary of set
properties. Some first order reasoning technology akin to SMT, whereby spe-
cialist modules return information about sets, arrays, tuples, numbers, etc.
which a resolution-based theorem prover can use, is strongly indicated. Rea-
soning modulo a background theory, which originated with the introduction
of theory resolution, is the obvious starting point, but is it enough?
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Problem E E-Darwin SPASS YICES CVC3

⇔ 13 7 1 - -
(1)⇒ 2 4 1 - -
⇐ 51 2 1 1 1

⇔ - - - - -
(2)⇒ - - 2 - -
⇐ - - 2 - -

⇔ - - - - -
(3)⇒ - - 23 - -
⇐ - - - - -

⇔ - - - - -
(4)⇒ - - 2 - -
⇐ - - - - -

⇔ - - - - -
(5)⇒ - - - - -
⇐ - - - - -

Table 2. Systems on abstractions of the radiation problem. All times in seconds. ⇔:
proof obligation is equivalence, as stated above;⇐ and⇒: one direction only. An entry
“-” means “no solution found within 100 seconds”.

3. Many-sorted logic is absolutely required. There are theorem provers able to
exploit sorts, but despite decades of literature on the subject, many still
do not. A telling point is that TPTP still does not incorporate sorts in its
notation or its problems.

4. Constraint models sometimes depend on the finiteness of parameters. Sim-
ple facts about them may be unprovable without additional constraints to
capture the effects of this, as illustrated by the case of the symmetries of the
N Queens problem. This is not a challenge for theorem provers as such but
rather for the process of preparing constraint models for first order reasoning.

5. In some cases, proofs need to be presented to human programmers who
are not working in the vocabulary of theorem proving, who are not logi-
cians, and who are not interested in working out the details of complicated
paramodulation inferences. Despite some efforts, the state of the art in proof
presentation remains unsatisfactory. This must be addressed somehow.4

Despite the above challenges, and perhaps in a sense because of them, con-
straint model analysis offers an exciting range of potential rôles for automated
deduction. Constraint-based reasoning has far wider application than most can-
vassed uses of theorem provers, such as software verification, and certainly con-
nects with practical concerns much more readily than most of [automated] pure
mathematics. Reasoning about constraint models without their data is a niche

4 The IPV tool associated with TPTP marks a good recent step towards addressing it.
More in the same style needs to be the object of wider research: any serious theorem
prover should routinely come with an advanced proof presentation package.
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that only first (or higher) order deductive systems can fill. Those of us who
are concerned to find practical applications for automated reasoning should be
working to help them fill it.5
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Abstract

In this paper, we study an efficient equality computation in connection tableaux,
and give a new variant of Brand, Bachmair-Ganzinger-Voronkov and Paskevich’s
modification methods, where the symmetry elimination rule is never applied. As
is well known, effective equality computing is very difficult in a top-down theo-
rem proving framework such as connection tableaux, due to a strict restriction to
re-writable terms. The modification method with ordering constraints is a well-
known remedy for top-down equality computation, and Paskevich adapted the
method to connection tableaux. However the improved modification method still
causes essentially redundant computation which originates in a symmetry elim-
ination rule for equational clauses. The symmetry elimination may produce an
exponential number of clauses from a given single clause, which inevitably causes
a huge amount of redundant backtracking in connection tableaux. In this paper, we
study a simple but effective remedy, that is, we abandon suchsymmetry elimina-
tion for clauses and instead introduce new equality inference rules into connection
tableaux. These new inference rules have a possibility of achieving efficient equal-
ity computation, without losing the symmetry property of equality, which never
cause redundant backtracking nor redundant contrapositive computation. We im-
plemented the proposed methods in a sophisticated prover SOLAR which is orig-
inally designed to finding logical consequences, and show a preliminary experi-
mental results for TPTP benchmark problems. This research is now in progress,
thus the experimental results provided in this paper are tentative ones.

1 Introduction
In this paper, we study an efficient equality computation in connection tableaux, and
give a variant of modification methods investigated by Brand[2], Bachmair-Ganzinger-
Voronkov [1] and Paskevich [9]. We investigate a novel modification method such that
a symmetry elimination rule is never applied.

1This research was partially supported by the Grant-in-Aid from The Ministry of Education, Science and
Culture of Japan ((A) No.20240016)
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Figure 1: Connection Tableaux for Modification with ordering constraints

As is well known, effective equality [1, 3] computing is verydifficult in a top-down
theorem proving framework such as connection tableaux [6],due to a strict restriction
to re-writable terms [12]. The modification method proposedby Brand has the great
possibility for improving top-down equality computation.Bachmair, Ganzinger and
Voronkov improved Brand’s method with ordering constraints, and Paskevich adapted
connection tableau calculus to the modification method using ordering. However the
improved connection tableaux still causes redundant computation which is essentially
involved by a symmetry elimination rule for equational clauses. The symmetry elimi-
nation may produce an exponential number of clauses from a given single clause, which
inevitably causes a huge amount of redundant backtracking in Connection Tableaux.

LetS1 be a set of clauses{ ¬P , P ∨Q∨a ≈ b, b 6≈ a, ¬Q∨P}. The modification
method transformsS1 into the following set of clauses with ordering constraints:

C1 : ¬P
C2 : (P ∨ Q ∨ a ≃ u1 ∨ b 6≃ u1) · (a ≻ u1 ∧ b � u1)
C3 : (P ∨ Q ∨ b ≃ u2 ∨ a 6≃ u2) · (b ≻ u2 ∧ a � u2)
C4 : (b 6≃ u3 ∨ a 6≃ u3) · (b � u3 ∧ a � u3)
C5 : ¬Q ∨ P
Ref : x ≃ x (Reflexivity Axiom)

A clause with ordering constraints takes the form ofD ·δ whereD is an ordinary clause
andδ is a conjunction of ordering constraintss ≻ t, s � t or s = t. The ordering
constraintδ ofD · δ is expected to be satisfiable together withD. Notice that the above
two clausesC2 andC3 are produced from the single clauseP ∨Q∨a ≈ b by symmetry
elimination rule (more precisely, together with transitivity elimination rule). Figure 1
depicts two consecutive tableaux in a connection tableaux derivation, where we assume
the orderingb ≻ a over constants. The left tableau fails to be closed because the goal
a 6≃ u2 violates the ordering constrainta � u3, where the variableu3 is substituted
with b. The failure of derivation invokes backtracking, and eventually replaces the
tableau clauseC2 below the top clauseC1 with the clauseC3. The right tableau in
Fig. 1 succeeded in being closed, and simultaneously satisfies the ordering constraints.
Notice that there are identical subtableaux below the goalQ in both left and right
tableaux. Unfortunately, none of well-known pruning methods, such as folding-up/C-
reduction or local failure caching, can prevent the redundant duplicated computation,
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because the clauseC2 containingQ in the left tableau is replaced withC3 in the right
tableau. Such a redundant computation essentially originates in the duplication of a
given clause by symmetry elimination.

In this paper, we study a simple but effective remedy, that is, we abandon such sym-
metry elimination of clauses, and instead introduce new equality inference rules into
connection tableaux. These new inference rules can achieveefficient equality compu-
tation, without losing the symmetry property of equality, which never cause redundant
backtracking nor redundant contrapositive computation. Finally, we evaluate the pro-
posed method through experiments with TPTP benchmark problems. Paskevich [9]
also gave a new connection tableau calculus which uses lazy paramodulation instead
of symmetry elimination. Paskevich’s paramodulation-based connection calculus is
very sophisticated, but seems to be a bit complicated and difficult in efficient imple-
mentation. Although the calculus proposed in this paper is superficially a little bit
complicated, the underlying principle is very simple, and is easy to implement. At last,
we emphasize that this research is now in progress, In this paper we show just some
tentative results.

2 Preliminaries
We give some preliminaries according to Paskevich [9]. A language considered in this
paper is first-order logic with equality in clausal form. Aclauseis a multi-set of literals,
usually written as a disjunctionL1 ∨ . . . ∨ Ln. The empty clause is denoted as⊥.

The equality predicate is denoted by the symbol≈. We abbreviate the negation
¬(s ≈ t) ass 6≈ t. We consider equalities as unordered pairs of terms; that is, a ≈ b and
b ≈ a stand for the same formula. As is well known, the equality is characterized by the
congruence axiomsE consisting of four axioms, i.e.,reflexivity, symmetry, transitivity
andmonotonicity. The symbol≃will denote “pseudo-equality”, i.e., a binary predicate
without any specific semantics. We utilize≃ in order to replace the symbol≈when we
transform a clause set into a logic without equality. The order of arguments becomes
significant here:a ≃ b andb ≃ a denote different formulas. The expressions 6≃ t
stands for¬(s ≃ t).

We denote non-variable terms bynv, nv1 andnv2, and also arbitrary terms byl,
r, s, t, u andv. Variables are denoted byx, y andz. Substitutions are denoted byσ and
θ. The result applying a substitutionσ to an expressionE is denoted byEσ. We write
E[s] to indicate that a terms occurs inE, and also writeE[t] to denote the expression
obtained fromE by replacing one occurrence ofs with t.

We use an ordering constraint as defined in Bachmair et al. [1]. A constraintis a
conjunction ofatomic constraintss = t, s ≻ t or s � t. The lettersγ andδ denote
constraints. A compound constraint(a = b ∧ b ≻ c) can be written in an abbreviated
form a = b ≻ c. A substitutionσ solvesan atomic constraints = t if the termssσ and
tσ are syntactically identical. It is a solution of an atomic constraints ≻ t (s � t) if
sσ > tσ (sσ ≥ tσ, respectively) with respect to a given term ordering>. Throughout
this paper, we assume that a term ordering≻ is a reduction orderingwhich is total
over ground terms.2 We say thatσ is a solution of a constraintγ if it solves all atomic
constraints inγ; γ is calledsatisfiablewhenever it has a solution.

2A reduction ordering> is an ordering over terms such that: (1)> is well-founded; (2) for any terms
s, t, u and any substitutionθ, if s > t thenu[sθ] > u[tθ] holds.
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Expansion (Exp):
S , (L1 ∨ · · · ∨ Lk) || Γ

L1 · · · Lk

Strong Connection (SC):
S || Γ,¬P (r), P (s)

⊥ · (r = s)

S || Γ, P (r),¬P (s)

⊥ · (r = s)

Weak Connection (WC):
S || Γ,¬P (r),∆, P (s)

⊥ · (r = s)

S || Γ, P (r),∆,¬P (s)

⊥ · (r = s)

Figure 2: Connection calculusCT for a setS of clauses

Let S be a set of clauses. Aconstrained clause tableaufor S is a finite treeT (See
Fig. 1 as an example). Each node except for a root node is a pairL · γ whereL is a
literal andγ is a constraint. Any branch that contains the literal⊥, which represents
the false, isclosed. A tableau isclosed, whenever every branch in it is closed and the
overall of constraints in it is satisfiable.

Each inference step grows some branch in the tableau by adding new leaves under
the leaf of the branch in question. Initially, an inference starts from the single root
node. Symbolically, we describe an inference rule as follows:

S || Γ

L1 · γ1 · · · Ln · γn

whereS is an initial given set of clauses,Γ is the branch being augmented (with con-
straints not mentioned), and(L1 · γ1), . . . , (Ln · γn) are the added nodes. Whenever
we choose some clauseC in S to participate in the inference, we implicitly rename all
variable inC to some fresh variables. The standard connection tableau calculus [6, 9],
denoted byCT, for a setS of clauses has inference rules depicted in Fig. 2.

Any clause tableau built by the rules ofCT can be considered as a tree of inference
steps. Every tableau ofCT always starts with an expansion step; also that first expan-
sion step can be followed only by another expansion, since connection step requires at
least two literals in a branch. In a tableau, anexpansion clauseis the added clause in
an expansion step.

LetT be a tableau ofCT for a setS of clauses. We say thatT is strongly connected
whenever every strong connection step in a tableau follows an expansion step, and
every expansion step except for the first (or top) one is followed by exactly one strong
connection step. Moreover,T is said to be arefutationfor S if T is strongly connected
and closed.

Theorem 1 (Letz et.al [6]) TheCT calculus is sound and complete in first-order logic
without equality.

Ordered paramodulation is a well-known efficient equality inference rule. It is well
known that top-down (or linear) deduction systems, including connection tableaux, are
difficult frameworks for efficient equality computation because of hard restriction of
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redexes, i.e., subterms allowed to rewrite. For example, Snyder and Lynch [12] showed
that: paramodulation into a variable is necessary for completeness; ordering constraints
is incompatible with top-down theorem proving even if paramodulation into a variable
is allowed. As a remedy, the modification proposed by Brand [2] has been investigated
by many researchers.

2.1 Modification Method and Connection Tableaux
In this subsection, we firstly, show the modification method given by Bachmair, Ganzinger
and Voronkov [1] which uses ordering constraints. Secondly, we show Paskevich’s con-
nection tableau calculus [9], denoted asCT≃,3 for refuting a set of clauses generated
by the modification method.

2.1.1 Elimination of Congruence Axioms

Given a setS of equational clauses, we apply three kinds of elimination rules and
replace the equality predicate≈ by the predicate≃ to obtain a modified clause set
S ’, such thatS ’ is satisfiable iffS is equationally satisfiable. IfR is a set of such
elimination rules, we say a constrained clause is inR-normal form if no rule inR is
applicable to it. We denote byR(S) the set of allR-normal forms of a clause inS.

We first show S-modification rules which replaces the equality symbol≈ with the
pseudo-equality≃, and generates several clauses which can simulate computational
effects of symmetry axiom.

• Positive S-modification:
s ≈ t ∨ C ⇒ s ≃ t ∨ C and t ≃ s ∨ C

• Negative S-modification:
nv 6≈ t ∨ C ⇒ nv 6≃ t ∨ C

x 6≈ nv ∨ C ⇒ nv 6≃ x ∨ C

x 6≈ y ∨ C ⇒ Cθ

whereθ is a substitution{x/y}.

Remark: Positive S-modification rule is quite problematic, becauseone equation is
duplicatedto two equations each of which has converse directions. We shall give a
remedy for it in the next section.

Secondly we give M-modification rules which flatten clauses by abstracting sub-
terms via introduction of new variables as follows:

P (. . . ,nv, . . .) ∨ C ⇒ nv 6≃ z ∨ P (. . . , z, . . .) ∨ C

¬P (. . . ,nv, . . .) ∨ C ⇒ nv 6≃ z ∨ ¬P (. . . , z, . . .) ∨ C

f(. . . ,nv, . . .) ≃ t ∨ C ⇒ nv 6≃ z ∨ f(. . . , z, . . .) ≃ t ∨ C

f(. . . ,nv, . . .) 6≃ t ∨ C ⇒ nv 6≃ z ∨ f(. . . , z, . . .) 6≃ t ∨ C

s ≃ f(. . . ,nv, . . .) ∨ C ⇒ nv 6≃ z ∨ s ≃ f(. . . , z, . . .) ∨ C

s 6≃ f(. . . ,nv, . . .) ∨ C ⇒ nv 6≃ z ∨ s 6≃ f(. . . , z, . . .) ∨ C

wherez is a new variable, called anabstraction variable.
The third one is T-modification rule for generating clauses which can simulate ef-

fects of transitivity axiom.

3Notice thatCT≃ was introduced to prove the completeness of thelazy paramodulation calculusin [9].
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Expansion (Exp): Equality Resoution(ER) :
SMT(S), (L1 ∨ · · · ∨ Lk) || Γ

L1 · · · Lk

SMT(S) || Γ, l 6≃ r

⊥ · (l = r)

Strong Connection (SC):
SMT(S) || Γ,¬P (r), P (s)

⊥ · (r = s)

SMT(S) || Γ, P (r),¬P (s)

⊥ · (r = s)

SMT(S) || Γ,nv 6≃ r, s ≃ t

⊥ · (nv = s ≻ t = r)

SMT(S) || Γ, s ≃ t,nv 6≃ r

⊥ · (nv = s ≻ t = r)

Weak Connection (WC):
SMT(S) || Γ,¬P (r),∆, P (s)

⊥ · (r = s)

SMT(S) || Γ, P (r),∆,¬P (s)

⊥ · (r = s)

SMT(S) || Γ,nv 6≃ r,∆, s ≃ t

⊥ · (nv = s ≻ t = r)

SMT(S) || Γ, s ≃ t,∆,nv 6≃ r

⊥ · (nv = s ≻ t = r)

Figure 3: Connection tableauxCT≃ for SMT(S)

• Positive T-modification:

s ≃ nv ∨ C ⇒ s ≃ z ∨ nv 6≃ z ∨ C

• Negative T-modification:

s 6≃ nv ∨ C ⇒ s 6≃ z ∨ nv 6≃ z ∨ C

wherez is a new variable, called alink variable.

Notice that if the termt in s ≃ t is a variable, then T-modification doesnothing.
Let SMT(S) denote a set T(M(S(S))), i.e., the set of normal clauses obtained from

S by consecutively applying S, M and T-modification. Notice that the size of SMT(S)
is exponentialto the one ofS.

Theorem 2 (Bachmair et al. [1]) S ∪ E is unsatisfiable iff SMT(S) ∪ {x ≃ x} is
unsatisfiable, where≃ is a new symbol for simulating the equality.

Bachmair et al. [1] studied weak ordering constraints for modification. An atomic
ordering constraints ≻ t (s � t) is assigned to each positive (or respectively, negative)
literal s ≃ t (or respectively,s 6≃ t) in SMT(S), except for the negative equalityx 6≃ y
for any variablesx andy.

CEE(S) denote the set of clauses of SMT(S) with ordering constraints.

Theorem 3 (Bachmair et al. [1]) S ∪ E is unsatisfiable iff CEE(S) ∪ {x ≃ x} is
unsatisfiable, where≃ is a new symbol for simulating the equality.

2.1.2 Connection Tableaux for Modification with Ordering Constraints

Paskevich [9] adapted the calculusCT for computing CEE(S), and gave the connection
tableau calculusCT≃ for modification with ordering constraints, which is described
in Fig. 3. Notice thatnv denotes a non-variable term inCT≃.

24



Theorem 4 (Paskevich [9])The calculusCT≃ is sound and complete. That is,S ∪ E
is unsatisfiable iff there is a closed and strongly connectedtableau inCT≃ for
SMT(S).

3 Connection Tableaux for Modification without S-Mo-
dification

The size of SMT(S) is unfortunatelyexponentialto the one ofS, which is truly prob-
lematic and causes a huge amount of redundant computation. The positive S-modifi-
cation, hence, should be abandoned. We alternatively introduce new inference rules
for simulating the effects of symmetry axiom and construct anew connection tableau
calculusCTwS (Connection Tableaux for modification Without S-modification).

Definition 1 Let P-modificationbe a transformation rule of clauses, which just re-
places the equality symbol≈ with the pseudo symbol≃ in positive equalities. We
define nSMT(S) to be a a set of normal clauses obtained fromS by just succes-
sively applying P-modification, negative S-modification, M-modification and negative
T-modification.

Notice that the size of nSMT(S) is linear to the one ofS because positive S-modification
is never applied.

Once the positive S-modification is abandoned, no symmetry formulat ≃ s of an
initial equalitys ≃ t is generated in the modification process, which means that the
succeeding positive T-modification is not accomplished either. Therefore, we need a
mechanism compensating such a deficit of clause transformation. In this paper, we
introduce new inference rules which can simulate not only positive S-modification but
alsopositive T-modificationfor keeping transitivity properties of a positive equality.

We propose the following new rules, calledsymmetry and transitivity splitting
rules, abbreviated asST-splitting, which can simultaneously simulate the computa-
tional effects of symmetry and transitivity axioms.

Naive ST-Splitting Rule:

nSMT(S) || Γ, s ≃ nv

s ≃ z nv 6≃ z
nSMT(S) || Γ, s ≃ x

s ≃ x

nSMT(S) || Γ,nv ≃ t

t ≃ z nv 6≃ z

nSMT(S) || Γ, x ≃ t

t ≃ x

wherenv is a non-variable term andx is a variable.

3.1 Controlling ST-Splitting I: A Raw Equality

ST-Splitting should be applied to each positive equalityat most one time, because more
than two times applications of these rules are clearly redundant. Therefore we need a
controlling mechanism.

In this paper, we firstly give araw positive equality, denoted ass ≃ t , which is

introduced into a tableau by the expansion rule. Some of raw positive equalitiess ≃ t
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are changed toordinary equality literalsby ST-splitting. Conversely ST-Splitting rule
is restricted to apply only to a raw positive equality. Moreover, the strong connection
rule for a negative equality is also restricted to apply onlyto raw positive equalities.
Furthermore, we force every raw positive equality to be followed either by ST-Splitting
or by new strong contraction rules shown below.

Given a literalL, we write [L] to denote a framed literals ≃ t , called araw
positive literal if L is a positive equalitys ≃ t; otherwise[L] denotesL itself. We
modify the expansion rule into the one which produces a raw literal for a positive
equality.

Expansion for nSMT(S):
nSMT(S), (L1 ∨ · · · ∨ Lk) || Γ

[L1] · · · [Lk]
ST-Splitting Rule should be changed to treat only raw positive literals.

ST-Splitting Rule:
nSMT(S) || Γ, s ≃ nv

s ≃ z nv 6≃ z

nSMT(S) || Γ, s ≃ x

s ≃ x

nSMT(S) || Γ, nv ≃ t

t ≃ z nv 6≃ z

nSMT(S) || Γ, x ≃ t

t ≃ x

Example 1 Consider the setS1 of clauses in Section 1. The set nSMT(S) of normal
clauses is:

C1 : ¬P.
C6 : P ∨Q ∨ a ≃ b
C′

4 : (b 6≃ u3 ∨ a 6≃ u3)
C5 : ¬Q ∨ P

Figure 4 shows two connection tableaux inCTwS for S1, each of which corresponds
with the one in Fig. 1. Notice that no backtracking occurs forundoing the expansion
introducing the clauseC6 in the derivation from the left tableau to the right one. There-
fore none of duplicated computations invoked for the subgoal Q in CT≃ occur in the
calculusCTwS.

3.2 Controlling ST-Splitting II: Strong Connection

The original form of strong connection for negative equality is no longer appropriate,
because it cannot deal with raw positive equalities nor corporate with ST-splitting rule.
The new calculusCTwS has to simulate all valid inferences involving the strong con-
nection inCT≃ for SMT(S) in order to preserve completeness. LetC ∈ S be a clause
s ≃ t ∨ K1 ∨ · · · ∨Km. There are four possible clauses obtained by S-modification
and T-modification from C with respect tos ≃ t:

D1 : s ≃ z ∨ nv2 6≃ z ∨K
′
1 ∨ · · · ∨K

′
m if t is a non-variable termnv2

D2 : s ≃ x ∨K′
1 ∨ · · · ∨K

′
m if t is a variablex

D3 : t ≃ z ∨ nv2 6≃ z ∨K
′
1 ∨ · · · ∨K

′
m if s is a non-variable termnv2

D4 : t ≃ x ∨K′

1 ∨ · · · ∨K
′
m if s is a variablex

wherez is a fresh variable. All of these clauses have possibilitiesto be used as an
expansion clause for the strong connection inCT≃. Next we consider new strong
connection rules forCTwS in order to simulate these inferences inCT≃.
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P

P Q

a=z b z
P

a u3

b u3

x1=x1

Q

={z/u3, u3/b, …}

Ordering Constraint

b>a
C6

C4 Order Violated !!

a>b

a=b

ST-Left

P

P Q

b=z a z
P

a u3b u3

x1=x1

Q

={z/u3, u3/a, …}

Ordering Constraint

b>a
C6

C4

Succeed !!

a=b

x2=x2

ST-Right

Figure 4: Two connection tableaux inCTwS for nSMT(S1)

Firstly, we study a simulation of strong connection using the clauseD1 in SMT(S).
Consider an expansion inference forD1 in CT≃.

L

s ≃ z nv2 6≃ z K′

1 · · · K′

m

(Exp)

If L is a negative equalitynv1 6≃ r such thatnv1 is non-variable and is unifiable with
s, then the following strong connection is available inCT≃:

nv1 6≃ r

s ≃ z

⊥ · (nv1 = s ≻ z = r)
(SC) nv2 6≃ z K′

1 · · · K
′

m

(Exp)(1)

On the other hand, ifL is a positive equalityu ≃ v such thatu is unifiable withnv2,
then we have the following strong connection inCT≃:

u ≃ v

s ≃ z
nv2 6≃ z

⊥ · (nv2 = u ≻ v = z)
(SC) K′

1 · · · K
′

m

(Exp)(2)

The above first inference (1) inCT≃ can be simulated in nSMT(S) with the new
expansion rule and ST-splitting for a raw equalitys ≃ nv2 and theweak connection
rule as follows:

nv1 6≃ r

s ≃ nv2

s ≃ z

⊥ · (nv1 = s ≻ z = r)
(WC) nv2 6≃ z

(ST) K′

1 · · · K
′

m

(new Exp)

However, it is definitely better to use a sort of strong connection rule instead of the
weak connection, because a connection constraint for a tableau becomes much simpler
and more effective to drastically reduce the search space. We, hence, introduce a new
strong connection rule which can perform the above inference steps as an integrated
one-step inference inCTwS. The following is a naive form for directly simulating the
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inference (1):
nSMT(S) || Γ, nv1 6≃ r, s ≃ nv2

⊥ · (nv1 = s ≻ z = r) nv2 6≃ z

wherenv1 andnv2 are non-variable terms. We can eliminate the link variablez
becausez never occurs elsewhere in a tableau, and moreover we can add an ordering
constraint. The final form of the above rule is:

nSMT(S) || Γ, nv1 6≃ r, s ≃ nv2

⊥ · (nv1 = s ≻ r) nv2 6≃ r · (nv2 � r)

Remark: The above ordering constraintnv2 � r is not explicitly used in the strong
connection inCT≃, as shown in the inference (1). Thus this additional constraint can
reduce the alternative choices of expansion rules, compared with CT≃. Recall the
termnv2 initially occurs as an argument of the equalitys ≃ nv2 of the original clause
s ≃ nv2∨K1∨· · ·∨Km in S. Thus we can say,CTwS directly uses full information
of the equalitys ≃ nv2 for strong connection and thus expansion, whileCT≃ just
uses this information indirectly through variable bindingfor a linked variable.4 This
difference is a rather important point because several state-of-arts top-down provers,
such as SETHEO [6] and SOLAR [8], often reorder goals for improving the efficiency
of inferences.

Similarly, the above inference (2) can also be simulated in nSMT(S) with a raw
positive equalitys ≃ nv2 as follows:

u ≃ v

s ≃ nv2

s ≃ z
nv2 6≃ z

⊥ · (nv2 = u ≻ v = z)
(WC)

(ST) K′

1 · · · K
′

m

(new Exp)

This observation leads to the following rule, which can achieve the above inference
steps as a single inference.

nSMT(S) || Γ, u ≃ v, s ≃ nv2

s ≃ z ⊥ · (nv2 = u ≻ v = z)

We can also eliminate the link variablez and add an additional ordering fors ≃ z
without losing completeness. Finally, we obtain the following new rule:

nSMT(S) || Γ, u ≃ v, s ≃ nv2

s ≃ v · (s ≻ v) ⊥ · (nv2 = u ≻ v)

Notice that this rule superficially requires apositiveraw literal s ≃ nv2 as a partner
of strong connection of apositiveliteral u ≃ v.

Next we study a simulation of strong connection using the clauseD2. Consider the
following inference involving expansion and strong connection ofD2 in CT≃.

nv1 6≃ r

s ≃ x

⊥ · (nv1 = s ≻ x = r)
(SC) K′

1 · · · K
′

m

(Exp),(3)

4See the variable binding ofz in the inference (1), for example.
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wherenv1 is a non-variable term. The above (3) can simply be simulatedin nSMT(S) with
the raw equalitys ≃ x as follows:

nv1 6≃ r

s ≃ x

s ≃ x

⊥ · (nv1 = s ≻ x = r)
(WC)

(ST) K′

1 · · · K
′

m

(new Exp),

This observation derives the following strong connection rule inCTwS:

nSMT(S) || Γ, nv1 6≃ r, s ≃ x

⊥ · (nv1 = s ≻ x = r)

Moreover, we have to investigate inferences using strong connections with the
clausesD3 andD4 of SMT(S), and can derive additional three rules for nSMT(S) by
similar discussions. Eventually, we obtain the following set of strong connection rules
for nSMT(S):

Strong Connection for Negative Equality in nSMT(S):

nSMT(S) || Γ, nv1 6≃ r, s ≃ nv2

⊥ · (nv1 = s ≻ r) nv2 6≃ r · (nv2 � r)

nSMT(S) || Γ, nv1 6≃ r, s ≃ x

⊥ · (nv1 = s ≻ x = r)

nSMT(S) || Γ, nv1 6≃ r, nv2 ≃ t

⊥ · (nv1 = t ≻ r) nv2 6≃ r · (nv2 � r)

nSMT(S) || Γ, nv1 6≃ r, x ≃ t

⊥ · (nv1 = t ≻ x = r)

Strong Connection for Positive Equality in nSMT(S):

nSMT(S) || Γ, u ≃ v, s ≃ nv2

s ≃ v · (s ≻ v) ⊥ · (nv2 = u ≻ v)

nSMT(S) || Γ, u ≃ v, nv2 ≃ t

t ≃ v · (t ≻ v) ⊥ · (nv2 = u ≻ v)

wherenv1 andnv2 denote non-variable terms,x is a variable.
We show a total view of the connection tableauxCTwS for nSMT(S) in Fig. 5.

The following is the first main theorem of this paper:

Theorem 5 The calculusCTwS is sound and complete. That is,S ∪ E is unsatisfiable
iff there is a closed and strongly connected tableau inCTwS for nSMT(S).

3.3 Yet another Connection Tableaux for Modification
In this section, we consider yet another connection tableaux, calledCTwST, where the
strong connection for positive equality is further improved with a more strict ordering
constraint. As was shown in the previous subsection, one of the strong connection for
a positive equality for nSMT(S) is:

SC-PosE-1:
nSMT(S) || Γ, s ≃ t, nv1 6≃ r

⊥ · (nv1 = s ≻ t = r)
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Expansion (Exp): Equality Resolution (ER)
nSMT(S), (L1 ∨ · · · ∨ Lk) || Γ

[L1] · · · [Lk]

nSMT(S) || Γ, l 6≃ r

⊥ · (l = r)

ST Splitting (ST):
nSMT(S) || Γ, s ≃ nv1

s ≃ z nv1 6≃ z

nSMT(S) || Γ, s ≃ x

s ≃ x

nSMT(S) || Γ, nv1 ≃ t

t ≃ z nv1 6≃ z

nSMT(S) || Γ, x ≃ t

t ≃ x

Strong Connection for Non-Equality (SC–NonE):
nSMT(S) || Γ,¬P (r), P (s)

⊥ · (r = s)

nSMT(S) || Γ, P (r),¬P (s)

⊥ · (r = s)

Strong Connection for Neg. Equality (SC–NegE):
nSMT(S) || Γ, nv1 6≃ r, s ≃ nv2

⊥ · (nv1 = s ≻ r) nv2 6≃ r · (nv2 � r)

nSMT(S) || Γ, nv1 6≃ r, s ≃ x

⊥ · (nv1 = s ≻ x = r)

nSMT(S) || Γ, nv1 6≃ r, nv2 ≃ t

⊥ · (nv1 = t ≻ r) nv2 6≃ r · (nv2 � r)

nSMT(S) || Γ, nv1 6≃ r, x ≃ t

⊥ · (nv1 = t ≻ x = r)

Strong Connection for Pos. Equality (SC–PosE):
nSMT(S) || Γ, s ≃ t, nv1 6≃ r

⊥ · (nv1 = s ≻ t = r)

nSMT(S) || Γ, u ≃ v, s ≃ nv1

s ≃ v · (s ≻ v) ⊥ · (nv1 = u ≻ v)

nSMT(S) || Γ, u ≃ v, nv1 ≃ t

t ≃ v · (t ≻ v) ⊥ · (nv1 = u ≻ v)

Weak Connection (WC):
nSMT(S) || Γ,¬P (r),∆, P (s)

⊥ · (r = s)

nSMT(S) || Γ, P (r),∆,¬P (s)

⊥ · (r = s)

nSMT(S) || Γ,nv1 6≃ r,∆, s ≃ t

⊥ · (nv1 = s ≻ t = r)

nSMT(S) || Γ, s ≃ t,∆,nv1 6≃ r

⊥ · (nv1 = s ≻ t = r)

Figure 5: Connection tableauxCTwS for nSMT(S)
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Recall that T-modification splits a given negative equalityl 6≃ r into the disjunction
l 6≃ z ∨ r 6≃ z if r is not a variable. Thus, the literall 6≃ z (or r 6≃ z) loses the
information about the initial partner termr (or respectively,l). Thus the above strong
connection rule cannot utilize full information provided by negative equalities in a
clause setS which is initially given. As a remedy, we omit T-modificationfor negative
equality literals as well, and instead give a set of new connection rules for preserving
transitivity

Definition 2 We define nSM(S) to be a a set of normal clauses obtained fromS by
just applying negative S-modification and M-modification.

The calculusCTwST differs fromCTwS in the following points; firstlyCTwST ac-
cepts nSM(S) as an input set of clauses, not nSMT(S); secondly we add a new expan-
sion rule and T-splitting rules for treating araw negativeequality; thirdly we replace
the strong connectionSC-PosE-1with new three rules withraw negativeequalities.
We modify the expansion rule to the one which produces raw literals both for positive
and negative equalities. Given a literalL, we write [[L]] to denote the framed literal
L , called araw literal if L is a positive equalitys ≃ t or a negative equalitys 6≃ t;

otherwise[[L]] denotesL itself.

Expansion Rule for nSM(S):

nSM(S), (L1 ∨ · · · ∨ Lk) || Γ

[[L1]] · · · [[Lk]]

We add the following T-splitting rules in order to treating raw negative equalities,
which naturally correspond with T-modification.

T-Splitting for Negative Equality for nSM (S):[-0.5ex]

nSM(S) || Γ, s 6≃ nv1

s 6≃ z nv1 6≃ z

nSM(S) || Γ, s 6≃ y

s 6≃ y

At last, we replace the ruleSC-PosE-1by the following three rules:

Strong Connection for Positive Equality for nSM(S):

nSM(S) || Γ, l ≃ r, nv1 6≃ nv2

⊥ · (nv1 = l ≻ r) nv2 6≃ r · (nv2 � r)

nSM(S) || Γ, l ≃ r, s 6≃ nv2

s 6≃ r · (s � r) ⊥ · (nv2 = l ≻ r)

nSM(S) || Γ, l ≃ r, nv1 6≃ y

⊥ · (nv1 = l ≻ r = y)

4 Extended SOLAR and Experimental Evaluation
In this section, we show some tentative experimental results with SOLAR [8], which
is an efficient consequence finding program based on SkippingOrdered Linear Reso-
lution [4] by using Connection Tableaux technology [6, 5]. At first we show the basic
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Table 1: Basic performance comparison of theorem provers

SOLAR Otter E 1.0 E 1.0 (A)∗

# of solved unit EQ. 170 474 589 630
# of solved non-unit EQ. 676 727 907 2013
# of solved non-EQ. 1163 1044 1131 1640
∗ Note: (A) means that E system uses the option“-xAuto -tAuto”.

performance of SOLAR compared with state-of-the-art theorem provers Otter 3.0 [7]
and E 1.0 [11]. Table 1 shows the numbers of problems of TPTP library v.3.5.0 which
each theorem prover can solve within the time limit of 60 CPU seconds. The first row
is for unit equation problems; the second is non-unit equational ones; the third is for
non-equational ones. SOLAR is competitive for the class of non-equational problems,
but is not for equational problems.5

Table 2 shows the performances of several kinds of equality computation methods
in connection tableaux.6 The first “Axioms” indicates a naive use of the congruence
axioms, and the second “M-mod” represents a method for usingjust M-modification
together with reflexivity, symmetry and transitivity axioms. Each row denoted by “in-
fer.” is the sum total of the numbers of inferences needed forequational problems
which can commonly be solved by all ofCT≃, CTwS andCTwST. The upper half of
Table 2 shows the results obtained by using ordinary M-modification, while the lower
half is for the ones obtained by using a semi-optimized M-modification, given in [1],
such that the flattening never applies to any occurrences of an ordering-minimal con-
stant symbol. Regretfully, the best performance is provided by the naive use method
of the congruence axioms. Modification methods commonly inherit a disadvantage
caused by M-modification which increases the length of each clause by flattening.
CT≃ andCTwS, however, significantly decrease the number of inference steps from
M-modification method. With the semi-optimized M-modification, CTwS is superior
to CT≃. Certainly,CTwS decreases the amount of inference steps compared with
CT≃, which means thatCTwS succeeds to prevent redundant computations origi-
nating in S-modification. By comparison between the upper part and the lower one
in Table 2, we can understand the importance of optimizationof M-modification for
avoiding redundant computations, which are invoked by longdisjunctions ofthin neg-
ative equalities produced by flattening operations.

5 Conclusion and Future Work
We investigated Paskevich’s connection tableaux for equality computation, and pointed
out that a naive use of S-modification is problematic. We proposed, as some reme-
dies, improved connection tableau calculi for efficient equality computation. We also
showed tentative experimental results of evaluating the proposed methods using SO-
LAR. This research is now in progress. For example, we are still studying a further

5TPTP library v.3.5.0 has 2,175 non-equational problems and4,171 equational problems, where there are
863 unit equational problems.

6Throughout experiments, we used non-recursive Knuth-Bendix ordering given by Riazanov and
Voronkov [10]. as a reduction ordering.
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Table 2: Comparison of equality computation methods in connection tableaux

Axioms M-mod CT≃ CTwS CTwST

# of unit EQ. 170 161 180 183 179
# of non-unit EQ. 636 490 507 499 489
# of infer. of unit EQ. 4,883K 12,900K 8,903K 1,403K 2,367K
# of infer. of non-unit EQ. 38,621K 251,244K 86,837K 78,339K 119,094K

# of unit EQ. — — 183 185 183
# of non-unit EQ. — — 518 540 512
# of infer. of unit EQ. — — 5,545K 5,212K 8,397K
# of infer. of non-unit EQ. — — 66,529K 58,588K 86,253K

improvement of M-modification. Moreover, we found that the dynamic term-binding
to variables in derivations frequently gives ill effects onthe behaviors ofCTwS and
CTwST. In order to improve this situation, we will re-formalize our methods in the
context of the basic method and the closure mechanism in the near future. Furthermore,
one of anonymous referees suggested that the effects of ST-splitting can be achieved
by the following clause transformation:

s ≈ t ∨ C ⇒ Pnew(~x) ∨ C, ¬Pnew(~x) ∨ s ≃ t and¬Pnew(~x) ∨ t ≃ s

wherePnew is a new predicate symbol and~x denotes the list of variables occurring ins
andt. Notice that the literalPnew(~x) corresponds to a raw equality in our framework.
This rule can be used for simulating ST-splitting instead ofpositive S-modification
rule. This method seems to have a great possibility in several aspects. We are now
conducting some theoretical studies and experimental evaluations.
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Abstract. The elimination of redundant clauses is an essential part of
resolution-based theorem proving in order to reduce the size of the search
space. In this paper we focus on ordered fine-grained resolution with
selection, a sound and complete resolution-based calculus for monodic
first-order temporal logic. We define a subsumption relation on temporal
clauses, show how the calculus can be extended with reduction rules
that eliminate redundant clauses, and we illustrate the effectiveness of
redundancy elimination with some experiments.

1 Introduction

Monodic first-order temporal logic [9] is a fragment of first-order temporal logic
(without equality) which, in contrast to first-order temporal logic itself, has
a semi-decidable validity and satisfiability problem. Besides semi-decidability,
monodic first-order temporal logic enjoys a number of other beneficial proper-
ties, e.g. the existence of non-trivial decidable subclasses, complete reasoning
procedures, etc.

In addition to a tableaux-based calculus [13] for monodic first-order tempo-
ral logic, several resolution-based calculi have been proposed for the logic, start-
ing with (monodic) temporal resolution [3]. A more machine-oriented version,
the fine-grained first-order temporal resolution calculus, was described in [12].
Subsequently, a refinement of fine-grained temporal resolution, the ordered fine-
grained temporal resolution with selection calculus, was presented in [10].

Essentially, the inference rules of ordered fine-grained resolution with selec-
tion can be classified into two different categories. The majority of the rules
are based on standard first-order resolution between different types of temporal
clauses. The remaining inference rules, the so-called eventuality resolution rules,
reflect the induction principle that holds for monodic temporal logic over a flow
of time isomorphic to the natural numbers. The applicability of the rules in this
second category is only semi-decidable, making the construction of fair deriva-
tions, that is, derivations in which every non-redundant clause that is derivable
from a given clause set is eventually derived, a non-trivial problem. A new in-
ference procedure solving this problem has been recently been described in [15]
and is implemented in the theorem prover TSPASS [14].

In this paper we focus on a different aspect of ordered fine-grained temporal
resolution with selection, namely, redundancy elimination. The use of an ordering
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and a selection function which restricts inferences to literals which are selected or,
in the absence of selected literals, to (strictly) maximal literals, already reduces
the possible inferences considerably. However, it cannot prevent the derivation
of redundant clauses, e.g. tautological clauses or clauses which are subsumed
by other, simpler, clauses. Redundancy elimination is therefore an important
ingredient for practical resolution calculi and for theorem provers based on such
calculi.

The paper is organised as follows. In Section 2 we briefly recall the syntax
and semantics of monodic first-order temporal logic. The ordered fine-grained
resolution with selection calculus is presented in Section 3. In Sections 4 and 5
we show how redundancy elimination can be added to the calculus. Finally, in
Section 6 we briefly discuss how redundancy elimination fits with our imple-
mentation of the calculus and present some experimental results which show the
effectiveness of redundancy elimination.

2 First-Order Temporal Logic

We assume the reader to be familiar with first-order logic and associated notions,
including, for example, terms and substitutions.

Then, the language of First-Order (Linear Time) Temporal Logic, FOTL, is
an extension of classical first-order logic by temporal operators for a discrete
linear model of time (i.e. isomorphic to N). The vocabulary of FOTL (without
equality and function symbols) is composed of a countably infinite set X of
variables x0, x1, . . . , a countably infinite set of constants c0, c1, . . . , a non-
empty set of predicate symbols P , P0, . . . , each with a fixed arity ≥ 0, the
propositional operators ⊤ (true), ¬, ∨, the quantifiers ∃xi and ∀xi, and the
temporal operators (‘always in the future’), ♦ (‘eventually in the future’), ©
(‘at the next moment’), U (‘until’) and W (‘weak until’) (see e.g. [7]). We also
use ⊥ (false), ∧, and⇒ as additional operators, defined using ⊤, ¬, and ∨ in the
usual way. The set of FOTL formulae is defined as follows: ⊤ is a FOTL formula;
if P is an n-ary predicate symbol and t1, . . . , tn are variables or constants, then
P (t1, . . . , tn) is an atomic FOTL formula; if ϕ and ψ are FOTL formulae, then
so are ¬ϕ, ϕ ∨ ψ, ∃xϕ, ∀xϕ, ϕ, ♦ϕ, ©ϕ, ϕUψ, and ϕWψ. Free and bound
variables of a formula are defined in the standard way, as well as the notions
of open and closed formulae. For a given formula ϕ, we write ϕ(x1, . . . , xn) to
indicate that all the free variables of ϕ are among x1, . . . , xn. As usual, a literal
is either an atomic formula or its negation, and a proposition is a predicate of
arity 0.

Formulae of this logic are interpreted over structures M = (Dn, In)n∈N
that

associate with each element n of N, representing a moment in time, a first-order
structure Mn = (Dn, In) with its own non-empty domain Dn and interpreta-
tion In. An assignment a is a function from the set of variables to

⋃
n∈N

Dn. The
application of an assignment to formulae, predicates, constants and variables is
defined in the standard way, in particular, a(c) = c for every constant c. The
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Mn |=
a ⊤

Mn |=
a P (t1, . . . , tn) iff (In(a(t1)), . . . , In(a(tn))) ∈ In(P )

Mn |=
a ¬ϕ iff not Mn |=

a ϕ
Mn |=

a ϕ ∨ ψ iff Mn |=
a ϕ or Mn |=

a ψ
Mn |=

a ∃xϕ iff Mn |=
b ϕ for some assignment b that may differ

from a only in x and such that b(x) ∈ Dn

Mn |=
a ∀xϕ iff Mn |=

b ϕ for every assignment b that may differ
from a only in x and such that b(x) ∈ Dn

Mn |=
a ©ϕ iff Mn+1 |=

a ϕ
Mn |=

a ♦ϕ iff there exists m ≥ n such that Mm |=
a ϕ

Mn |=
a ϕ iff for all m ≥ n, Mm |=

a ϕ
Mn |=

a ϕUψ iff there exists m ≥ n such that Mm |=
a ψ and

Mi |=
a ϕ for every i, n ≤ i < m

Mn |=
a ϕWψ iff Mn |=

a ϕUψ or Mn |=
a ϕ

Fig. 1. Truth-Relation for First-Order Temporal Logic

definition of the truth relation Mn |=a ϕ (only for those a such that a(x) ∈ Dn

for every variable x) is given in Fig. 1.
In this paper we make the expanding domain assumption, that is, Dn ⊆ Dm

if n < m, and we assume that the interpretation of constants is rigid, that is,
In(c) = Im(c) for all n,m ∈ N.

A structure M = (Dn, In)n∈N
is said to be a model for a formula ϕ if and

only if for every assignment a with a(x) ∈ D0 for every variable x it holds that
M0 |=a ϕ. A formula is satisfiable if and only there exists a model for ϕ. A
formula ϕ is valid if and only if every temporal structure M = (Dn, In)n∈N

is a
model for ϕ.

The set of valid formulae of this logic is not recursively enumerable. However,
the set of valid monodic formulae is known to be finitely axiomatisable [19]. A
formula ϕ of FOTL is called monodic if any subformula of ϕ of the form ©ψ,
ψ, ♦ψ, ψ1 Uψ2, or ψ1 Wψ2 contains at most one free variable. For example,

the formulae ∃x ∀yP (x, y) and ∀x P (c, x) are monodic, whereas the formula
∀x∃y(Q(x, y)⇒ Q(x, y)) is not monodic.

Every monodic temporal formula can be transformed into an equi-satisfiable
normal form, called divided separated normal form (DSNF) [12].

Definition 1. A monodic temporal problem P in divided separated normal form
(DSNF) is a quadruple 〈U , I,S, E〉, where the universal part U and the initial
part I are finite sets of first-order formulae; the step part S is a finite set of
step clauses of the form p ⇒ ©q, where p and q are propositions, and P (x) ⇒
©Q(x), where P and Q are unary predicate symbols and x is a variable; and
the eventuality part E is a finite set of formulae of the form ♦L(x) (a non-
ground eventuality clause) and ♦l (a ground eventuality clause), where l is a
propositional literal and L(x) is a unary non-ground literal with the variable x
as its only argument.

We associate with each monodic temporal problem P = 〈U , I,S, E〉 the monodic
FOTL formula I∧ U∧ ∀xS∧ ∀xE . When we talk about particular properties

36



of a temporal problem (e.g., satisfiability, validity, logical consequences, etc) we
refer to properties of this associated formula.

The transformation to DSNF is based on a renaming and unwinding tech-
nique which substitutes non-atomic subformulae by atomic formulae with new
predicate symbols and replaces temporal operators by their fixed point defini-
tions as described, for example, in [8].

Theorem 1 (see [4], Theorem 3.4). Any monodic formula in first-order tem-
poral logic can be transformed into an equi-satisfiable monodic temporal problem
in DSNF with at most a linear increase in the size of the problem.

The main purpose of the divided separated normal form is to cleanly separate
different temporal aspects of a FOTL formula from each other. For the resolution
calculus in this paper we will need to go one step further by transforming the
universal and initial part of a monodic temporal problem into clause normal
form.

Definition 2. Let P = 〈U , I,S, E〉 be a monodic temporal problem. With ev-
ery eventuality ♦L(x) ∈ E and constant c occurring in P we uniquely associate
a propositional symbol pL

c . Then the clausification Cls(P) of P is a quadruple
〈U ′, I ′,S′, E ′〉 such that U ′ is a set of clauses1, called universal clauses, consist-
ing of the clausification of U and clauses ¬pL

c ∨ L(c) for every ♦L(x) ∈ E and
constant c occurring in P; I ′ is a set of clauses, called initial clauses, obtained
by clausification of I; S′ is the smallest set of step clauses such that all step
clauses from S are in S′ and for every non-ground step clause P (x) ⇒ ©L(x)
in S and every constant c occurring in P, the clause P (c)⇒©L(c) is in S ′; E ′

is the smallest set of eventuality clauses such that all eventuality clauses from
E are in E ′ and for every non-ground eventuality clause ♦L(x) in E and every
constant c occurring in P, the eventuality clause ♦pL

c is in E ′.

One has to note that new constants and, especially, function symbols of an
arbitrary arity can be introduced during the Skolemization process. As a conse-
quence it is not possible in general to instantiate every variable that occurs in
the original problem with all the constants and function symbols. On the other
hand, the variables occurring in the step and eventuality clauses have to be in-
stantiated with the constants that are present in the original problem (before
Skolemization) in order to ensure the completeness of the calculus presented in
Section 3.

Note further that more general step clauses with more than one atom on the
left-hand side and more than one literal on the right-hand side can be derived
by the calculus introduced in Section 3. In what follows U denotes the (current)
universal part of a monodic temporal problem P.

3 Ordered Fine-Grained Resolution with Selection

We assume that we are given an atom ordering ≻, that is, a strict partial ordering
on ground atoms which is well-founded and total, and a selection function S

1 Clauses, as well as disjunctions and conjunctions, will be considered as multisets.
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which maps any first-order clause C to a (possibly empty) subset of its negative
literals and which is instance compatible:

Definition 3. We say that a selection function S is instance compatible if and
only if for every clause C, for every substitution σ and for every literal l ∈ Cσ
it holds that ∈ S(Cσ) iff there exists a literal l′ ∈ S(C) such that l′σ = l.

The atom ordering ≻ is extended to ground literals by ¬A ≻ A and (¬)A ≻
(¬)B if and only if A ≻ B. The ordering is extended on the non-ground level as
follows: for two arbitrary literals L and L′, L ≻ L′ if and only if Lσ ≻ L′σ for
every grounding substitution σ. A literal L is called (strictly) maximal w.r.t. a
clause C if and only if there is no literal L′ ∈ C with L′ ≻ L (L′ � L). A literal
L is eligible in a clause L∨C for a substitution σ if either it is selected in L∨C,
or otherwise no literal is selected in C and Lσ is maximal w.r.t. Cσ.

The atom ordering ≻ and the selection function S are used to restrict the
applicability of the deduction rules of fine-grained resolution as follows.

(1) First-order ordered resolution with selection between two universal clauses

C1 ∨A ¬B ∨ C2

(C1 ∨ C2)σ

if σ is a most general unifier of the atoms A and B, A is eligible in (C1 ∨A)
for σ, and ¬B is eligible in (¬B∨C2) for σ. The result is a universal clause.

(2) First-order ordered positive factoring with selection

C1 ∨A ∨B

(C1 ∨A)σ

if σ is a most general unifier of the atoms A and B, and A is eligible in
(C1 ∨A ∨B) for σ. The result is again a universal clause.

(3) First-order ordered resolution with selection between an initial and a uni-
versal clause, between two initial clauses, and ordered positive factoring with
selection on an initial clause. These are defined in analogy to the two deduc-
tion rules above with the only difference that the result is an initial clause.

(4) Ordered fine-grained step resolution with selection.

C1 ⇒©(D1 ∨A) C2 ⇒©(D2 ∨ ¬B)

(C1 ∧ C2)σ ⇒©(D1 ∨D2)σ

where C1 ⇒©(D1∨A) and C2 ⇒©(D2∨¬B) are step clauses, σ is a most
general unifier of the atoms A and B such that σ does not map variables
from C1 or C2 into a constant or a functional term, A is eligible in (D1 ∨A)
for σ, and ¬B is eligible in (D2 ∨ ¬B) for σ.

C1 ⇒©(D1 ∨A) D2 ∨ ¬B

C1σ ⇒©(D1 ∨D2)σ

where C1 ⇒ ©(D1 ∨ A) is a step clause, D2 ∨ ¬B is a universal clause,
and σ is a most general unifier of the atoms A and B such that σ does not
map variables from C1 into a constant or a functional term, A is eligible in
(D1 ∨A) for σ, and ¬B is eligible in (D2 ∨ ¬B) for σ. There also exists an
analogous rule where the positive literal A is contained in a universal clause
and the negative literal ¬B in a step clause.
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(5) Ordered fine-grained positive step factoring with selection.

C ⇒©(D ∨A ∨B)

Cσ ⇒©(D ∨A)σ

where σ is a most general unifier of the atoms A and B such that σ does not
map variables from C into a constant or a functional term, and A is eligible
in (D ∨A ∨B) for σ.

(6) Clause conversion. A step clause of the form C ⇒ ©⊥ is rewritten to the
universal clause ¬C.
Step clauses of the form C ⇒ ©⊥ will also be called terminating or final
step clauses.

(7) Duplicate literal elimination in left-hand sides of terminating step clauses.
A clause of the form (C ∧A ∧A)⇒©⊥ yields the clause (C ∧A)⇒©⊥.

(8) Eventuality resolution rule w.r.t. U :

∀x(A1(x)⇒©B1(x)) · · · ∀x(An(x)⇒©Bn(x)) ♦L(x)

∀x
∧n

i=1 ¬Ai(x)
(♦Ures) ,

where ∀x(Ai(x) ⇒ ©Bi(x)) are formulae computed from the set of step
clauses such that for every i, 1 ≤ i ≤ n, the loop side conditions ∀x(U ∧
Bi(x)⇒ ¬L(x)) and ∀x(U ∧ Bi(x)⇒

∨n
j=1(Aj(x))) are valid.2

The set of full merged step clauses, satisfying the loop side conditions, is
called a loop in ♦L(x) and the formula

∨n
j=1Aj(x) is called a loop formula.

More details can be found in [10].
(9) Ground eventuality resolution rule w.r.t. U :

A1 ⇒©B1 · · · An ⇒©Bn ♦l∧n
i=1 ¬Ai

(♦Ures) ,

where Ai ⇒©Bi are ground formulae computed from the set of step clauses
such that for every i, 1 ≤ i ≤ n, the loop side conditions U ∧ Bi |= ¬l and
U ∧ Bi |=

∨n
j=1Aj are valid. The notions of ground loop and ground loop

formula are defined similarly to the case above.

Rules (1) to (7), also called rules of fine-grained step resolution, are either
identical or closely related to the deduction rules of ordered first-order resolution
with selection; a fact that we exploit in our implementation of the calculus. The
condition in rules (4) and (5) that a unifier σ may not map variables from
the antecedent into a constant or a functional term is a consequence of the
expanding domain assumption. Without this restriction, the calculus would be
unsound [12, Example 5].

Loop formulae, which are required for applications of the rules (8) and (9),
can be computed by the fine-grained breadth-first search algorithm (FG-BFS),
depicted in Fig. 2. In this algorithm, LT(S) is the minimal set of clauses contain-
ing S such that for every non-ground step clause (P (x)⇒©M(x)) ∈ S, the set
LT(S) contains the clause P (cl)⇒©M(cl) (cl is a constant used only for loop
search). The process of running the FG-BFS algorithm is called loop search. A
variant of the FG-BFS algorithm for handling ground eventualities also exists.

2 In the case U |= ∀x¬L(x), the degenerate clause, ⊤ ⇒ ©⊤, can be considered as a
premise of this rule; the conclusion of the rule is then ¬⊤.
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Function FG-BFS

Input: A set of universal clauses U and a set of step clauses S , saturated
by ordered fine-grained resolution with selection, and an eventuality
clause ♦L(x) ∈ E .

Output: A loop formula H(x) with at most one free variable.
Method: (1) Let H0(x) = true; M0 = ∅; i = 0

(2) Let Ni+1 = U ∪ LT(S) ∪ {true ⇒ ©(¬Hi(c
l) ∨ L(cl))}. Apply

the rules of ordered fine-grained resolution with selection except
the clause conversion rule to Ni+1. If we obtain a contradiction,
then return the loop true (in this case ∀x¬L(x) is implied by the
universal part).
Otherwise let Mi+1 = {Cj ⇒ ©⊥}

n
j=1 be the set of all new

terminating step clauses in the saturation of Ni+1.

(3) IfMi+1 = ∅, return false; else let Hi+1(x) =
Wn

j=1
(∃̃Cj){cl → x}

(4) If ∀x(Hi(x)⇒ Hi+1(x)), return Hi+1(x).
(5) i = i + 1; goto 2.

Note: The constant cl is a fresh constant used for loop search only

Fig. 2. Breadth-First Search Algorithm Using Fine-Grained Step Resolution.

Let ordered fine-grained resolution with selection be the calculus consisting of
the rules (1) to (7) above, together with the ground and non-ground eventuality
resolution rules described above, i.e. rules (8) and (9). We denote this calculus
by IS,≻

FG
.

Definition 4 (Derivation). A (linear) derivation ∆ (in IS,≻

FG
) from the clausi-

fication Cls(P) = 〈U1, I1,S1, E〉 of a monodic temporal problem P is a sequence
of tuples ∆ = 〈U1, I1,S1, E〉, 〈U2, I2,S2, E〉, . . . such that each tuple at an index
i + 1 is obtained from the tuple at the index i by adding the conclusion of an
application of one of the inference rules of IS,≻

FG
to premises from one of the sets

Ui, Ii, Si to that set, with the other sets as well as E remaining unchanged3.

A derivation ∆ such that the empty clause is an element of a Ui∪Ii is called
a (IS,≻

FG
-)refutation of 〈U1, I1,S1, E〉.

A derivation ∆ is fair if and only if for each clause C which can be de-
rived from premises in 〈

⋃
i≥1 Ui,

⋃
i≥1 Ii,

⋃
i≥1 Si, E〉 there exists an index j such

that C occurs in 〈Uj , Ij ,Sj , E〉.

Ordered fine-grained resolution with selection is sound and complete for constant
flooded monodic temporal problems over expanding domains as stated in the
following theorem.

Theorem 2 (see [10], Theorem 5). Let P be a monodic temporal problem.
Let ≻ be an atom ordering and S an instance compatible selection function.
Then P is unsatisfiable iff there exists a IS,≻

FG
-refutation of Cls(P). Moreover, P

is unsatisfiable iff any fair IS,≻

FG
-derivation is a refutation of Cls(P).

3 In an application of ground eventuality or eventuality resolution rule, the set U in
the definition of the rule refers to Ui.
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To prove Theorem 2, we show that any refutation of a temporal problem by the
Ie calculus of [12] there is a corresponding refutation by IS,≻

FG
. Rule (7), which

allows the elimination of duplicate literals in the left-hand sides of step clauses,
is required to establish this correspondence.

4 Adding Redundancy Elimination

Given that our calculus uses an ordering refinement, it seems natural to es-
tablish that the calculus admits redundancy elimination by using the approach
in [1, Section 4.2]. To do so, we would first need to define a model functor I
that maps any (not necessarily satisfiable) temporal problem P not containing
the empty clause to an interpretation MP and then show that IS,≻

FG
has the re-

duction property for counterexamples with respect to the model functor I and
the ordering ≻, that is, for every temporal problem P and minimal clause C in P

which is false in MP, there exists an inference with (main) premise C and conclu-
sion D that is also false in P but smaller than C wrt. ≻. We could then define a
clause C to be redundant wrt. P if there exists clauses C1, . . . , Ck in P such that
C1, . . . , Ck |= C and C ≻ Ci for all i, 1 ≤ i ≤ k, and it would be straightforward
to show that IS,≻

FG
remains complete if redundant clauses are eliminated from

derivations.
However, due to the presence of eventualities in temporal problems, defining

an appropriate model functor is a non-trivial and open problem. For example,
consider the satisfiable propositional temporal problem P = 〈{p ∨ q}, ∅, {p ⇒
©¬l}, {♦l}〉 and an ordering ≻ such that p ≻ q. Applying the standard model
functor defined in [1] to the clause p ∨ q results in a model in which p is true.
Given that p ∨ q is a universal clause, it would be natural to define MP in such
way that p is true at every moment of time. However, due to the step clause
p ⇒ ©¬l, ♦l is not true in MP which means that MP is not a model of P.
Thus, this simplistic approach to defining a model functor is not correct for
temporal problems containing eventualities.

We have recently introduced a model functor I for propositional temporal
problems [16], which is able to associate a model M of P with every satisfiable
temporal problem P, but IS,≻

FG
is not reductive wrt. I. Thus, this model functor

is not suitable for establishing that IS,≻

FG
admits redundancy elimination.

Thus, we have to follow a different approach in order to show how ordered
fine-grained resolution with selection can be extended with redundancy elimi-
nation rules. In the following we will define the notions of a tautological clause
and of a subsumed clause. In order to show that IS,≻

FG
is still complete if such

clauses are eliminated during a derivation, we need to show that for every refuta-
tion without redundancy elimination there exists a refutation with redundancy
elimination. It turns out that in order to be able to do so, we need to add two
inference rules to our calculus and impose a restriction on the selection function.

First of all, we consider tautological clauses. As a tautological clause is defined
to be a clause that is true in every structure M = (Dn, In)n∈N

, we obtain the
following lemma:
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Lemma 1. Let C be a initial, universal or step clause. Then:

(i) If C is an initial or universal clause, then C is a tautology iff C = ¬L∨L∨C ′,
for some possibly empty disjunction of literals C′.

(ii) If C = C1 ⇒©C2 is a step clause, then C is a tautology iff C2 = ¬L∨L∨C′2,
for some possibly empty disjunction of literals C′2.

It has be noted that for point (ii) of the lemma above C1 is assumed to be true
or a non-empty conjunction of atoms.

Thus, just as in the non-temporal first-order case, there is again a syntactic
criterion for characterising tautologies, namely the presence of complementary
literals. For a set of clauses N (or a temporal problem) we denote by taut(N )
the set of all the tautological clauses contained in the set N .

The subsumption relation on initial, universal and step clauses is now defined
as follows.

Definition 5. We define a subsumption relation ≤s on initial, universal and
step clauses as follows:

(i) For two initial clauses C and D, two universal clauses C and D, or a uni-
versal clause C and an initial clause D we define

C ≤s D iff there exists a substitution σ with Cσ ⊆ D.

(ii) For two step clauses C = C1 ⇒©C2 and D = D1 ⇒©D2 we define

C ≤s D iff there exists a substitution σ with C1σ ⊆ D1, C2σ ⊆ D2 and

for every x ∈ var(C1) ∩ var(C2) : σ(x) ∈ X.

(iii) For a universal clause C and a step clause D = D1 ⇒©D2 we define

C ≤s D iff there exists a substitution σ with Cσ ⊆ ¬D1 or Cσ ⊆ D2.

By N ≤s N
′ we denote that all clauses in N ′ are subsumed by clauses in N .

Thus, subsumption between two initial, two universal or an initial and a universal
clause is defined analogously to the subsumption on regular first-order clauses.
However, we can only allow a universal clause to subsume a initial clause, but
not conversely, as an initial clause only holds in the initial moment of time while
a universal clause is true at every moment of time. We also allow subsumption
between a universal and a step clause if and only if the universal either subsumes
the negated left-hand side or the right-hand side of the step clause.

For subsumption between two step clauses C1 ⇒ ©C2 and D1 ⇒ ©D2,
we have to impose an additional constraint on the substitution that is used for
multiset inclusion: in analogy to inference rules (4) and (5), it has to be ensured
that variables occurring in the left-hand sides C1 and C2 are only mapped to
variables. While for the two inference rules this restriction is imposed to ensure
soundness, here the motivation is completeness.

To see that, consider a temporal problem P with universal clauses P (x) and
¬Q(c) and a step clause P (x) ⇒ ©Q(x). The clausification of P will then also
contain a step clause P (c) ⇒ ©Q(c). This additional step clause can be re-
solved with ¬Q(c) using rule (4) with the identity substitution as unifier to
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obtain P (c) ⇒ ©⊥ which, using the conversion rules, gives us a new univer-
sal clause ¬P (c). Another inference step with P (x) results in a contradiction.
Now, without a restriction on the substitution that can be used in subsumption,
P (x) ⇒ ©Q(x) would subsume P (c) ⇒ ©Q(c). We could then try to derive a
contradiction by resolving P (x) ⇒ ©Q(x) with ¬Q(c). However, the unifier of
Q(x) and Q(c) maps the variable x, which also occurs on the left-hand side of
the step clause to the constant c. Thus, an inference by rule (4) using these two
premises is not possible and a contradiction can no longer be derived.

Definition 6. Let C and D be initial, step or universal clauses. Then we say
that C properly subsumes D, written C <s D, if and only if C subsumes D but
not vice-versa, i.e. C <s D iff C ≤s D and D 6≤s C.

Lemma 2. Let C and D be initial, step or universal clauses such that C ≤s D.
Then it holds for an initial clause D that the formula [( )∀̃C]⇒ [∀̃D] is valid,
and for a step or universal clause D that the formula [ ∀̃C]⇒ [ ∀̃D] is valid,
where ∀̃C denotes the universal closure of C.

Having defined criteria for identifying tautological and subsumed clauses, we
could now try to prove that for every refutation without redundancy elimination
there exists a refutation with redundancy elimination. However, it turns out
that such a correspondence is difficult to establish if the refutation contains
applications of the duplicate literal elimination rule whose premise is subsumed.

For example, consider the step clause D1 = P (x) ∧ P (x) ⇒ ©⊥ which is
subsumed by C1 = P (x)∧P (y)⇒©⊥. FromD1 we can deriveD2 = P (x)⇒©⊥
using the duplicate literal elimination rule. But our calculus does not contain a
rule which allows us to derive a clause C2 from C1 that subsumes D2 nor does
C1 itself subsume D2. Similarly, the universal clause C3 = ¬P (x) ∨ ¬P (y) would
also subsume C1. But again, C3 does not subsume D2 nor can we derive a clause
from C3 which subsumes D2 using the rules of our calculus.

In order to deal with these two cases we need additional factoring rules, in
particular, we need to extend our calculus by the following two rules:

– (Arbitrary) Factoring in left-hand sides of terminating step clauses:

C ∧A ∧B ⇒©⊥

(C ∧A)σ ⇒©⊥
,

where σ is a most general unifier of the atoms A and B.

– (Arbitrary) Factoring in (at most) monadic negative universal clauses:

¬A1 ∨ · · · ∨ ¬An ∨ ¬An+1

(¬A1 ∨ · · · ∨ ¬An)σ
,

where every atom A1, . . . , An+1 contains at most one free variable and σ is a
most general unifier of the atoms An and An+1.
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The calculus ordered fine-grained resolution with selection extended by the two
rules introduced above will be called subsumption complete ordered fine-grained
resolution with selection and will be denoted by IS,≻

FG,Sub
.

Finally, for our completeness proof we also need to require that the selection
function is subsumption compatible, as defined below.

Definition 7. We say that a selection function S is subsumption compatible if
and only if for every substitution σ and for every two clauses C,D with Cσ ⊆ D
it holds for every literal l ∈ D that l ∈ S(D) iff lσ ∈ S(C)

We now have everything in place to show that subsumption complete ordered
fine-grained resolution with selection allows the elimination of tautological and
subsumed clauses.

Lemma 3. Let C1, C2 be initial, universal or step clauses such that C1 is a
tautology. Then it holds that every resolvent C of C1 and C2 is either a tautology
or subsumed by C2.

Lemma 4. Let C1 be a tautology. Then it holds that every factor C of C1 is a
tautology.

Lemma 5. Let U be a set of universal clauses and let N , Ñ be sets of step
clauses such that N ≤s Ñ . Additionally, let ∆̃ be a derivation of a step clause C̃
by subsumption complete ordered fine-grained resolution with selection without
the clause conversion rule from clauses in U ∪ Ñ .

Then there exists a derivation ∆ of a step clause C by subsumption complete
ordered fine-grained resolution with selection from clauses in U ∪ N such that
C ≤s C̃.

Proof. Lemma 5 is shown by induction on the length of the derivation ∆̃. For
the base case we assume that C̃ is a step clause in Ñ . Then there is a clause C
in N with C ≤s C̃. For the induction step we consider a step clause C̃ that is
derived by one of the rules of fine-grained step resolution excluding the clause
conversion rule, that is, rules (1) to (5) and (7), from premises C̃1 and C̃2 which
are either elements of U ∪ Ñ or previously derived clauses. By the induction
hypothesis there are clauses C1 and C2 with C1 ≤s C̃1 and C2 ≤s C̃2 which are
either elements of U ∪ N or previously derived, and either C1 ≤s C̃, C2 ≤s C̃ or
we can derive a clause C with C ≤s C̃ from C1 and C2.

Lemma 6. Let N and Ñ be sets of initial, universal clauses or step clauses such
that N ≤s Ñ . Additionally, let ∆̃ be a derivation of a clause C̃ by subsumption
complete ordered fine-grained resolution with selection from clauses in Ñ .

Then there exists a derivation ∆ of a clause C by subsumption complete
ordered fine-grained resolution with selection from clauses in N such that C ≤s C̃.

The previous statement still holds if N ≤s Ñ \ taut(Ñ ) and C̃ is not a
tautology.
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Function Subsumption-Restricted-FG-BFS

Input: A set of universal clauses U and a set of step clauses S , saturated
by ordered fine-grained resolution with selection, and an eventuality
clause ♦L(x) ∈ E .

Output: A formula R(x) with at most one free variable.
Method: (1) Let R0(x) = true; M0 = ∅; i = 0

(2) Let N ′

i+1 = U ∪ LT(S) ∪ {true ⇒ ©(¬Ri(c
l) ∨ L(cl))}. Apply

the rules of ordered fine-grained resolution with selection except
the clause conversion rule to N ′

i+1, together with the removal of
tautological and subsumed clauses. If we obtain a contradiction,
then return the loop true (in this case ∀x¬L(x) is implied by the
universal part).
Otherwise let M′

i+1 = {Cj ⇒ ©⊥}nj=1 be the set of all new
terminating step clauses in the saturation of N ′

i+1.

(3) IfM′
i+1 = ∅, return false; else let Ri+1(x) =

Wn

j=1
(∃̃Dj){cl → x}

(4) If ∀x(Ri(x)⇒ Ri+1(x)), return Ri+1(x).
(5) i = i + 1; goto 2.

Fig. 3. Restricted Breadth-First Search Using Ordered Fine-Grained Step Resolution
with Selection

Proof. Let ∆̃ = D̃1, . . . , D̃n−1, C̃(= D̃n). If N ≤s Ñ , then one can show the
existence of the derivation ∆ by induction on the length of the derivation ∆̃ in
analogy to Lemma 5.

In the case where N ≤s Ñ \ taut(Ñ ) holds, it can be shown inductively
for every clause D̃i (1 ≤ i ≤ n) which is not a tautology that there exists a
derivation ∆ of a clause Di with Di ≤s D̃i by subsumption complete ordered
fine-grained resolution with selection from clauses in N .

Theorem 3. Let P be the clausification of a monodic temporal problem. Let ≻
be an atom ordering and S a subsumption compatible selection function. Then
P is unsatisfiable iff there exists a IS,≻

FG,Sub
-refutation of Cls(P). Moreover, P is

unsatisfiable iff any fair IS,≻

FG,Sub
-derivation is a refutation of Cls(P).

Proof. Given a IS,≻

FG
-refutation ∆ of P we establish by induction on ∆ that there

also exists a IS,≻

FG,Sub
-refutation of P using Lemmata 3 to 6.

5 Subsumption and Loop Search

Theorem 3 shows that we can eliminate tautologies and subsumed clauses during
the construction of a derivation at the level of inference rule applications of the
IS,≻

FG,Sub
calculus. However, the rules of the calculus are also applied within the

fine-grained breadth-first search algorithm FG-BFS which is used to find loop
formulae for the application of the eventuality resolution rules. Naturally, the
question arises whether tautological and subsumed clauses can also be eliminated
within FG-BFS.
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The answer to that is positive. Figure 3 shows the so-called subsumption re-
stricted breadth-first search algorithm using ordered fine-grained step resolution
with selection, a modification of FG-BFS which removes tautological and sub-
sumed clauses during the saturation process by ordered fine-grained resolution
with selection in step (2) of the algorithm. In the way in which the algorithm
shown in Figure 3 is defined the constructed setsM′i will not contain terminating
step clauses C ⇒©⊥ and D ⇒©⊥ such that C ≤s D.

We are then able to prove the following result:

Theorem 4. Let P be a monodic temporal problem. Let ≻ be an atom ordering
and S a subsumption compatible selection function. Then P is unsatisfiable iff
there exists a IS,≻

FG,Sub
-refutation of Cls(P) with applications of the eventuality

resolution rule restricted to loop formulae found by the function Subsumption-
Restricted-FG-BFS. Moreover, P is unsatisfiable iff any fair IS,≻

FG,Sub
-derivation

with applications of the eventuality resolution rule restricted to loop formulae
found by the function Subsumption-Restricted-FG-BFS is a refutation of Cls(P).

6 Implementation and Experimental Results

The subsumption complete ordered fine-grained resolution calculus including
the restricted breath-first loop search procedure have been implemented in the
theorem prover TSPASS 4, which is based on the first-order resolution prover
SPASS 3.0. In order to be able to construct fair derivations, the loop search
procedure has been integrated with the remainder of the calculus as described
in [14, 15].

The main procedure of TSPASS uses a given-clause algorithm [18] in which
a clause selected from the set US of usable clauses, which initially contains all
clauses from a given temporal problem, is used to derive all consequences NEW
by resolving the selected clause with all the clauses in the set WO of worked-off
clauses, which is initially empty, after the selected clause has been moved from
US to WO. Based on the results in the previous two sections, we can apply
tautology elimination (to NEW), forward subsumption and backward subsump-
tion [18]. With forward subsumption all clauses in NEW that are subsumed by
a clause in WO or US are deleted from NEW . With backward subsumption
clauses in WO and US subsumed by a clause in NEW are deleted from these
sets. After redundancy elimination the remaining clauses in NEW are added to
US. This process continues until either a contradiction is derived or US becomes
empty.

To show the effectiveness of tautology elimination, forward subsumption,
and backward subsumption for the subsumption complete ordered fine-grained
resolution calculus, we have applied TSPASS 0.92-0.16, for example, on the spec-
ification of the game Cluedo [2]. Due to lack of space we cannot present other
examples, but we obtained similar results. The Cluedo problem specifications

4 Available at http://www.csc.liv.ac.uk/~michel/software/tspass/
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-F/-B/-T -F/+B/-T -F/-B/+T -F/+B/+T
Clauses Time Clauses Time Clauses Time Clauses Time

1 — TO — TO 239202 328.938s 17664 0.193s
2 — TO — TO — TO 694574 10.959s
3 — TO — TO — TO — TO
4 — TO — TO — TO 529244 12.566s
5 — TO — TO — TO — TO
6 — TO — TO — TO — TO

+F/-B/-T +F/+B/-T +F/-B/+T +F/+B/+T
Clauses Time Clauses Time Clauses Time Clauses Time

1 481 0.035s 480 0.039s 445 0.033s 444 0.038s
2 2354 0.130s 2262 0.129s 1926 0.115s 1892 0.124s
3 11065 1.375s 9912 1.310s 10102 1.350s 9170 1.278s
4 1460 0.087s 1559 0.097s 1125 0.074s 1343 0.093s
5 594 0.051s 594 0.052s 488 0.044s 488 0.049s
6 765 0.059s 765 0.055s 645 0.050s 645 0.054s

Table 1. Results Obtained for the Cluedo Examples

consist of six valid, i.e. unsatisfiable, assertions that can be made in an exam-
ple Cluedo game. The full details can be found in [5, 6]. Problem 4 is the only
specification that contains eventuality formulae.

The experiments were run on a PC with an Intel Core 2 Duo E6400 CPU
and 2 GB of main memory with a timeout (TO) of 1 CPU hour for each prob-
lem. The results are shown in Table 1. Here, ‘+B’, ‘+F’, and ‘+T’ indicate
that backward subsumption, forward subsumption, and tautology elimination,
respectively, have been enabled while ‘-B’, ‘-F’, and ‘-T’ indicate that they have
been disabled. Given that all six assertions are valid, proofs can theoretically
be found by a complete reasoner without the need for redundancy elimination.
As the experiments indicate this is clearly not the case within a reasonable
amount of time. On the other hand with all options for redundancy elimination
enabled even the most difficult problem can be solved in little more than one
second. As one might expect, forward subsumption is the most effective of the
three options, followed by tautology elimination, while backward subsumption
can on occasion slow down the process of finding a proof rather than speeding
it up. Overall, the experiments confirm that redundancy elimination is crucial
for effective resolution-based theorem proving in monodic first-order temporal
logic.

7 Conclusion

In this paper we have considered redundancy elimination in the context of or-
dered fine-grained resolution with selection, a sound and complete resolution-
based calculus for monodic first-order temporal logic. We have shown that a
slight modification of the calculus is compatible with the elimination of tautolo-
gies and subsumed clauses.

Our results can be used to show that the calculus can also be extended with
additional rules, for example, condensation and matching replacement resolu-
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tion [18] with suitable restrictions on the substitutions and on the orderings of
the literals that are to be removed, which reduce to a sequence of inference and
redundancy elimination steps. Such rules can be useful to further increase the
effectiveness of the calculus and for the construction of decision procedures for
decidable fragments of monodic first-order temporal logic [10].

In addition, we have presented experimental results which confirm that the
elimination of redundant clauses is essential for effective resolution-based theo-
rem proving in monodic first-order temporal logic.
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Abstract. This paper studies minimal model generation for SAT in-
stances. In this study, we minimize models with respect to an atom set,
and not to the whole atom set. In order to enumerate minimal models,
we use an arbitrary SAT solver as a subroutine which returns models
of satisfiable SAT instances. In this way, we benefit from the year-by-
year progress of efficient SAT solvers for generating minimal models. As
an application, we try to solve job-shop scheduling problems by encod-
ing them into SAT instances whose minimal models represent optimum
solutions.

1 Introduction

The notion of minimal Herbrand models is important in a wide range of areas
such as logic programming, deductive database, software verification, and hypo-
thetical reasoning. Some applications would actually need to generate minimal
models of a given formula.

In this work, we consider the problem of automating propositional minimal
model generation with respect to an atom set. Some earlier works [3, 14, 9] con-
sidered minimal model generation with respect to the whole atom set.

Bry and Yahya [3] presented a sound and complete procedure for generat-
ing minimal models. They incorporate complement splitting and constrained
search into positive unit hyper-resolution in order to reject nonminimal models.
Niemelä [14] also gave a sound and complete procedure. His method is based
on a generate and test method: generate a sequence of minimal model candi-
dates and reject nonminimal models by groundedness test which passes minimal
models. Hasegawa et al. [9] presented an minimal model generation method em-
ploying branching assumptions and lemmas so as to prune branches that lead to
nonminimal models, and to reduce minimality tests on obtained models.

However, these earlier works do not make use of some pruning techniques
such as non-chronological or intelligent backtracking, and generating lemmas.
These techniques make reasoning systems practical ones. In recent years, the

⋆ This work was supported by KAKENHI (20240003).



propositional satisfiability (SAT) problem has been studied actively [1]. Specially,
many works for implementing efficient SAT solvers have been performed in the
last decade. The state-of-the-art SAT solvers can solve SAT problems consisting
of millions of clauses in a few minutes. Then, it has been realized that we solve
several kinds of problems by encoding them into SAT problems [7, 2].

This paper shows a method to generate minimal models with a SAT solver.
Thus, the method benefits from the year-by-year progress of SAT solvers im-
plementing the pruning techniques efficiently. We also try to solve the job-shop
scheduling problems (JSSP) in the minimal model generation framework, in
which, minimal models represent optimum, namely, the shortest schedules.

The remaining part of this paper is organized as follows: First we present a
characterization of minimal models that is the key to our method to handle min-
imal model generation. Section 3 gives minimal model inference procedures with
a SAT solver. Section 4 describes the job-shop scheduling problem and encodes
it as a SAT instance. Section 5 demonstrates that the procedures are successfully
implemented with the SAT solver MiniSat 2 by solving several JSSPs. We end
the paper with a short summary and a discussion of future works.

2 Properties of Minimal Models

Models of a propositional formula can be represented by a set of propositional
variables (or atoms); namely, each model is represented by the set of proposi-
tional variables to which it assigns true. For example, the model assigning true
to a, false to b, and true to c is represented by the set {a, c}. In this representa-
tion, we can compare two models by set inclusion. For example, model {a, c} is
smaller than model {a, b, c}. In this study, we focus on minimality of models in
the representation.

Definition 1. Let P , M1 and M2 be atom sets. Then, M1 is said to be smaller
than M2 with respect to P if M1 ∩ P is a proper subset of M2 ∩ P .

Example 1. LetM1 = {p1, p2, p3, a},M2 = {p1, p3, b, c, e, f} and P = {p1, p2, p3}.
Then, M2 is smaller than M1 with respect to P .

Definition 2 (Minimal model). Let A be a propositional formula, P be an
atom set, and M be a model of A. Then, M is said to be a minimal model of A
with respect to P when there is no model smaller than M with respect to P .

Example 2. Let A be a propositional formula and P = {p1, p2, p3}. And, A has
three models M1 = {p1, p2, p3, a}, M2 = {p1, p2, b}, and M3 = {p3, c}. Then, M2

and M3 are minimal models with respect to P while M1 is not minimal.

This definition is the same as that of circumscription Circum(A(P,Z);P ;Z)
[10] when variable predicates Z = P , i.e. no fixed predicate. Note that P
denotes the set complement of P . In this sense, our study is a specialized one of
circumscription. There is a little difference between our work and circumscription
for the treatment of models. We are interested only in truth values of atoms in P .
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Therefore, we regard two models M1 and M2 as equal when M1 ∩ P = M2 ∩ P ,
while these two are distinguished in the framework of circumscription when
M1 6= M2.

The following theorem is a straight extension of Proposition 6 in Niemelä’s
work [14]. This theorem gives the basis of the computational treatment of min-
imal models as Proposition 6 does.

Theorem 1. Let A be a propositional formula, P be an atom set, and M be a
model of A. Then, M is a minimal model of A with respect to P iff a formula A∧
¬(a1∧a2∧. . .∧am)∧¬b1∧¬b2∧. . .∧¬bn is unsatisfiable, where {a1, a2, . . . , am} =
M ∩ P and {b1, b2, . . . , bn} = M ∩ P .

Proof. Let G be A ∧ ¬(a1 ∧ a2 ∧ . . . ∧ am) ∧ ¬b1 ∧ ¬b2 ∧ . . . ∧ ¬bn.
Assume thatM is not a minimal model. Then, there is a modelN smaller thanM
with respect to P . Thus, the following properties hold: ∀j(1 ≤ j ≤ n)(N |= ¬bj)
and ∃i(1 ≤ i ≤ m)(N |= ¬ai). Of course, N |= A because N is a model of A.
Therefore, N |= G; namely G is satisfiable.
Conversely, we assume G is satisfiable. Then, there is a model N such that
∀j(1 ≤ j ≤ n)(N |= ¬bj) and ∃i(1 ≤ i ≤ m)(N |= ¬ai). This implies N is
smaller than M with respect to P . That is, M is not a minimal model with
respect to P .

Example 3. Let A be a propositional formula and P = {p1, p2, p3, p4}. Then, a
model {p1, p4, c, d} of A is minimal with respect to P iff A∧¬(p1∧p4)∧¬p2∧¬p3

is unsatisfiable.

3 Procedures

This section gives procedures for generating minimal models of a SAT instance
with a SAT solver based on the generate and test method: generating a sequence
M1, . . . ,Mi, . . . of models and performing minimality test on each Mi. In these
procedures, we use a single SAT solver as both generator and tester where we
assume the SAT solver returns a model of a satisfiable SAT instance. Almost all
SAT solvers satisfy this assumption.

Figure 1 (a) shows a minimal model generation with respect to an atom set
P which is implicitly given to the procedure. We call this the naive version.
A0 is a SAT instance to be proved. The function solve(A) denotes the core
part of the SAT solver. The function returns false when a SAT instance A is
unsatisfiable and true when A is satisfiable. In the latter case, a model M of A is
obtained through an array from which we construct two formulas F1 and F2 for
a minimality test on M with respect to P where F1 = ¬(a1 ∧ . . .∧ am) and F2 =
¬b1∧ . . .∧¬bn. A boolean variable exhaustive indicates whether the procedure
generates all minimal models or only one minimal model. If exhaustive is set
to true, all minimal models are generated.

If solve(A) in line (2) returns true, the body of the while statement is
executed. In this case, as a model M of A is obtained, we perform a minimality
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test on M (in (4)). If the test passes, that is solve(A) in (4) returns false, we
conclude M is minimal with respect to P . If the test fails or exhaustive is true,
F1 is added to A1 as a conjunct in order to avoid generating the same model or
larger models in succeeding search. Thus, the role of the conjunct F1 is pruning
redundant models.

(1) A = A0; A1 = A0; // A0: a SAT instance to be proved
(2) while (solve(A)) { // Found a model M where M ∩ P = {a1, . . . , am}

// and M ∩ P = {b1, . . . , bn}
(3) A = A ∧ F1 ∧ F2; // F1 = ¬(a1 ∧ . . . ∧ am), F2 = ¬b1 ∧ . . . ∧ ¬bn
(4) if (!solve(A)) { // Perform minimality test
(5) “minimal model found”;
(6) if (!exhaustive) break;
(7) }
(8) A1 = A1 ∧ F1; A = A1; // continue searching minimal models

// without generating larger models.
(9) }

(a) Naive version

(1) A = A0;
(2) while (solve(A)) { // Found a model M,
(3) MM = minimize(A, M); // minimize M, and obtain a minimal model MM
(4) if (!exhaustive) break;
(5) A = A ∧ F1; // MM ∩ P = {a1, . . . , am} and F1 = ¬(a1 ∧ . . . ∧ am)
(6) }

(7) function minimize(A,M) {
// returns a minimal model small than or equal to M

// where M ∩ P = {a1, . . . , am} and M ∩ P = {b1, . . . , bn}
(8) A = A ∧ F1 ∧ F2; // F1 = ¬(a1 ∧ . . . ∧ am), F2 = ¬b1 ∧ . . . ∧ ¬bn
(9) if(!solve(A)) { // Perform minimality test
(10) return M; // M is a minimal model
(11) } else { // Found a new model SM smaller than M

(12) minimize(A, SM); // and minimize SM

(13) } }

(b) Normal version

Fig. 1. Procedures for minimal model generation

Figure 1 (b) shows a modified procedure of the naive version. We call this the
normal version. In this version, when a model is found, we minimize it with the
function minimize. Its definition is shown from the line (7) to (13). This uses
the result of the minimality test on A in (9). When the test fails, in other words,
solve(A) in (9) returns true, we obtain a model SM of A. SM is smaller than M

because of the conjuncts F1 and F2. Thus, SM is the next target of minimize. Note
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that ∃i(1 ≤ i ≤ m)(ai 6∈ SM). Therefore, at least one current ¬ai participates in
F2 of the next minimize.

The major difference between the naive version and the normal version is the
use of SM obtained from the minimality test. The naive version ignores it while
the normal version uses it. Therefore, we expect that the normal version is more
efficient than the naive version for enumerating minimal models.

3.1 Lemma Reusing

Many state-of-the-art SAT solvers learn lemmas called conflict clauses to prune
redundant search space, but lemmas deduced from a certain SAT instance can
not apply to solve other SAT instances. Therefore, a function call solve(A) in
Figure 1 (both (a) and (b)) can not use lemmas deduced from previous solve(A)
in general.

However, every SAT instance A in solve(A) satisfies the following lemma-
reusability condition [13] if the conjunct F1 is not added to A, when the SAT
solver uses Chaff-like lemma generation mechanism [12].

Definition 3 (Lemma-reusability condition [13]). Suppose that A and B
are SAT instances. The lemma-reusability condition between A and B is as fol-
lows: If A includes a non-unit clause x, then B contains x.

If both A and B satisfy the condition, we can use lemmas generated by
solve(A) for solve(B). This is justified by the following proposition which is a
paraphrase of Theorem 1 in [13].

Proposition 1. If A is a SAT instance and c is any lemma generated by solve(A),
then c is a logical consequence of a set of some non-unit clauses in A.

This proposition is true when we use the SAT solver MiniSat for imple-
menting solve(A), because MiniSat does not use any unit clause for generating
lemmas.

F1 is a non-unit clause and violates the lemma-reusability condition. However,
the only role of F1 is excluding models larger than the model causing F1. Then,
lemmas depending on F1 can be used for succeeding minimal model generation.
It follows from what has been said that every call solve(A) shares lemmas each
other.

3.2 An Implementation with MiniSat

We have implemented the minimal model generation procedures with the SAT
solver MiniSat [5] version 2.1 which is written in C++. MiniSat 2.1 took the
first place in the main track of SAT-Race 2008.

The solve method of MiniSat is declared as follows:

bool solve(const vec<Lit>& assumps)
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The method determines the satisfiability of a set of clauses under an as-
sumption assumps. It returns true if the set is satisfiable; otherwise false. The
clause set is realized by a vector clauses and initialized to a SAT instance (A0
in Figure 1). The assumption assumps is a vector of literals which means the
conjunction of the literals.

In our implementation, the clause F1 is appended to clauses and the formula
F2 is set to assumps. Then, the solve method is invoked. We don’t need to
remove F1 from clauses before the next solve invocation because the role of
F1 is excluding models larger than the model causing F1. If F2 is appended
to clauses, we need to remove F2 from clauses before the next invocation.
Therefore, we add F2 to assumps instead of clauses. Thus, removing F2 is not
necessary.

When we need only one minimal model3 rather than all minimal models, we
can append F2 to clauses without removing F2 afterward. We also implement
such solver based on the normal version and call it the single-solution version.

4 Solving the JSSP

A JSSP consists of a set of jobs and a set of machines. Each job is a sequence
of operations. Each operation requires the exclusive use of a machine for an
uninterrupted duration, i.e. its processing time. A schedule is a set of start
times for each operation. The time required to complete all the jobs is called
the makespan. The objective of the JSSP is to determine the schedule which
minimizes the makespan.

In this study, we follow a variant of the SAT encoding proposed by Craw-
ford and Baker [4]. In the SAT encoding, we assume there is a schedule whose
makespan is at most i and generate a SAT instance Si. If Si is satisfiable, then
the JSSP can complete all the jobs by the makespan i. Therefore, if we find a
positive integer k such that Sk is satisfiable and Sk−1 is unsatisfiable, then the
minimum makespan is k.

For minimizing the makespan, Nabeshima et al. [13] applied two kinds of
methods, incremental search and binary search. One can easily estimate the
upper bound Lup of the minimum makespan by serialising all the operations of all
the jobs 4. The lower bound Llow is also easily estimated by taking the maximum
length of each job in which we assume every job is performed independently. In
the incremental search, we start from Llow and increase the makespan by 1 until
we encounter the satisfiable instance St. If such St is found, then the minimum
makespan is t. We explain the binary search by an example of Lup = 393 and
Llow = 49. Firstly, we try to solve S221 because 221 is the midpoint between
48 and 393. If S221 is satisfiable, then try S135. If S135 is unsatisfiable, then try
S178. We continue this binary search until we encounter the satisfiable instance
St and unsatisfiable instance St−1.

3 The JSSP is such a problem.
4 In this study, we use a modified estimation a bit cleverer than this obvious estimation.
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In order to solve the JSSP in the minimal model generation framework, we
introduce a set Pu = {p1, p2, . . . , pu} of new atoms when Lup = u. The intended
meaning of pi = true is that we found a schedule whose makespan is i or longer
than i. To realize the intention, the formulas Fi(i = 1, . . . , u), which represent “if
all the operations complete at i, then pi becomes true,” are introduced. Besides,
we introduce a formula Tu = (¬pu ∨ pu−1) ∧ (¬pu−1 ∨ pu−2) ∧ · · · ∧ (¬p2 ∨ p1)
which implies that ∀l(1 ≤ l < k)(pl = true) must hold if pk = true holds.

In this setting, if we obtain a model M of Gu(= Su ∧F1 ∧ · · · ∧Fu ∧ Tu) and
k is the maximum integer such that pk ∈ M , that is, ∀j(k < j ≤ u)(pj 6∈ M),
then we must have ∀l(1 ≤ l ≤ k)(pl ∈M), namely, M ∩ Pu = {p1, . . . , pk}. The
existence of such k is guaranteed by Fk and Tu, and indicates that there is a
schedule whose makespan is k. If k is the minimum makespan, there is no model
of Gu smaller than M with respect to Pu. Thus, a minimal model of Gu with
respect to Pu represents a schedule which minimizes the makespan.

Example 4. Given a JSSP with Lup = 10. Then, we make S10 according to
Crawford encoding, P10 = {p1, . . . , p10}, and T10 = (¬p10 ∨p9)∧· · ·∧ (¬p2∨p1).
Let M be a minimal model of G10(= S10 ∧ F1 ∧ · · · ∧ F10 ∧ T10) with respect to
P10 and M ∩P10 = {p1, p2, p3}. Then, the minimum makespan of the JSSP is 3.

This SAT encoding technique, in which a minimal model represents an opti-
mum solution, is applicable to several problems such as graph coloring problem,
open-shop scheduling problem, two dimensional strip packing problem, and so
on. Thus, the technique gives a framework to solve these problems.

The encoding is easily adapted for a partial Max-SAT encoding by adding
some unit clauses. Max-SAT is the optimization version of SAT where the goal is
to find a model satisfying the maximum number of clauses. In order to solve the
JSSP in the partial Max-SAT framework5, we introduce u unit clauses ¬pi(i =
1, . . . , u). Then, we solve MAXu(= Gu∧¬p1∧. . .∧¬pu) with a partial Max-SAT
solver where all clauses in Gu are treated as hard clauses and ¬pi(i = 1, . . . , u)
are as soft clauses. A Max-SAT model of MAXu represents a optimum schedule.

Example 5. Let P10, G10, and M be the same as in Example 4. Then MAX10 =
G10 ∧¬p1 ∧ . . .∧¬p10 has a (Max-SAT) model M which falsifies only three soft
clauses ¬p1, ¬p2, and ¬p3. Note that every model of G10 falsifies at least these
three clauses.

5 Experiments

We executed the three versions(naive/normal/single-solution), a Max-SAT solver
MiniMaxSat[6], and a SAT-based JSSP solver SATSHOP which is a successor of

5 A partial Max-SAT solver can handle hard clauses and soft clauses. The hard clauses
must be satisfied while the soft clauses need not be necessarily satisfied. The goal
is to find a model satisfying the all hard clauses and the maximum number of soft
clauses.
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the JSSP solver proposed in [13]. The MiniMaxSat took the third place in the
partial Max-SAT category (industrial) of Max-SAT Evaluation 2008.

The SATSHOP tries to solve a JSSP in the following way. First, making
a relaxed problem to improve the upper bound Lup. The relaxed problem is
an approximation of the original problem. It is obtained by rounding up every
operation time. Its optimum solution gives a new upper bound Lnew

up which
satisfies Lnew

up ≤ Lup. The relaxed problem is solved with the SAT encoding
technique using binary search.

Next, solving the problem with Lnew
up by decremental search. Basically, decre-

mental search is a dual of incremental search. We start from Lnew
up and decrease

the makespan until we encounter the unsatisfiable instance.

We try to solve 82 JSSPs in OR-Library [15]. The problems are abz5–abz9,
ft06, ft10, ft20, la01–la40, orb01–orb10, swv01–swv20, and yn1–yn4. We limited
the execution time of each problem to 2 CPU hours. The single-solution version
and SATSHOP succeed to solve 33 problems out of 82 problems. The naive ver-
sion, normal version, and MiniMaxSAT succeed to solve 32, 31, and 14 problems,
respectively. Table 1 shows the experimental results of 33 problems solved.

All experiments were conducted on a Pentium M 753(1.20GHz) machine
with 1GB memory running Linux 2.6.16. Each problem is encoded to a CNF
(conjunctive normal form)6. The second and third columns show statistics of
CNFs. The fourth column “|P |” shows the size of an atom set P with respect to
which we minimize a model. The fifth column “Optimum” shows the minimum
makespan. “Single” is the single-solution version. The “Total” row shows the
total CPU time for the single-solution version or SATSHOP. The “Ratio” row
shows (total time of SATSHOP)/(total time of Single).

The single-solution version usually beats other two versions as expected. On
average it solves problems 1.6 times faster than the naive version and 1.3 times
faster than the normal version for the 31 problems solved by these three versions.

On the other hand, the SATSHOP beats these three versions on almost
all problems. On average it solves problems about 1.7 times faster than the
single-solution version. The main reason for the domination of the SATSHOP
is that it tries to solve a relaxed problem first. The relaxed one is easy to solve
by orders of magnitude. In order to eliminate the effect of the relaxation, we
also run the SATSHOP in a non-relaxation mode where it try to solve JSSPs
without relaxation. This causes an increase of the runtime of the SATSHOP.
The single-solution version, then, is almost comparable with the SATSHOP: the
former sometimes beats the latter, and vice versa. On average, the latter solves
problems about 1.2 times faster than the former.

The MiniMaxSAT is the worst solver in our experience. It can solve only half
of problems solved by others within 2 CPU hours. It seems to be several hundred
times slower than others. We may need to develop a SAT encoding tailored for
MaxSAT solvers.

6 We also use the SATSHOP as an encoder. Thus, the core part of a SAT instance
solved by the three versions is the same one solved by the SATSHOP.
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Table 1. Experimental results of OR-Library

Prob- No. of No. of |P | Opti- runtime in seconds
lem Variables Clauses mum Naive Normal Single MaxSAT SATSHOP

abz5 103,440 1,111,236 1374 1234 55.1 47.1 25.5 time-out 27.5
abz6 81,995 879,864 1075 943 9.2 6.6 6.8 2640.8 6.7

ft06 1,847 11,744 63 55 0.0 0.0 0.0 0.1 0.0
ft10 98,278 1,057,688 1211 930 180.9 263.9 106.5 time-out 63.1

la01 41,288 435,549 921 666 13.6 9.4 6.4 630.1 2.2
la02 36,328 382,368 815 655 50.9 35.7 10.3 1414.1 4.8
la03 37,038 390,635 825 597 21.1 7.0 8.3 1414.6 4.3
la04 37,473 395,009 838 590 5.5 3.3 3.4 1031.9 2.4
la05 28,360 297,253 651 593 7.4 10.2 8.7 1402.5 6.4
la16 94,286 1,014,336 1171 945 32.0 22.7 18.8 5448.9 8.1
la17 71,549 767,296 926 784 12.3 5.8 5.7 1537.5 3.8
la18 73,387 786,292 963 848 14.1 6.7 6.7 1341.9 3.2
la19 92,303 992,462 1162 842 28.4 30.4 14.0 5189.8 10.1
la20 91,828 986,657 1162 902 12.0 6.5 8.7 1473.4 5.9
la22 158,923 2,493,700 1275 927 1815.0 1625.1 1246.2 time-out 878.7
la23 157,152 2,461,589 1279 1032 2239.0 1810.0 1408.4 time-out 827.9
la24 162,299 2,545,886 1318 935 1657.4 1401.4 1280.9 time-out 1238.6
la25 146,928 2,300,907 1196 977 2271.5 2167.6 1343.0 time-out 1180.4
la36 265,072 4,178,965 1546 1268 996.2 770.0 641.5 time-out 210.1
la37 334,107 5,277,206 1868 1397 4975.2 4129.2 3284.7 time-out 1749.7
la38 289,006 4,560,370 1624 1196 time-out time-out 4797.2 time-out 2511.2
la39 277,638 4,379,775 1584 1233 1738.9 1458.6 892.4 time-out 457.2
la40 279,616 4,411,308 1591 1222 6856.2 time-out 5532.0 time-out 2498.5

orb01 106,638 1,148,842 1303 1059 1822.4 1658.1 1351.08 time-out 1302.4
orb02 107,190 1,154,808 1295 888 25.5 14.5 13.0 2673.5 6.5
orb03 123,706 1,334,614 1461 1005 1530.1 749.0 552.1 time-out 554.2
orb04 113,489 1,223,253 1369 1005 80.6 85.6 63.1 time-out 45.5
orb05 94,014 1,010,346 1152 887 50.1 46.9 31.2 time-out 27.9
orb06 126,502 1,364,933 1500 1010 431.3 294.5 193.4 time-out 105.2
orb07 45,996 492,810 563 397 22.5 17.3 13.6 1414.0 9.8
orb08 101,159 1,089,539 1209 899 98.9 62.2 49.6 time-out 40.0
orb09 96,905 1,043,343 1189 934 106.3 83.9 68.9 time-out 40.2
orb10 125,675 1,356,366 1503 944 49.7 27.9 33.2 time-out 14.9

Total [seconds] - - 23025.3 - 13847.4

Ratio - - (1.00) - 0.60

57



Turning now to the 49 problems unsolved within 2 CPU hours, even their
48 relaxed problems can not be solved by SATSHOP. Furthermore, some SAT
instances are huge 7 for our experimental environment. Ten of the 49 instances
require more than 1GB memory, and five of the ten require more than 4GB
memory which a 32-bits CPU can not manipulate any more.

6 Conclusions and Future Work

In this paper we presented a characterization of a minimal model with respect to
an atom set. Based on this characterization, we gave minimal model generation
procedures using a SAT solver as a subroutine. The only function we require
from the SAT solver is to compute a model of a satisfiable SAT instance. Thus,
our implementation benefits from efficiency of state-of-the-art SAT solvers.

We implemented the naive, normal, and single-solution versions with the
SAT solver MiniSat 2. We have performed an experimental evaluation with 82
JSSPs. It shows that the single-solution version usually beats the other two
versions. Unfortunately, it rarely beats the SAT-based JSSP solver SATSHOP
which performs several optimizations concerning the problem domain. It is for
this reason that the SATSHOP generally beats others. In spite of the domination
of the SATSHOP, the minimal model generation approach still has an advantage
over the SATSHOP in the sense that the former is more general than the latter:
the latter solve only JSSP while the former can solve not only JSSP but also
several problems such as graph coloring problem, two dimensional strip packing
problem, and so on. Stochastic SAT solvers, such as WalkSAT [17], may be useful
for increasing performance of the three versions.

We have also applied the Max-SAT solver MiniMaxSAT to the 82 JSSPs.
The experimental results show that the MiniMaxSAT is definitely inefficient
for solving the JSSP in our SAT encoding though it is a state-of-the-art Max-
SAT solver. Implementing a Max-SAT solver based on our approach looks like
interesting future work.

Some problems can not be solved because of memory capacity. In order to
solve these problems in our framework, we have to purchase a 64-bits CPU
and memory, or develop methods to manipulate the problem on the available
memory. Encoding the problem into a first order formula seems to be a promising
approach to save memory [16].

Answer set programming launched out into the new paradigm of logic pro-
gramming in 1999, in which a logic program represents the constraints of a
problem and its answer sets correspond to the solutions of the problem [11].
Computing answer sets is realized by generating minimal models and checking
whether they satisfy some conditions for negation as failure [8]. We plan to
extend this work to computing answer sets.

7 SWV13 has the hugest instance in our experiment. It has 2.4 million variables and
121.6 million clauses. And its DIMACS file in gzip format occupies 596 MB.

58



References

1. L. Bordeaux, Y. Hamadi, and L. Zhang: Propositional Satisfiability and Constraint
Programming: A Comparative Survey. ACM Computing Surveys, Vol.38, No.4, Ar-
ticle 12 (2006)

2. A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu: Symbolic Model Checking without
BDDs. In Proc. of TACAS’99, pp.193–207 (1999)

3. F. Bry and A. Yahya: Minimal Model Generation with Positive Unit Hyper-
resolution Tableaux. In Proc. of TABLEAUX’96, pp.143–159 (1996)

4. J. M. Crawford, A. B. Baker: Experimental Results on the Application of Satis-
fiability Algorithms to Scheduling Problems. In Proc. of AAAI-94, pp.1092–1097
(1994)
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Abstract. We develop a formal framework intended as a preliminary
step for a single knowledge representation system that provides differ-
ent representation techniques in a unified way. In particular we consider
first-order logic extended by techniques for second-order quantifier elim-
ination and non-monotonic reasoning. Background of the work is literal
projection, a generalization of second-order quantification which permits,
so to speak, to quantify upon an arbitrary sets of ground literals, instead
of just (all ground literals with) a given predicate symbol. In this paper,
an operator raise is introduced that is only slightly different from literal
projection and can be used to define a generalization of circumscription
in a straightforward and compact way. Some properties of this operator
and of circumscription defined in terms of it, also in combination with
literal projection, are then shown. A previously known characterization
of consequences of circumscribed formulas in terms of literal projection is
generalized from propositional to first-order logic. A characterization of
answer sets according to the stable model semantics in terms of circum-
scription is given. This characterization does not recur onto syntactic
notions like reduct and fixed-point construction. It essentially renders a
recently proposed “circumscription-like” characterization in a compact
way without involvement of a specially interpreted connective.

1 Introduction

We develop a formal framework intended as a preliminary step for a single knowl-
edge representation system that provides different representation techniques in
a unified way. In particular we consider first-order logic extended by techniques
for second-order quantifier elimination and non-monotonic reasoning.

Second-order quantifier elimination permits to express a large number of
knowledge representation techniques (see for example [5]), including abduction,
modularization of knowledge bases and the processing of circumscription. It
is also closely related to knowledge compilation [13]. Variants of second-order
quantifier elimination also appear under names such as computation of uniform
interpolants, forgetting, and projection. Restricted to propositional formulas it is
called elimination of Boolean quantified variables.

We focus here on a particular generalization of second-order quantifier elim-
ination, the computation of literal projection [10, 11]. Literal projection general-
izes second-order quantification by permitting, so to speak, to quantify upon an



arbitrary set of ground literals, instead of just (all ground literals with) a given
predicate symbol. Literal projection allows, for example, to express predicate
quantification upon a predicate just in positive or negative polarity. Eliminating
such a quantifier from a formula in negation normal form results in a formula
that might still contain the quantified predicate, but only in literals whose po-
larity is complementary to the quantified one. This polarity dependent behavior
of literal projection is essential for the relationship to non-monotonic reasoning
that is investigated in this paper.

In particular, we consider circumscription and, based on it, the stable model
semantics, which underlies many successful applications developed during the
last decade. It is well-known that the processing of circumscription can be ex-
pressed as a second-order quantifier elimination task [1]. The formalization of
circumscription investigated here does not just rely on literal projection as a
generalization of second-order quantification, but utilizes the polarity depen-
dent behavior of literal projection to obtain a particular straightforward and
compact characterization. The concrete contributions of this paper are:

– The introduction of an operator raise that is only slightly different from
literal projection and can be used to define a generalization of parallel cir-
cumscription with varied predicates in a straightforward and compact way.

Like literal projection, the raise operator is defined in terms of semantic prop-
erties only, and is thus independent of syntactic properties or constructions.
Some properties of this operator and circumscription, also in interaction with
literal projection, are then shown (Sect. 3–6).

– The characterization of consequences of circumscribed formulas in terms of
literal projection. We make a known result given in [7] more precise and gen-
eralize it from propositional to first-order formulas. In the extended report
version of this paper [12] we provide a thorough proof (Sect. 6).

– A definition of answer sets according to the stable model semantics in terms
of circumscription. Unlike the common definitions of stable models, it does
not recur onto syntactic notions like reduct and fixed-point construction.
It is essentially an adaption of the “circumscription-like” definition recently
proposed in [3, 4]. In contrast to that definition, it does not involve a specially
interpreted rule forming connective (Sect. 7).

The paper is structured as follows: Preliminaries are given in Section 2, including
a description of the used semantic framework and a summary of background
material on literal projection. In Sections 3–7 the proper contributions of this
paper are described and formally stated. Proofs of propositions and theorems
as well as more details on the relationship of the introduced definition of stable
models to other characterizations can be found in the extended report version
of this paper [12].
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2 Notation and Preliminaries

Symbols. We use the following symbols, also with sub- and superscripts, to
stand for items of types as indicated in the following table (precise definitions
of these types are given later on in this section). They are considered implicitly
as universally quantified in definition, theorem and proposition statements.

F,G – Formula
A – Atom
L – Literal
S – Set of ground literals (also called literal scope)
M – Consistent set of ground literals

I, J,K – Structure
β – Variable assignment

Notation. Unless specially noted, we assume that a first-order formula is con-
structed from first-order literals, truth value constants ⊤,⊥, the unary connec-
tive ¬, binary connectives ∧,∨ and the first-order quantifiers ∀ and ∃. We write
the positive (negative) literal with atom A as +A (−A). Variables are x, y, z,
also with subscripts. As meta-level notation with respect to this syntax we use
implication →, biconditional ↔ and n-ary versions of the binary connectives.

A clause is a sentence of the form ∀x1 . . . ∀xn(L1 ∨ . . .∨Lm), where n,m ≥ 0
and the Li for i ∈ {1, . . . ,m} are literals. Since all variables in a clause are
universally quantified, we sometimes do not write its quantifier prefix.

We assume a fixed first-order signature with at least one constant symbol.
The sets of all ground terms and all ground literals, with respect to this signature,
are denoted by TERMS and ALL, respectively.

The Projection Operator and Literal Scopes. A formula in general is like
a first-order formula, but in its construction two further operators, project(F, S)
and raise(F, S), are permitted, where F is a formula and S specifies a set of
ground literals. We call a set of ground literals in the role as argument to project

or raise a literal scope. We do not define here a concrete syntax for specifying
literal scopes and just speak of a literal scope, referring to the actual literal
scope in a semantic context as well as some expression that denotes it in a
syntactic context. The formula project(F, S) is called the literal projection of F
onto S. Literal projection generalizes existential second-order quantification [10]
(see also Sect. 4 below). It will be further discussed in this introductory section
(see [10, 11] for more thorough material). The semantics of the raise operator
will be introduced later on in Sect. 3.

Interpretations. We use the notational variant of the framework of Herbrand
interpretations described in [10]: An interpretation I is a pair 〈I, β〉, where I is
a structure, that is, a set of ground literals that contains for all ground atoms A
exactly one of +A or −A, and β is a variable assignment, that is, a mapping of
the set of variables into TERMS.
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Satisfaction Relation and Semantics of Projection. The satisfaction re-
lation between interpretations I = 〈I, β〉 and formulas is defined by the clauses
in Tab. 1, where L matches a literal, F, F1, F2 match a formula, and S matches
a literal scope. In the table, two operations on variable assignments β are used:
If F is a formula, then Fβ denotes F with all variables replaced by their image
in β; If x is a variable and t a ground term, then β t

x is the variable assignment
that maps x to t and all other variables to the same values as β. Entailment and
equivalence are straightforwardly defined in terms of the satisfaction relation.
Entailment: F1 |= F2 holds if and only if for all 〈I, β〉 such that 〈I, β〉 |= F1

it holds that 〈I, β〉 |= F2. Equivalence: F1 ≡ F2 if and only if F1 |= F2 and
F2 |= F1.

Intuitively, the literal projection of a formula F onto scope S is a formula
that expresses about literals in S the same as F , but expresses nothing about
other literals. The projection is equivalent to a formula without the projection
operator, in negation normal form, where all ground instances of literals occur-
ring in it are members of the projection scope. The semantic definition of literal
projection in Tab. 1 can be alternatively expressed as: An interpretation 〈I, β〉
satisfies project(F, S) if and only if there is a structure J such that 〈J, β〉 satis-
fies F and I can be obtained from J by replacing literals that are not in S with
their complements. This includes the special case I = J , where no literals are
replaced.

Table 1. The Satisfaction Relation with the Semantic Definition of Literal Projection

〈I, β〉 |= L iffdef Lβ ∈ I
〈I, β〉 |= ⊤
〈I, β〉 6|= ⊥
〈I, β〉 |= ¬F iffdef 〈I, β〉 6|= F
〈I, β〉 |= F1 ∧ F2 iffdef 〈I, β〉 |= F1 and 〈I, β〉 |= F2

〈I, β〉 |= F1 ∨ F2 iffdef 〈I, β〉 |= F1 or 〈I, β〉 |= F2

〈I, β〉 |= ∀x F iffdef for all t ∈ TERMS it holds that 〈I, β t
x 〉 |= F

〈I, β〉 |= ∃x F iffdef there exists a t ∈ TERMS such that 〈I, β t
x 〉 |= F

〈I, β〉 |= project(F, S) iffdef there exists a J such that 〈J, β〉 |= F and J ∩ S ⊆ I

Relation to Conventional Model Theory. Literal sets as components of
interpretations permit the straightforward definition of the semantics of literal
projection given in the last clause in Tab. 1. The set of literals I of an in-
terpretation 〈I, β〉 is called “structure”, since it can be considered as repre-
sentation of a structure in the conventional sense used in model theory: The
domain is the set of ground terms. Function symbols f with arity n ≥ 0 are
mapped to functions f ′ such that for all ground terms t1, ..., tn it holds that
f ′(t1, ..., tn) = f(t1, ..., tn). Predicate symbols p with arity n ≥ 0 are mapped to
{〈t1, ..., tn〉 | +p(t1, ..., tn) ∈ I}. Moreover, an interpretation 〈I, β〉 represents a
conventional second-order interpretation [2] (if predicate variables are considered
as distinguished predicate symbols): The structure in the conventional sense cor-
responds to I, as described above, except that mappings of predicate variables
are omitted. The assignment is β, extended such that all predicate variables p
are mapped to {〈t1, ..., tn〉 | +p(t1, ..., tn) ∈ I}.
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Some More Notation. The following table specifies symbolic notation for
(i) the complement of a literal, (ii) the set of complement literals of a given set
of literals, (iii) the set complement of a set of ground literals, (iv) the set of all
positive ground literals, (v) the set of all negative ground literals, (vi) the set of
all ground literals whose predicate symbol is from a given set, and (vii, viii) a
structure that is like a given one, except that it assigns given truth values to a
single given ground atom or to all ground atoms in a given set, respectively.

(i) +̃A def= −A; −̃A def= +A. The literal L̃ is called the complement of L.

(ii) S̃ def= {L̃ | L ∈ S}.
(iii) S def= ALL− S.
(iv) POS def= {+A | +A ∈ ALL}.
(v) NEG def= {−A | −A ∈ ALL}.

(vi) P̂ is the set of all ground literals whose predicate is P or is in P , resp.,
where P is a predicate symbol, or a tuple or set of predicate symbols.

(vii) I[L] def= (I − {L̃}) ∪ {L}.

(viii) I[M ] def= (I − M̃) ∪M.

Literal Base and Related Concepts. The literal base L(F ) of a first-order
formula F in negation normal form is the set of all ground instances of lit-
erals in F . The following formal definition generalizes this notion straightfor-
wardly for formulas that are not in negation normal form and possibly include
the project and raise operator: L(L) is the set of all ground instances of L;

L(⊤) def= L(⊥) def= {}; L(¬F ) def= L̃(F ); L(F ⊗ G) def= L(F ) ∪ L(G) if ⊗ is ∧ or
∨; L(⊗xF ) def= L(⊗(F, S)) def= L(F ) if ⊗ is a quantifier or the project or raise

operator, respectively.
We call the set of ground literals “about which a formula expresses some-

thing” its essential literal base, made precise in Def. 1 (see [10, 11] for a more
thorough discussion). It can be proven that essential literal base of a formula is
a subset of its literal base. The essential literal base is independent of syntactic
properties: equivalent formulas have the same essential literal base.

Definition 1 (Essential Literal Base). The essential literal base of a for-
mula F, in symbols LE(F ), is defined as LE(F ) def= {L | L ∈ ALL and there exists

an interpretation 〈I, β〉 such that 〈I, β〉 |= F and 〈I[L̃], β〉 6|= F}.

Properties of Literal Projection. A summary of properties of literal pro-
jection is displayed in Tab. 2 and 3. Most of them follow straightforwardly from
the semantic definition of project shown in Tab. 1 [11]. The more involved proof
of Tab. 2.xxi (and the related Tab. 3.v) can be found in [10, 11]. The properties
in Tab. 3 strengthen properties in Tab. 2, but apply only to formulas that sat-
isfy a condition related to their essential literal base. These formulas are called
E-formulas and are defined as follows:

Definition 2 (E-Formula). A formula F is called E-formula if and only if
for all interpretations 〈I, β〉 and consistent sets of ground literals M such that

〈I, β〉 |= F and M ∩ LE(F ) = ∅ it holds that 〈I[M̃ ], β〉 |= F.
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First-order formulas in negation normal form without existential quantifier –
including propositional formulas and first-order clausal formulas – are E-formu-
las. Being an E-formula is a property that just depends on the semantics of a
formula, that is, an equivalent to an E-formula is also an E-formula. See [10, 11]
for more discussion.1

Table 2. Properties of Literal Projection

(i) F |= project(F, S)
(ii) If F1 |= F2, then project(F1, S) |= project(F2, S)
(iii) If F1 ≡ F2, then project(F1, S) ≡ project(F2, S)
(iv) If S1 ⊇ S2, then project(F, S1) |= project(F, S2)
(v) project(project(F, S1), S2) ≡ project(F, S1 ∩ S2)
(vi) F1 |= project(F2, S) if and only if project(F1, S) |= project(F2, S)
(vii) project(F,ALL) ≡ F

(viii) project(F,L(F )) ≡ F
(ix) project(⊤, S) ≡ ⊤
(x) project(⊥, S) ≡ ⊥
(xi) F is satisfiable if and only if project(F, S) is satisfiable
(xii) LE(project(F, S)) ⊆ S

(xiii) LE(project(F, S)) ⊆ LE(F )
(xiv) If project(F, S) |= F, then LE(F ) ⊆ S
(xv) project(F, S) ≡ project(F,L(F ) ∩ S)
(xvi) F1 |= F2 if and only if project(F1,L(F2)) |= F2

(xvii) If no instance of L is in S, then project(L, S) ≡ ⊤
(xviii) If all instances of L are in S, then project(L, S) ≡ L

(xix) project(F1 ∨ F2, S) ≡ project(F1, S) ∨ project(F2, S)
(xx) project(F1 ∧ F2, S) |= project(F1, S) ∧ project(F2, S)

(xxi) If L(F1) ∩ L̃(F2) ⊆ S ∩ eS then
project(F1 ∧ F2, S) ≡ project(F1, S) ∧ project(F2, S)

(xxii) project(∃xF,S) ≡ ∃x project(F, S)
(xxiii) project(∀xF,S) |= ∀x project(F, S)

Table 3. Properties of Literal Projection for E-Formulas E

(i) project(E,LE(E)) ≡ E (strengthens Tab. 2.viii)
(ii) LE(E) ⊆ S if and only if project(E,S) ≡ E (strengthens Tab. 2.xiv)
(iii) project(E,S) ≡ project(E,LE(E) ∩ S) (strengthens Tab. 2.xv)
(iv) F |= E if and only if project(F,LE(E)) |= E (strengthens Tab. 2.xvi)

(v) If LE(E1) ∩ L̃E(E2) ⊆ S ∩ eS then
project(E1 ∧ E2, S) ≡ project(E1, S) ∧ project(E2, S) (strengthens Tab. 2.xxi)

1 An example that is not an E-formula is the sentence F def= ∀x +r(x, f(x)) ∧
∀x∀y(−r(x, y) ∨ +r(x, f(y))) ∧ ∃x∀y(−r(x, y) ∨ +p(y)). Let the domain be the set
of all terms fn(a) where n ≥ 0. For each member T of the domain it can be verified
that +p(T ) /∈ LE(F ). On the other hand, an interpretation that contains −p(T ) for
all members T of the domain cannot be a model of F .
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3 The Raise Operator

The following operator raise is only slightly different from literal projection and,
as we will see later on, can be used to define a generalization of parallel circum-
scription with varied predicates in a straightforward and compact way.

Definition 3 (Raise).

〈I, β〉 |= raise(F, S) iffdef there exists a J such that
〈J, β〉 |= F and
J ∩ S ⊂ I ∩ S.

The definition of raise is identical to that of literal projection (Tab. 1), with the
exception that J ∩ S and I ∩ S are related by the proper subset instead of the
subset relationship.

The name “raise” suggests that a model 〈I, β〉 of raise(F, S) is not “the
lowest” model of F , in the sense that there exists another model 〈J, β〉 of F
with the property J ∩ S ⊂ I ∩ S. An equivalent specification of the condition
J ∩ S ⊂ I ∩ S in the definition of raise provides further intuition on its effect:
A literal scope S can be partitioned into three disjoint subsets Sp, Sn, Spn such
that Sp (Sn) is the set of positive (negative) literals in S whose complement
is not in S, and Spn is the set of literals in S whose complement is also in S.
Within Def. 3, the condition J ∩ S ⊂ I ∩ S can then be equivalently expressed
by the conjunction of J ∩ (Sp ∪Sn) ⊂ I ∩ (Sp ∪Sn) and J ∩Spn = I ∩Spn. That
is, with respect to members of S whose complement is not in S, the structure J
must be a proper subset of I, and with respect to the other members of S it
must be identical to I.

Proposition 1 below shows some properties of the raise operator: It is mono-
tonic (Prop. 1.i). From this follows that it is a “semantic” operator in the sense
that for equivalent arguments the values are equivalent too (Prop. 1.ii). Like
projection, the raise operator distributes over disjunction (Prop. 1.iii). Proposi-
tion 1.iv follows from monotonicity. Proposition 1.v shows that for scopes that
contain exactly the same atoms positively as well as negatively, raise is inconsis-
tent. Propositions 1.vi and 1.vi show the interplay of raise with projection onto
the same scope. Proposition 1.viii provides a characterization of literal projec-
tion in terms of raise and atom projection [10], a restricted form of projection
where the polarity of the scope members is not taken into account, which can
be expressed as literal projection onto scopes S constrained by S = S̃.

Proposition 1 (Properties of Raise).
(i) If F1 |= F2, then raise(F1, S) |= raise(F2, S).
(ii) If F1 ≡ F2, then raise(F1, S) ≡ raise(F2, S).
(iii) raise(F1 ∨ F2, S) ≡ raise(F1, S) ∨ raise(F2, S).
(iv) raise(F1 ∧ F2, S) |= raise(F1, S) ∧ raise(F2, S).

(v) If S = S̃, then raise(F, S) ≡ ⊥.
(vi) raise(project(F, S), S) ≡ raise(F, S).
(vii) project(raise(F, S), S) ≡ raise(F, S).

(viii) project(F, S) ≡ project(F, S ∪ S̃) ∨ raise(F, S).
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4 Definition of Circumscription in Terms of Raise

The following definition specifies a formula circ(F, S) that provides a characteri-
zation of circumscription in terms of raise, as we will first outline informally and
then show more precisely.

Definition 4 (Circumscription).

circ(F, S) def= F ∧ ¬raise(F, S).

In this notation, the parallel circumscription of predicate constants P in sen-
tence F with varied predicate constants Z [8] is expressed as circ(F, S), where S
is the set of all ground literals L such that either

1. L is positive and its predicate is in P, or
2. The predicate of L is neither in P nor in Z.

In other words, the scope S contains the circumscribed predicates just positively
(the positive literals according to item 1.), and the “fixed” predicates in full (all
positive as well as negative literals according to item 2.). Since the literal scope
in circ(F, S) can be an arbitrary sets of literals, circ(F, S) is more general than
parallel circumscription with varied predicates: Model maximization conditions
can be expressed by means of scopes that contain negative literals but not their
complements. Furthermore, it is possible to express minimization, maximiza-
tion and variation conditions that apply only to a subset of the instances of a
predicate.

We now make precise how circ relates to the established definition of cir-
cumscription by means of second-order quantification [8, 1, 5]. The following
definition specifies a second-order sentence CIRC[F ;P ;Z] that is called paral-
lel circumscription of predicate constants P in F with varied predicate constants
Z in [8] and is straightforwardly equivalent to the sentence called second-order
circumscription of P in F with variable Z in [1, 5]:

Definition 5 (Second-Order Circumscription). Let F be a first-order sen-
tence and let P, P ′, Z, Z ′ be mutually disjoint tuples of distinct predicate symbols
such that: P = p1, . . . , pn and P ′ = p′1, . . . , p

′
n where n ≥ 0; both Z and Z ′ have

the same length ≥ 0; members of P ′ and P with the same index, as well as
members of Z ′ and Z with the same index, are of the same arity; and P ′ and Z ′

do not contain predicate symbols in F . Let F ′ be the formula that is obtained
from F by replacing each predicate symbol that is in P or Z by the predicate
symbol with the same index in P ′ or Z ′, respectively. For i ∈ {1, . . . , n} let xi

stand for x1, . . . , xk, where k is the arity of predicate symbol pi. Let P ′<P stand
for

n∧

i=1

∀xi(p
′
i(xi)→ pi(xi)) ∧ ¬

n∧

i=1

∀xi(p
′
i(xi)↔ pi(xi))).

Considering the predicate symbols in P ′ and Z ′ as predicate variables, the
second-order circumscription of P in F with variable Z, written CIRC[F ;P ;Z],
is then defined as:

CIRC[F ;P ;Z] def= F ∧ ¬∃P ′, Z ′ (F ′ ∧ P ′<P ).
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Existential second-order quantification can be straightforwardly expressed with
literal projection: ∃p G corresponds to project(G,S), where S is the set of all
ground literals with a predicate other than p. From Tab. 2.xv it can be derived
that also a smaller projection scope is sufficient: project(G,S) is equivalent to
project(G,S′) for all subsets S′ of S that contain those literals of S whose pred-
icate symbol occurs in G. Accordingly, CIRC[F ;P ;Z] can be expressed straight-
forwardly in terms of literal projection instead of the second-order quantification:

Definition 6 (Second-Order Circumscription in Terms of Projection).
Let F be a first-order formula and let P, P ′, Z, Z ′ be tuples of predicate symbols
as specified in the definition of CIRC (Def. 5). Let Q be the set of predicate
symbols in F that are neither in P nor in Z. Then CIRC-PROJ[F ;P ;Z] is a
formula with the projection operator, defined as:

CIRC-PROJ[F ;P ;Z] def= F ∧ ¬project(F ′ ∧ P ′<P, P̂ ∪ Q̂).

The Q parameter in Def. 6 is the set of the “fixed” predicates. The set of liter-
als (P̂ ∪ Q̂) suffices as projection scope, since the quantified body of the right
conjunct of CIRC[F ;P ;Z], that is, (F ′∧P ′<P ), contains – aside of the quantified
predicate symbols from P ′, Z ′ – just predicate symbols that are in P or in Q.

The following theorem makes precise how second-order circumscription can
be expressed with circ. Its proof in [12] formally relates second-order circum-
scription expressed by projection (Def. 6) with circumscription defined in terms
of of the raise operator (Def. 4).

Theorem 1 (Second-Order Circumscription Expressed by circ). Let F
be a first-order formula and let P, P ′, Z, Z ′ be tuples of predicate symbols as
specified in the definition of CIRC (Def. 5). Let Q be the set of predicate symbols
in F that are neither in P nor in Z. Then

CIRC-PROJ[F ;P ;Z] ≡ circ(F, (P̂ ∩ POS) ∪ Q̂).

5 Well-Foundedness

As discussed in [8], circumscription can in general only be applied usefully to a
sentence F if all models of F extend some model of F that is minimal with respect
to the circumscribed predicates. The concept of well-foundedness [8] makes this
property precise. We show that it can be expressed in a compact way in terms of
projection. This characterization facilitates to prove properties of circumscrip-
tion that have well-foundedness as a precondition, as for example Prop. 3 and
Theorem 2 below.
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Definition 7 (Well-Founded Formula). F is called well-founded with respect
to S if and only if

F |= project(circ(F, S), S).

In this definition, the literal scope S can be an arbitrary set of literals, corre-
sponding to variants of circumscription as indicated in Sect. 4. We now explicate
how this definition renders the definition of well-foundedness in [8], which is de-
fined for the special case of circumscription of a single predicate p with varied
predicates Z. That definition is as as follows (adapted to our notation): Let F
be a first-order sentence, p be predicate symbol and Z be a tuple of predicate
symbols. The sentence F is called well-founded with respect to (p;Z) if for every
model I of F there exists a model J of CIRC[F ; p;Z] such that I and J differ only
in how they interpret p and Z and the extent of p in J is a (not necessarily strict)
subset of its extent in I. We can convert this definition straightforwardly into our
semantic framework: Let Q be the set of predicate symbols in F that are different
from p and not in Z. The sentence F is then well-founded with respect to (p;Z)
if for all interpretations 〈I, β〉 such that 〈I, β〉 |= F there exists an interpreta-
tion 〈J, β〉 such that (1.) 〈J, β〉 |= CIRC-PROJ[F ; p;Z], (2.) J ∩ p̂ ∩ POS ⊆ ∩I,
and (3.) J ∩ Q̂ = I ∩ Q̂. The project operator allows to express this converted
definition compactly: Let S be the literal scope ((p̂∩POS)∪ Q̂). By Theorem 1,
CIRC-PROJ[F ; p;Z] is equivalent to circ(F, S). Furthermore, given that I and J

are structures and Q̂ =
˜̂
Q, the conjunction of items (2.) and (3.) above is equiv-

alent to J ∩ S ⊆ I. By the definition of project (Tab. 1), the statement that
there exists an interpretation 〈J, β〉 satisfying items (1.)–(3.) can be expressed
as 〈I, β〉 |= project(circ(F, S), S).

6 Interplay of Projection and Circumscription

The following proposition shows properties of projection nested within circum-
scription. It is independent of the well-founded property.

Proposition 2 (Circumscribing Projections).

(i) circ(F, S) |= circ(project(F, S), S).

(ii) circ(project(F, S), S) |= circ(project(F, S ∪ S̃), S).

In the special case where S ∪ S̃ = ALL, which holds for example if S = POS,
the two entailments Prop. 2.i and Prop. 2.ii can be combined to the equiva-
lence circ(project(F, S), S) ≡ circ(F, S). From this equivalence, it can be derived
that two formulas which express the same about positive literals (that is, have
equivalent projections onto POS) have the same minimal models (that is, have
equivalent circumscriptions for scope POS).
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The following proposition concerns circumscription nested within projection.
It is a straightforward consequence of the definition of well-founded along with
Tab. 2.vi and 2.ii.

Proposition 3 (Projecting Circumscriptions). If F is well-founded with
respect to S, then

project(circ(F, S), S) ≡ project(F, S).

From this proposition follows that if two well-founded formulas have equivalent
circumscriptions for some scope, then also their projections onto that scope are
equivalent. With properties of projection, it also follows that if S is a positive lit-
eral scope (that is, S ⊆ POS) then project(circ(F,POS), S) ≡ project(F, S). This
equivalence can be applied to provide a straightforward justification for applying
methods to compute minimal models also to projection computation onto posi-
tive scopes: We consider methods that compute for a given input formula F an
output formula F ′ that satisfies syntactic criteria (for example correspondence to
a tableau) which permit projection computation with low computational effort,
such that projection computation is in essence already performed by comput-
ing F ′. Assume that the output formula has the same minimal models as the
input formula, that is, circ(F ′,POS) ≡ circ(F,POS). If F ′ is well-founded, for
positive literal scopes S it then follows that project(F ′, S) ≡ project(F, S). A
tableau constructed by the hyper tableau calculus can indeed be viewed as rep-
resentation of such a formula F ′ [13].

Literal forgetting is a variant of literal projection that can be defined as
forget(F, S) def= project(F, S) and is investigated for propositional logic in [7]. It
is shown there that circumscription, or more precisely the formulas that are
entailed by circumscriptions, can be characterized in terms of literal forgetting.
Two such characterizations are given as Proposition 22 in [7], where the simpler
one applies if the literal base of the entailed formula is restricted in a certain
way.

These characterizations are rendered here in terms of literal projection as
Theorem 2.ii and 2.iii below, where we generalize and make more precise the
statements given in [7] in the following four respects: (1.) We use weaker re-
quirements on the entailed formulas by referring to the essential literal base
instead of the (syntactic) literal base. The respective requirements on the syn-
tactic literal base follow, since it is a subset of the essential literal base (see
Sect. 2). (2.) We provide a thorough proof in [12]. The proof given in [7] just
shows the characterizations as straightforward consequence of [9, Theorems 2.5
and 2.6], for which in turn no proof is given, neither in [9], nor in [6] which
is referenced by [9]. (3.) We generalize the characterizations to first-order logic.
(4.) We add a third basic variant (Theorem 2.i) for consequents that are stronger
restricted than in Theorem 2.ii.

This basic variant is actually a straightforward generalization of Proposi-
tion 12 in [8], which is introduced as capturing the intuition that, under the
assumption of well-foundedness, a circumscription provides no new information
about the fixed predicates, and only “negative” additional information about
the circumscribed predicates.
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Theorem 2 (Consequences of Circumscription). If F is well-founded with
respect to S, then

circ(F, S) |= G

is equivalent to (at least) one of the following statements, depending on LE(G):

(i) F |= G, if LE(G) ⊆ S;

(ii) F |= project(F ∧G,S), if LE(G) ⊆ (S ∪ S̃);

(iii) F |= project(F ∧ ¬project(F ∧ ¬G,S), S).

7 Answer Sets with Stable Model Semantics

In [3, 4] a characterization of stable models in terms of a formula translation
that is similar to the second-order circumscription has been presented. Roughly,
it differs from circumscription in that only certain occurrences of predicates
are circumscribed, which are identified by their position with respect to a non-
classical rule forming operator. We develop a variant of this characterization of
stable models that is in terms of circumscription. It involves no non-classical
operators. Instead, to indicate occurrences be circumscribed, it puts atoms into
term position, wrapped by one of two special predicates.

We let the symbols ◦ and • denote these predicates. They are unary, and
we write them without parentheses – for example •p(a). With them, we now
formally define a notion of logic program. Its correspondence to the more con-
ventional view of a logic program as formed by non-classical operators will then
be indicated.

Definition 8 (Logic Program).
(i) A rule clause is a clause2 of the form

m∨

i=1

−◦Ai ∨
n∨

i=1

+•Bi ∨
o∨

i=1

+◦Ci ∨

p∨

i=1

−•Di,

where k,m, n, o, p ≥ 0 and the subscripted A,B,C,D are terms.
(ii) For a rule clause of the form specified in (8.i), the rule clause (

∨m
i=1−◦Ai∨∨n

i=1+•Bi) is called its negated body, and the rule clause (
∨o

i=1+◦Ci∨
∨p

i=1−•Di)
is called its head.

(iii) A logic program is a conjunction of rule clauses.
(iv) The symbol SYNC stands for the formula ∀x(+•x↔ +◦x).

Conventionally, logic programs are typically notated by means of a special syntax
with truth value constants (⊤,⊥), conjunction (,), disjunction (;), negation as
failure (not) and rule forming (→) as connectives. A rule clause according to
(Def. 8.i) is then written as a rule of the form

A1, . . . , Am, notB1, . . . , notBn → C1; . . . ;Co; notD1; . . . ; notDp, (i)

where m,n, o, p ≥ 0 and the subscripted A,B,C,D are atoms. If m = n = 0,
then the left side of the rule is ⊤; if o = p = 0, then the right side is ⊥.

2 Recall that a clause as specified in Sect. 2 may contain universally quantified vari-
ables. The implicit quantifier prefixes of clauses are not written in this definition.
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The following definition specifies a formula ans(F ) whose models are exactly
those interpretations that represent an answer set of F according to the stable
model semantics.

Definition 9 (Answer Set). For all logic programs F :

ans(F ) def= circ(F,POS ∪ •̂) ∧ SYNC.

In the definition of ans(F ), the scope of the circumscription, (POS∪ •̂), is equal
to ((◦̂ ∩ POS) ∪ •̂) which matches the right side of Theorem 1, indicating that
ans(F ) can also be expressed in terms of second-order circumscription.

We now explicate the relationship of the characterization of stable models
by ans(F ) to the characterization in [3, 4], and justify in this way that ans(F )
indeed characterizes stable models. More detailed proofs and relationships to
reduct based characterizations of answer sets can be found in [12]. We limit
our considerations to logic programs according to Def. 8.iii, which are clausal
sentences (the characterization in [3, 4] applies also to nonclausal sentences).

Let F be a logic program. Let P = p1, . . . , pn be the function symbols of the
principal terms in F (that is, the predicate symbols if the wrapper predicates
◦ and • are dropped). Let P ′ = p′1, . . . , p

′
n and Q = q1, . . . , qn be tuples of

distinct predicate symbols which are disjoint with each other and with P . We
use the following notation to express variants of F that are obtained by replacing
predicate symbols:

– We write F also as F [◦, •], to indicate that ◦ and • occur in it.
– The formula F [U, V ], where U = u1, . . . , un and V = v1, . . . , vn are tuples of

predicate symbols is F [◦, •] with all atoms ◦(pi(t)) replaced by ui(t) and all
atoms •(pi(t)) replaced by ui(t), where t matches the respective argument
terms. As a special case, F [P, P ] is then F [◦, •] with all atoms of the form
◦A or •A replaced by A.

Let cnv(F ) denote F converted into the syntax of logic programs with non-
classical operators used by [3, 4] (see [12] for an explicit such conversion). Let
SM(cnv(F )) be the second-order sentence that characterizes the stable models
of cnv(F ) according to [3, 4]. The following equivalence can be verified, where
P ′<P has the same meaning as in Def. 5:

SM(cnv(F )) ≡ F [P, P ] ∧ ¬∃P ′(F [P ′, P ] ∧ P ′<P ). (ii)

The right side of equivalence (ii) is not a second-order circumscription, since P
occurs in F [P ′, P ] as well as in P ′<P . To fit it into the circumscription scheme,
we replace the occurrences of P in F [P ′, P ] by Q and add the requirement that
P and Q are equivalent: Let (P ↔ Q) stand for

∧n
i=1(pi(xi)↔ qi(xi)), where xi

has the same meaning as in Def. 5. The following equivalences then hold:

SM(cnv(F )) ∧ (P ↔ Q) (iii)

≡ F [P,Q] ∧ ¬∃P ′(F [P ′, Q] ∧ P ′<P ) ∧ (P ↔ Q) (iv)

≡ CIRC[F [P,Q];P ; ∅] ∧ (P ↔ Q). (v)
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To get rid of the biconditionals (P ↔ Q) in (iii), projection can be employed:
From SM(cnv(F )) ≡ project(SM(cnv(F )) ∧ (P ↔ Q), P̂ ) it follows that

SM(cnv(F )) ≡ project(CIRC[F [P,Q];P ; ∅] ∧ (P ↔ Q), P̂ ). (vi)

Based on equivalence (vi), the correspondence of ans(F ) to SM(cnv(F )) can
be shown by proving that for two interpretations that are related in a certain
way the one is a model of SM(cnv(F )) if and only if the other is a model of
ans(F ): Let I be a structure over P and Q as predicate symbols. Define I ′ as
the structure obtained from I by replacing all atoms pi(A) with ◦(pi(A)) and
all atoms qi(A) with •(qi(A)). Define I ′′ as the structure that contains the same
literals with predicate • as I ′ and contains +◦(A) (−◦(A)) whenever it contains
+•(A) (−•(A)). Thus the literals with predicate ◦ are chosen in I ′′ such that it
satisfies SYNC. The following statements are then equivalent:

〈I, β〉 |= SM(cnv(F )). (vii)

〈I, β〉 |= project(CIRC[F [P,Q];P ; ∅] ∧ (P ↔ Q), P̂ ). (viii)

〈I ′, β〉 |= project(CIRC[F [◦, •]; ◦; ∅]∧ SYNC, ◦̂). (ix)

〈I ′, β〉 |= project(CIRC[F ; ◦; ∅] ∧ SYNC, ◦̂). (x)

〈I ′′, β〉 |= CIRC[F ; ◦; ∅] ∧ SYNC. (xi)

〈I ′′, β〉 |= circ(F,POS ∪ •̂) ∧ SYNC. (xii)

〈I ′′, β〉 |= ans(F ). (xiii)

8 Conclusion

We have introduced an operator raise which can be used to define circumscription
in a compact way. The definition of that operator – in a semantic framework
where structures are represented by sets of literals – is identical to that of literal
projection, except that a set inclusion is replaced by a proper set inclusion.

An approach to an intuitive understanding of the raise operator is to consider
minimization as passed through from the “object language level” (the extents of
predicates is minimized) to the “meta level” of the semantic framework: Raise

expresses that model agreement conditions are minimized. Accordingly, the pred-
icate minimization conditions (commonly abbreviated by P ′ < P in definitions
of circumscription) have not to be made explicit with the raise operator, but are
“built-in”. In addition, the approach to “minimize model agreement conditions”
effects that the raise operator straightforwardly covers certain generalizations
of circumscription: Raise has – aside of a formula – just a set of literals as ar-
gument, such that, depending on the composition of this set, not only parallel
circumscription with varied predicates can be expressed, but also predicate maxi-
mization conditions. Moreover, also minimization, maximization and agreement
conditions can be expressed that apply only to a subset of the instances of a
predicate.
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The characterization of circumscription in terms of the raise operator is im-
mediately useful to prove properties of circumscription in a streamlined way.
The introduced semantic framework with the project and raise operators is a
basis for future research, including the further elaboration of common and dif-
fering properties of both operators, the exploration of applications that involve
combinations of circumscription and projection, and the investigation of possi-
bilities for transferring and interleaving methods for non-monotonic reasoning,
such as computation of stable models, with methods for second-order quantifier
elimination and the closely related projection computation.
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Abstract. Automatic verification of imperative programs that destructively ma-
nipulate heap data structures is challenging. In this paperwe propose an approach
for verifying that such programs do not corrupt their data structures. We specify
heap data structures such as lists, arrays of lists, and trees inductively as solu-
tions of logic programs. We use off-the-shelf first-order theorem provers to reason
about these specifications.

1 Introduction

In this paper we show how to reason effectively about pointerprograms using automatic
first-order theorem provers. Common approaches to such reasoning rely on transitive-
closure to express reachability in linked data structures.However, first-order theorem
provers cannot handle transitive closure accurately, because there is no finite first-
order axiomatisation. Instead, various approximations have been proposed for proving
(non-)reachability in linked data structures. Yet, there is no universal scheme for
approximating transitive closure — the choice of approximation depends on the data
structure and on the type of (non-)reachability problem at hand.

We propose a different approach to reasoning about pointer programs. Instead of
reasoning about reachability, we reason about theextensionof heap data structures, i. e.,
about sets of heap cells. This is sufficient to express many (non-)reachability problems,
e. g., “x is reachable from the head of the list”, or “the lists pointedto byx andy are
separate”.

We define common data structures, including acyclic lists, cyclic lists, sorted lists,
and binary trees, as logic programs. More precisely, the logic programs defineshape
types, i. e., monadic predicates capturing the extension (set of heap cells) of the given
data structure. These logic programs, if viewed as universal first-order theories, have
many models, some of which will contain junk, i. e., unreachable heap cells; see Fig 3,
showing a shape type for a singly linked list containing junk. The issue of junk models
can be avoided if we confine ourselves to least models, i. e., to inductive reasoning. We
approximate this inductive least model reasoning by first-order verification conditions.
The main contributions of this paper are the following:

– We present logic programs defining a number of common shape types (Section 2).
The programs are carefully chosen to harness the power of automatic resolution-
based theorem provers (in our case studySPASS [29]) and SMT solvers with
heuristic-driven quantifier instantiation (in our case study Yices [6]).

http://www.macs.hw.ac.uk/~lilia/
http://homepages.inf.ed.ac.uk/pmaier/


– We describe a methodology to verify that pointer programs maintain shape invari-
ants (Section 3), which may express properties like “a data structure is a sorted
doubly-linked list”. The method relies on user-provided code annotations and on
verification condition generation.

2 Modelling Data Structures

2.1 Logical Heap Model

We work in the framework ofmany-sorted first-order logic with equality, assuming
familiarity with the basic syntactic and semantic concepts.

Notation. A signatureΣ declares finite sets of sortsΣS , function symbolsΣF and
relation symbolsΣR. Function symbolsf and relation symbolsR have associated
arities, usually written asR ⊆ T1 × · · · × Tm resp.f : T1 × · · · × Tn → T0 (or
f : T if f is a constant). Given signaturesΣ and∆, their unionΣ∆ is a signature. We
call ∆ anextensionof Σ if ∆ = Σ∆; we call the extensionrelational if additionally
∆S = ΣS and∆F = ΣF .

A Σ-algebraA interprets sortsT ∈ ΣS as carriersTA, function symbolsf ∈ ΣF
as functionsfA, and relation symbolsR ∈ ΣR as relationsRA. We call B a ∆-
extension(or simply extension) of A if ∆ is an extension ofΣ andB is a∆-algebra
whoseΣ-reductB|Σ is A.

First-order formulas overΣ are constructed by the usual logical connectives (in-
cluding the equality predicate=). We writeA, α |= φ to denote that formulaφ is true
in Σ-algebraA under variable assignmentα; we may dropα if φ is closed.

Logical model of program state.We consider programs in a subset of the programming
language C. With regard to the heap, these programs may allocate and free records
(structs in C terminology) on the heap, and they may dereference and update pointers
to these records. However, they may not perform address arithmetic, pointer type casts,
or use variant records (unions in C terminology). Under these restrictions, any given
program state (i. e., heap plus values of program variables)can be viewed a many-
sortedΣ-algebraA in the following way. (i) The C types are viewed as sorts. There
are two classes of sorts:valuesorts corresponding the C base types (int, float, etc.)
andpointersorts corresponding to C record types. (ii) The elements of the carrierTA

of a value sortT are the values of the C typeT. A interprets the standard functions
(like addition) and relations (like order) on value sorts asintended. (iii) The elements
of the carrierTA of a pointer sortT are the addresses of records of the C typeT in the
given heap, plus the special addressNULLT , which representsNULL pointers of typeT.
(iv) A field f of typeT’ in a record of typeT corresponds to a unary function symbol
f : T → T ′. Its interpretationfA maps addresses inTA to elements ofT ′A (i. e., to
values or addresses, depending on whetherT ′ is a value or pointer sort). (v) To capture
the values of program variables, we extend the signatureΣ with constants, one per
program variable. For example, the program variablex of typeT is represented by the
logical constantx of sortT ; the value ofx is the interpretationxA of x in A.
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typedef double D; // data values

struct L_Node { // list nodes
struct L_Node* next;

struct L_Node* prev;
D data;

};
typedef struct L_Node* L; // lists

struct T_Node { // tree nodes
struct T_Node* left;

struct T_Node* right;
struct T_Node* parent;

D val;
};
typedef struct T_Node* T; // binary trees

Value sorts: D

Pointer sorts:L, T

Constants: NULLL : L

NULLT : T

Functions: next, prev : L→ L

data : L→ D

left, right, parent : T → T

val : T → D

Relations: ≤ ⊆ D ×D

Fig. 1.Data type declaration in C (left) and corresponding signatureΣ (right).

Figure 1 shows a sample C data type declaration and the corresponding signature
Σ. As an aside, note that the unary functions in our heap model are total, unlike models
of separation logic where the heap is represented by partialfunctions. AΣ-algebraA
may thus contain junk, i. e., unreachable cells pointing to whatever they like. This does
not matter as we will restrict our attention to the well-behaved clusters of the heap cells
that are cut out by the shape types presented in the next section, and ignore all the rest.3

2.2 Shape Types as Logic Programs

Logic programs.LetΣ and∆ be signatures such thatΣ∆ is a relational extension of
Σ. A clause (overΣ∆) is called∆-Horn (resp.definite∆-Horn) if it contains at most
one (resp. exactly one) positive∆-literal. A 〈Σ,∆〉-LP is a finite set of∆-Horn clauses
overΣ∆.

Given aΣ-algebraA, we call a(Σ∆)-extensionB of A an A-modelof P if
B |= P ; we callP A-satisfiableif it has anA-model. Note that for someA, P may
not beA-satisfiable (becauseP may contain non-definite∆-Horn clauses). However, a
standard argument (Proposition 1) shows that ifP is A-satisfiable then it has a leastA-
modelB0 (in the sense thatRB0 ⊆ RB for all R ∈ ∆R and allA-modelsB of P); we
denoteB0 by lm(P ,A). Thus,P may be viewed as a transformer taking aΣ-algebra
and computing its least(Σ∆)-extension consistent withP (if it exists).

Proposition 1. LetP be a〈Σ,∆〉-LP andA aΣ-algebra. IfP is A-satisfiable then it
has a leastA-model.

Shape types.Informally, ashape typeis a unary predicate on the heap, characterising
the collection of heap cells that form a particular data structure (e. g., a sorted list). Its
purpose is twofold: It serves to enforce integrity constraints (like sortedness) on the data
structure, and it provides a handle to specify invariants (like separation of two lists).

3 This is very much what a programmer does, who is also not concerned about the contents of
unreachable memory locations.
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In the remainder of this section, we will define a number of shape types by〈Σ,∆〉-
LPsP , whereΣ is the signature of the heap (cf. Section 2.1), whichΣ∆ extends with
a unary predicateS. Given a heapA, the least model lm(P ,A) may be viewed as
anannotated heap, tagging heap cells (as belonging to the interpretation ofS) which
form the data structure specified byP . We note that the existence of least models will
be guaranteed by Proposition 1 because the LPs will be evidently A-satisfiable in all
intended heapsA (i. e., in allA where the data structure in question is not corrupt).

Shape types of segments of linked lists.Figure 2 presents〈Σ,∆〉-LPs defining the
shape types of various list segments (singly- or doubly-linked, sorted or not). The
programs are parameterised by input and output signaturesΣ and∆ (the latter declaring
only the single symbolS).

The simplest LPPList defines the shape typeS of unsorted singly-linked list
segments. The input signature comprises the sort of list cells L, the next-pointer
function, the pointerp to the head, and the pointerq to the tail of the list beyond the
segment. The clauses express (in order of appearance) that (i) the first cell of the tail
(pointed to byq) does not belong toS, (ii) the head of the segment belongs toS unless
p points to the tail, (iii) no cell inS points to the head, (iv)S is closed under following
next-pointers up toq, and (v) each cell inS is pointed to by at most one cell inS
(i. e., no sharing inS). Figure 3 (top) shows two models ofPList. The first one is the
intended least model, where the interpretation ofS really is the set of cells forming the
list segment fromp to q, whereas in the second model the interpretation ofS contains
somejunk, i. e., cells that are unreachable from the head.

The LPPDList defines the shape typeS of doubly-linked list segments from head
cell p to last cellr (where the cells ahead ofp and behindr ares andq, respectively),
see the picture in Figure 3 (middle). The program definesS as both, anext-linked list
segment fromp to q, and aprev-linked list segment fromr to s. Moreover, it demands
thatp belongs toS iff r does, and thatp andr are the only cells inS that may point to
s andq, respectively. Finally, the last two clauses force thenext-pointers insideS to be
converses of theprev-pointers, and vice versa.

The LPPSList defines the shape typeS of sorted, singly-linked list segments. Its
parameter list extends that ofPList by the data sortD, the total ordering≤ onD, and
thedatafield. It adds one more clause toPList, for comparing the data values of adjacent
elements in the list segment.

Finally, the LPPSDList combines the LPsPDList andPSList, defining the shape type
S of sorted, doubly-linked list segments.

Shape types of cyclic lists.The LPPCList in Figure 2 defines the shape typeS of
cyclic singly-linked lists. Its input signature comprisesthe sort of list cellsL, thenext-
pointer function, and the pointerp into the cyclic list. The clauses express (in order of
appearance) that: (i)NULL does not belong toS, (ii) the cell pointed to byp belongs to
S unlessp points toNULL, (iii) S is closed under followingnext-pointers, and (iv) each
cell in S is pointed to by at most one cell inS (i. e., no sharing inS).
The LPPCDList defines the shape typeS of doubly-linked cyclic lists by extendingPCList

with a clause forcingnextandprevinsideS to be converses. We remark that the LPs for
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LP for singly-linked list segments
PList[L; next: L→ L, p, q : L; S ⊆ L]
= {¬S(q),

S(p) ∨ p = q,
∀x:L . S(p) ∧ S(x)⇒ next(x) 6= p,
∀x:L . S(x) ∧ next(x) 6= q ⇒ S(next(x)),
∀x, y, z:L . S(x) ∧ S(y) ∧ S(z) ∧ next(x) = z ∧ next(y) = z ⇒ x = y}

LP for doubly-linked list segments
PDList[L; next, prev : L→ L, p, q, r, s : L; S ⊆ L]
= PList[L; next, p, q; S] ∪ PList[L; prev, r, s; S]
∪ {S(r)⇒ S(p), S(p)⇒ S(r),
∀x:L . S(x) ∧ ¬S(prev(x))⇒ x = p ∧ prev(x) = s,
∀x:L . S(x) ∧ ¬S(next(x))⇒ x = r ∧ next(x) = q,
∀x:L . S(x) ∧ S(next(x))⇒ prev(next(x)) = x,
∀y:L . S(y) ∧ S(prev(y))⇒ next(prev(y)) = y}

LP for singly-linked sorted list segments
PSList[D, L; next: L→ L, data : L→ D, p, q : L,≤ ⊆ D ×D; S ⊆ L]
= PList[L; next, p, q; S]
∪ {∀x:L . S(x) ∧ S(next(x))⇒ data(x) ≤ data(next(x))}

LP for doubly-linked sorted list segments
PSDList[D, L; next, prev : L→ L, data : L→ D, p, q, r, s : L,≤ ⊆ D ×D; S ⊆ L]
= PDList[L; next, prev, p, q, r, s; S] ∪ PSList[D, L; next, data, p, q,≤; S]

LP for singly-linked cyclic lists
PCList[L; next : L→ L, p, NULLL : L;S ⊆ L]
= {¬S(NULLL),

S(p) ∨ p = NULLL,
∀x:L . S(x)⇒ S(next(x)),
∀x, y, z:L . S(x) ∧ S(y) ∧ S(z) ∧ next(x) = z ∧ next(y) = z ⇒ x = y}

LP for doubly-linked cyclic lists
PCDList[L; next, prev : L→ L, p, NULLL : L; S ⊆ L]
= PCList[L; next, p, NULLL; S] ∪ {∀x:L . S(x)⇒ prev(next(x)) = x ∧ next(prev(x)) = x}

LP for arrays of singly-linked NULL-terminated lists
PListArray[I, L; next : L→ L, a : I → L, NULLL : L;S ⊆ I × L]
= {∀i:I . ¬S(i, NULLL),
∀i:I . S(i, a(i)) ∨ a(i) = NULLL,
∀i:I ∀x:L . S(i, a(i)) ∧ S(i, x)⇒ next(x) 6= a(i),
∀i:I ∀x:L . S(i, x) ∧ next(x) 6= NULLL ⇒ S(i, next(x)),
∀i:I ∀x, y, z:L . S(i, x) ∧ S(i, y) ∧ S(i, z) ∧ next(x) = z ∧ next(y) = z ⇒ x = y,
∀i, j:I ∀x:L . S(i, x) ∧ S(j, x)⇒ i = j}

LP for arrays of singly-linked cyclic lists
PCListArray[I, L; next : L→ L, a : I → L, NULLL : L; S ⊆ I × L]
= {∀i:I . ¬S(i, NULLL),
∀i:I . S(i, a(i)) ∨ a(i) = NULLL,
∀i:I ∀x:L . S(i, x)⇒ S(i, next(x)),
∀i:I ∀x, y, z:L . S(i, x) ∧ S(i, y) ∧ S(i, z) ∧ next(x) = z ∧ next(y) = z ⇒ x = y,
∀i, j:I ∀x:L . S(i, x) ∧ S(j, x)⇒ i = j}

LP for binary trees
PTree[T ; left, right : T → T, r, NULLT : T ; S ⊆ T ]
= {¬S(NULLT ),

S(r) ∨ r = NULLT ,
∀x:T . S(r) ∧ S(x)⇒ (left(x) 6= r ∧ right(x) 6= r),
∀x:T . S(x) ∧ left(x) 6= NULLT ⇒ S(left(x)),
∀x:T . S(x) ∧ right(x) 6= NULLT ⇒ S(right(x)),
∀x, y, z:T . S(x) ∧ S(y) ∧ S(z) ∧ left(x) = z ∧ left(y) = z ⇒ x = y,
∀x, y, z:T . S(x) ∧ S(y) ∧ S(z) ∧ right(x) = z ∧ right(y) = z ⇒ x = y,
∀x, y, z:T . S(x) ∧ S(y) ∧ S(z) ∧ left(x) = z ∧ right(y) = z ⇒ x = y,
∀x, y, z:T . S(x) ∧ S(y) ∧ S(z) ∧ left(x) = y ∧ right(x) = z ⇒ y 6= z}

LP for binary trees with parent pointers
PPTree[T ; left, right, parent: T → T, r, s, NULLT : T ; S ⊆ T ]
= PTree[T ; left, right, r, NULLT ; S]
∪ {s 6= NULLT ⇒ S(r),

S(r)⇒ s = parent(r),
¬S(s),
∀x:T . S(x) ∧ S(left(x))⇒ parent(left(x)) = x,
∀x:T . S(x) ∧ S(right(x))⇒ parent(right(x)) = x,
∀y:T . S(y) ∧ S(parent(y))⇒ (left(parent(y)) = y ∨ right(parent(y)) = y)}

Fig. 2.LPs defining shape types of list segments, cyclic lists, arrays of lists, binary trees.
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Fig. 3.From top to bottom: shape typesS of singly-linked list segments (intended least
model and model with unreachable junk), doubly-linked listsegments, array of cyclic
lists, and binary trees.

cyclic lists are more elegant than the corresponding LPs forsingly- and doubly-linked
list segments.

Shape types of arrays of lists.The LPPCListArray in Figure 2 defines the shape typeS of
arrays of singly-linked cyclic lists, see Figure 3 (bottom left) for a graphical depiction.
The input signature comprises the array index sortI, the list cell sortL, thenext-pointer
function, and the functiona mapping array indices to pointers into the lists. The shape
type S is a binary relation between array indices and list cells. Note that we model
arrays as functions from index type to element type4, ignoring array bounds. In the light
of this, the shape typeS may be viewed as an array of sets of list cells rather than as a
binary relation.

The first four clauses ofPCListArray state that for each indexi, the unary relation
S(i, ·) — S with fixed first argumenti — is the shape type of a cyclic singly-linked
list pointed to bya(i); note how these four clauses correspond to the clauses ofPCList.

4 Our model assumes that arrays do not live in the heap.
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The last clause states that the shape typesS(i, ·) andS(j, ·) must be disjoint for distinct
indicesi andj.

The LPPListArray defines the shape typeS of arrays of singly-linkedNULL-terminated
lists in a similar way. Its first five clauses force each shape typeS(i, ·) to be a singly-
linked list segment froma(i) toNULLL, and the last clause forces disjointness of distinct
shape typesS(i, ·) andS(j, ·).

Shape types of binary trees.The LPPTree defines the shape typeS of plain binary
trees, see the picture in Figure 3 (bottom right). The input signature comprises the sort
of tree nodesT , the left- andright-pointer functions and the pointerr to the root. The
clauses borrow heavily from the LPPList for singly-linked list segments (withq replaced
by NULLT ) and express that: (1)NULL does not belong toS, (2) the root belongs toS
unlessr points toNULL, (3) no node inS points to the root, (4-5)S is closed under
following left- andright-pointers up toNULL, and (6-9) there is no sharing inS because
each node inS is pointed to by at most one node inS (clauses 6-8) and has distinctleft-
andright-successors (clause 9).

The LPPPTree defines the shape typeS of binary trees with parent pointers by
extendingPTree. The additional clauses express that (1-2)s is the parent of the rootr
unlessr is not inS, in which casesmust beNULL, (3)s does not belong toS, and (4-6)
theparent-pointers are converse to the union of theleft- andright-pointers.

3 Verifying Pointer Programs

We aim to verify imperative programs that manipulate dynamic data structures on the
heap. Given the code of a C function plus specifications of itsinput and output (and
possibly of loop invariants), we want to verify that the program maintains certainshape
invariants, e. g., that the sorted list being updated remains a list and sorted.

Notation. Given a signatureΣ, we define the signatureΣ′ as a copy ofΣ where
all functionsf (except the constantsNULLT ) and relationsR are replaced byprimed
functionsf ′ resp. relationsR′. Given aΣ-formulaφ (resp. a〈Σ,∆〉-LP P), we write
φ′ (resp.P ′) for theΣ-formula (resp.〈Σ′, ∆′〉-LP) that arises fromφ (resp.P) by
replacing all functionsf (exceptNULLT ) and relationsR by f ′ andR′, respectively.

3.1 Verification Problem

We verify C functions by checking verification conditions. To do this, we convert the
code of a function into a control flow graph (CFG) and find a set of cut locations,
to which we attach shape invariants. Each path between cut locations gives rise to a
verification condition (VC), which claims that the path establishes the invariant at its
end location, given that the invariant at the start locationwas assumed.

We will not elaborate on the well-known techniques for translating C code to CFGs
and identifying cut locations; the reader may consult Figure 4 for an example. The figure
shows the code for inserting an elemente into a non-empty sorted list pointed to byp.
The CFG has three cut locationsl0 (the entry location) tol2 (the exit location), with
four pathsσ1 to σ4 between them.
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void insert(L p, L e)
{

L s = p;
L t = s->next;
while (t != NULL) {

if (e->data >= t->data) {
s = t;

t = s->next;
}
else break;

}
e->next = t;

s->next = e;
}

t = s−>next;

s = p;

(t != NULL) (e−>data < t−>data)

(e−>data >= t−>data)

s = t;

t = s−>next;

s−>next = e;

e−>next = t;

(t == NULL)

0l

1l

2l

path path formulaπ

σ1 : l0 → l1 = s = p; s′ = p ∧
t = s->next; t′ = next(s′) ∧

p′ = p ∧ e′ = e ∧ next′ = next∧ data′ = data
σ2 : l1 → l1 = (t != NULL) t 6= NULLL ∧

(e->data >= t->data) data(e) ≥ data(t) ∧
s = t; s′ = t ∧
t = s->next; t′ = next(s′) ∧

p′ = p ∧ e′ = e ∧ next′ = next∧ data′ = data
∃next1:L→ L .

σ3 : l1 → l2 = (t != NULL) t 6= NULLL ∧
(e->data < t->data) data(e) < data(t) ∧
e->next = t; next1(e) = t ∧ (∀x:L . x = e ∨ next1(x) = next(x)) ∧
s->next = e; next′(s) = e ∧ (∀x:L . x = s ∨ next′(x) = next1(x)) ∧

p′ = p ∧ e′ = e ∧ s′ = s ∧ t′ = t ∧ data′ = data
∃next1:L→ L .

σ4 : l1 → l2 = (t == NULL) t = NULLL ∧
e->next = t; next1(e) = t ∧ (∀x:L . x = e ∨ next1(x) = next(x)) ∧
s->next = e; next′(s) = e ∧ (∀x:L . x = s ∨ next′(x) = next1(x)) ∧

p′ = p ∧ e′ = e ∧ s′ = s ∧ t′ = t ∧ data′ = data

loc. formulaφ of shape invariant〈P, φ〉— see Section 3.1 for LPP

l0 S∩ E = ∅ ∧ S(p) ∧ E(e) ∧ next(e) = NULLL ∧ data(p) ≤ data(e)
l1 S= S0 ∧ E = E0 ∧ p = p0 ∧ e = e0 ∧

S∩ E = ∅ ∧ S(p) ∧ E(e) ∧ next(e) = NULLL ∧ data(p) ≤ data(e) ∧
S(s) ∧ data(s) ≤ data(e) ∧ next(s) = t ∧ (t = NULLL ∨ S(t))

l2 S= S0 ⊎ E0 ∧ p = p0 ∧ e = e0

path shape effectε

σ1 S′ = S∧ E′ = E
σ2 S′ = S∧ E′ = E
σ3 S′ = S⊎ E
σ4 S′ = S⊎ E

Fig. 4. Insert an element into a non-empty list sorted in ascending order: C code, control
flow graph, paths through the CFG, shape invariants, and shape effects.

State signature.Associated with a C function is astate signatureΣ, the signature of the
Σ-algebras serving as logical models of program state, see Section 2.1. In the following,
Σ always refers to a fixed state signature.

In the example of Figure 4,Σ declares the value sortD and the pointer sortL, the
constantsp, e, s, t,NULLL : L, the functionsdata : L → D andnext: L → L and the
order relation≤ ⊆ D ×D.

Path formulas. A path σ through the CFG is a sequence consisting of variable
assignmentsx = e; array updatesa[i] = e; heap updatesx->f = e; and conditions
(c) wheree is an expression (an R-value in C terminology) andc is a conditional
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expression.5 The translation of such paths to first-order logic is well-known and will
not be detailed here; the reader is referred to Figure 4 for examples. Thepath formula
π resulting from translation of a pathσ is a (ΣΣ′)-formula, where the signaturesΣ
andΣ′ belong to the state at the start and end locations ofσ, respectively. Two things
to note. First, part of each path formula is an explicit “frame condition” stating which
variables and pointer fields do not change; note the use of second-order equalities like
next′ = next as short-hands for more complex first-order expressions. Second, path
formulae, like the ones for pathsσ3 andσ4, may start with a string of second-order∃-
quantifiers to project away intermediate state; these quantifiers will always be eliminable
by Skolemisation.

Shape invariants.A ∆-shape invariantis a pair〈P , φ〉, whereP is a〈Σ,∆〉-LP andφ
is a (Σ∆)-formula. Its purpose is to constrain the program state by the relating shape
types, which are defined by the LPP , with each other or with program variables.

Shape invariants are associated with cut locations in the CFG. Figure 4 presents the
shape invariants for theinsert function. These shape invariants involve two shape
typesS andE defined by the LPP = PSList[D,L; next, data, p,NULLL,≤;S] ∪
PList[L; next, e,NULLL,≤;E]∪{∀x:L . ¬S(x) ∨ ¬E(x)}. I. e.,S is the shape type of
NULL-terminated sorted lists pointed to byp,E of NULL-terminated lists pointed to bye,
and both shape types are disjoint. Note that the LPP is common to all three invariants.
The shape invariant atl0, for instance, stipulates that the listsS andE are disjoint and
non-empty (because they contain their headsp ande), E is of length1 (because the
next-pointer of its heade is NULL), and the data atp is less than or equal to the data
at e. Note the use of set-relational expressions likeS ∩ E = ∅ as short-hand for more
complex first-order expressions. The shape invariant atl2 stipulates that the listS is the
sum of the start listsS0 andE0

6 and that the program variablesp ande retain their start
valuesp0 ande0, respectively. This, together with sortedness ofS, which is enforced
by the LP definingS, is a statement of functional correctness ofinsert.

Verification condition.Given a pathσ from ℓ tok, letπ be the path formula forσ, 〈P , φ〉
the∆-shape invariant atℓ, and〈Q, ψ〉 theΛ-shape invariant atk. To prove correctness
of σ, we must show that every execution establishes thepostshape invariant〈Q, ψ〉 at
the end, provided that thepre shape invariant〈P , φ〉 held at the start. This translates to
the following verification condition.

∀(ΣΣ′)-algebraA : lm(P ,A) |= π ∧ φ =⇒ lm(Q′,A) |= ψ′ (VC)

Note that the antecedent of (VC) tacitly depends on the existence of lm(P ,A), and the
succedent tacitly states that the existence of lm(Q′,A) follows from the antecedent.

5 To keep the presentation simple, we ignore dynamic memory allocation and function calls.
Both could be handled: memory allocation through tracking the set of allocated heap cells,
function calls through extra cut locations before and aftercall sites.

6 The use of subscript0 indicates values of program variables or shape types at the initial
location l0. Strictly speaking, a shape invariant is not just constraining the program state at
locationℓ, but the relation between the initial state and the state at locationℓ.
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The trouble with (VC) is that it requires reasoning in least models, i. e., inductive
reasoning. The next section presents our methodology to rephrase the inductive condi-
tion (VC) in first-order logic.

3.2 Approximating Inductive Reasoning

The obvious problem with using first-order provers for reasoning about shape types is
their ignorance of least models. For instance, a VC on a pathσ may be invalid in first-
order logic because there is a counter model which picks the least interpretation for
shape typeS at the start ofσ but the greatest interpretation forS at the end.

To deal with this problem, we weaken the VC by speculatively assuming ashape
effectrelating shape types at the start and end ofσ. Often, the weakened VC becomes
provable in first-order logic. However, we still have to justify the assumed shape effect.
We do so by proving two further first-order VCs, which together imply that the shape
effect is an inductive consequence of the LPs defining the shape types.

Shape effects.Given a pathσ from ℓ to k, let π be the path formula forσ, 〈P , φ〉 the
∆-shape invariant atℓ, and〈Q, ψ〉 theΛ-shape invariant atk. A shape effectfor σ is a
(Σ∆Σ′Λ′)-formulaε which isback-and-forth total, that is,

– ∀(Σ∆Σ′)-algebraA: A |= P ∪ {π} =⇒ ∃(Σ∆Σ′Λ′)-extensionB: B |= ε, and
– ∀(ΣΣ′Λ′)-algebraC: C |= Q′ ∪ {π} =⇒ ∃(Σ∆Σ′Λ′)-extensionD: D |= ε.

The purpose of a shape effectε is to relate the shape types at the start of pathσ with those
at the end. A convenient way to specify simple shape effects is to write set-relational
expressions likeS′ = S ⊎ E (cf. Figure 4) as short-hands for more complex quantified
expressions. This style also makes it easy to check the totality requirement. For example,
back-and-forth totality of the shape effectS′ = S ⊎ E for σ3 holds because (1) every
(Σ∆Σ′)-algebra which interpretsS andE disjointly (which is enforced by the LPP)
has a(Σ∆Σ′Λ′)-extension which interpretsS′ as the sum ofS andE, and (2) every
(ΣΣ′Λ′)-algebra (which interpretsS′) has a(Σ∆Σ′Λ′)-extension which interpretsS
andE disjointly such that their sum isS′. Note that in this particular case, totality is
independent of the path formulaπ.

Notation. Given aΣ-algebraA, one may need to compare oneA-model of the〈Σ,∆〉-
LP P to another one. Logically, this can be done by fusing the two models, which
requires duplicating all symbols that are not shared, i. e.,all relations in∆.

We define the signaturê∆ as a copy of∆ where all relationsR are replaced by
cappedrelationsR̂. Given a∆-shape invariant〈P , φ〉, we write〈P̂, φ̂〉 for the∆̂-shape
invariant that arises from〈P , φ〉 by replacing all relationsR in∆ with R̂. Given a shape
effectε (as defined above) for a pathσ, we write ε̂ for the (Σ∆̂Σ′Λ̂′)-formulaε that
arises fromε by replacing all relationsR in ∆Λ with R′; note thatε̂ is also a shape
effect forσ.
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Verification conditions.Given a pathσ from ℓ to k, let π be the path formula forσ,
〈P , φ〉 the∆-shape invariant atℓ, 〈Q, ψ〉 theΛ-shape invariant atk, andε the shape
effect forσ. To prove the inductive condition (VC) it suffices to prove the following
three first-order conditions.

P ∪Q′ ∪ {π, ε, φ} |= ψ′ (VC1)

P ∪ {π, ε, φ} |= Q′ (VC2)

Q′ ∪ Q̂′ ∪ {
∧

S∈ΛR
Ŝ′ ⊆ S′,

∨
S∈ΛR

Ŝ′ 6= S′, π, ε, ε̂} |=

P ∪ P̂ ∪ {
∧

S∈∆R
Ŝ ⊆ S,

∨
S∈∆R

Ŝ 6= S}
(VC3)

(VC1) and (VC2) together state preservation of shape invariants, subject to the (yet
unjustified) assumption of a shape effectε. (VC2) can be read as a model transformation:
Given any model ofP that satisfies the path formula and the pre shape invariant,
the shape effectε will produce models ofQ′. Finally, (VC3) implies thatε preserves
minimal models. It can be seen as a reverse model transformation which preserves order:
Given any two models ofQ′ such that both satisfy the path formula and one is strictly
contained in the other, the shape effectsε andε̂ will produce two models ofP such that
one is strictly contained in the other.

Soundness.The following theorem proves that the conditions (VC1) – (VC3) together
imply that a shape effect is an inductive consequence (i. e.,entailed in the least model)
of the LPs defining the shape types. Soundness of the first-order verification conditions
w. r. t. to the inductive condition (VC) is an easy corollary.

Theorem 2. Let σ be a path fromℓ to k. Let π be the path formula forσ, 〈P , φ〉 the
∆-shape invariant atℓ, 〈Q, ψ〉 theΛ-shape invariant atk, andε the shape effect forσ.
Assume that(VC2) and(VC3) hold. For all (ΣΣ′)-algebrasA, if lm(P ,A) exists and
lm(P ,A) |= π ∧ φ then lm(P ∪Q′,A) exists and lm(P ∪Q′,A) |= ε.

Proof. Towards a contradiction assume there is a(ΣΣ′)-algebraA such that lm(P ,A)
and lm(P ∪ Q′,A) exist and lm(P ,A) |= π ∧ φ, but lm(P ∪ Q′,A) 6|= ε. As ε is
total, the(Σ∆Σ′)-model lm(P ,A) of π extends to a(Σ∆Σ′Λ′)-modelB of ε. Thus,
B |= P ∪ {π, ε, φ}, which by (VC2) impliesB |= Q′. Note thatB is not an extension
of the (ΣΣ′Λ′)-model lm(Q′,A), for if it were thenB = lm(P ∪ Q′,A) and hence
lm(P ∪ Q′,A) |= ε, which would contradict our assumption. ThusB|ΣΣ′Λ′ is a non-
least, hence non-minimal,A-model ofQ′, which implies thatB has a(Σ∆Σ′Λ′Λ̂′)-
extensionC such thatC |= Q′ ∪ Q̂′ ∪ {

∧
S∈ΛR

Ŝ′ ⊆ S′,
∨

S∈ΛR
Ŝ′ 6= S′}. As the

shape effect̂ε is total, the(ΣΣ′Λ̂′)-modelC|ΣΣ′Λ̂′ of π extends to a(Σ∆̂Σ′Λ̂′)-
modelD of ε̂. Hence, the(Σ∆∆̂Σ′Λ′Λ̂′)-algebraE, which extends bothC andD, is a
model ofQ′∪Q̂′∪{

∧
S∈ΛR

Ŝ′ ⊆ S′,
∨

S∈ΛR
Ŝ′ 6= S′, π, ε, ε̂}. By (VC3), this implies

E |= P ∪ P̂ ∪ {
∧

S∈∆R
Ŝ ⊆ S,

∨
S∈∆R

Ŝ 6= S}, i. e.,E is an extension of a non-mini-
malA-model ofP , contradictory toE|Σ∆Σ′ = C|Σ∆Σ′ = B|Σ∆Σ′ = lm(P ,A). ⊓⊔

Corollary 3. If (VC1) – (VC3) hold then(VC) holds.
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3.3 Experiments

We have used our methodology to successfully verify a numberof simple heap-
manipulating algorithms, including the sorted list insertfunction from Figure 4. Other
examples include functions for inserting and deleting elements into binary trees, and
functions for moving elements between ring buffers organised in an array. All functions
were manually annotated with shape invariants and effects.Due to lack of space, we do
not report on these experiments in detail.

We have run our experiments on the theorem provers SPASS and Yices. Both provers
succeeded to prove all verification conditions. The typicalrun-time per VC was below
10 seconds for SPASS, below 1 second for Yices. More experiments are necessary to
determine whether our methodology scales to more complex code.

We remark on the somewhat surprising fact that Yices succeeded on all VCs, despite
its incomplete heuristics for quantifier instantiation (which we did not assist using the
trigger mechanism). We suspect that a key reason for this is our choice of defining
shape types by logic programs, which to a first-order theoremprover are just universally
quantified clauses; avoiding existential quantifiers seemsto suit Yices well. However, we
did observe cases where Yices’ instantiation heuristic wassensitive to the formulation
of particular clauses (especially the no-sharing clauses for binary trees).

4 Related Work

Efficient theorem provers make first-order logic attractiveframework for studying
reachability in mutable linked data structures. However, transitive closure, essential for
properties of pointer structures presents a challenge because first-order theorem provers
cannot handle transitive closure.

Various approaches for program analysis that use first-order logic have been inves-
tigated. We next discuss the most prominent.

The logic of interpreted sets and bounded quantification is used for specifying prop-
erties of heap manipulating programs [18]. The logic uses first-order logic and is in-
terpreted over a finite partially-ordered set of sorts. It provides a ternary reachability
predicate and allows bounded universal quantification overtwo different kinds of (po-
tentially unbounded) sets. Following this approach first-order SMT solvers, augmented
with theories, are used for precise verification of heap-manipulating programs. An al-
ternative framework uses ground logic enriched with ternary predicate [22].

The use of a decidable fragment of first-order logic augmented with arithmetic on
scalar field to specify properties of data structures is studied in [20]. In contrast to ours,
this approach does not use theories for recursive predicates like reachability, and relies
on user provided ghost variables to express properties of data structures.

In [19] a first-order formula, in which transitive closure occurs is simulated by
a first-order formula, where transitive closure is encoded by adding a new relation
symbol for each binary predicate. This together with inductively defined first-order
axioms assures that transitive closure is interpreted correctly. A set of axioms defines the
properties of transitive closure inductively. The axioms are not complete over infinite
models. If the axioms are such that every finite, acyclic model satisfying them must
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interpret the encoding of transitive closure as the reflexive, transitive closure of its
interpretation of the transitive binary relation, then theaxiom schema is complete [3]. Its
incompleteness notwithstanding, the induction schema in [19] allows for automatically
proving properties of simple programs using SPASS [29].

Alternative approach for symbolic shape analysis [30] usesthe framework of (exten-
sions of) decidable fragments of first-order logic e. g., guarded fixpoint logic [10]. The
logic expresses reachability along paths and from a specificpoint, but not reachability
between a pair of program variables [12].

Syntactically defined logics for shape analysis, such as local shape logicLSL [26]
and role logic [15], are closely related to first-order logic. Our approach is applicable to
their translation in first-order logic. The logicLSL [26] is strictly less expressive than
the two variable fragment of first order logic with counting.Role logic [15] is variable
free logic, which is equally expressive as first-order logicwith transitive closure and
consequently undecidable. A decidable fragment of role logic is as expressive as the
two variable fragment of first-order logic with counting. Role logic is closely related to
description logic which we have investigated for symbolic shape analysis [9].

Approaches based on three valued logic, which use over-approximation, have been
studied in [13, 32]. The semantics of statements and the query of interest are expressed
in three valued logic. Only restricted fragments of the logic are decidable [12].

Prominent verification approaches for analysis of data structures use parameterised
abstract domains; these analyses include parametric shapeanalysis [2] as well as predi-
cate abstraction [1, 11] and generalisations of predicate abstraction [16, 17]. Similarly to
our approach, reasoning about reachability in program analysis and verification follow-
ing parametric shape analysis or generalisations of predicate abstraction, are dependent
on the invariants that the program maintains for the specificdata structure that it ma-
nipulates. An algorithm for inferring loop invariants of programs that manipulate heap-
allocated data structures, parameterised by the properties to be verified is implemented
in Bohne [31]. Bohne infers universally quantified invariants using symbolic shape anal-
ysis based on Boolean heaps [24]. Abstraction predicates can be Boolean-valued state
predicates (which are either true or false in a given state) or predicates denoting sets of
heap objects in a given state (which are true of a given objectin a given state).

An algebraic approach towards analysis of pointer programsin the framework of
first-order logic is presented in [21]. The underlying pointer-structures and properties
such as reachability and sharing are modelled by binary relations and the properties are
calculated by a set of rewrite rules.

Separation logic [23] is distinguished by the use of a spatial form of conjunction
(P ∗Q), which allows the spatial orientation of a data structure tobe captured without
having to use auxiliary predicates. Least and greatest fixpoint operators can be added
to separation logic, so that pre- and post-condition semantics for a while-language
can be wholly expressed within the logic [27]. Formalisation of recursively defined
properties on inductively (and co-inductively) defined data structures is then achievable
in the language. The addition of the recursion operators in separation logic leads to
alterations to the standard definition of syntactic substitution and the classic substitution;
the reasons are related both to the semantics of stack storage and heap storage as well
as to the inclusion of the recursion operators [27]. Inductive shape analysis based on
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separation logic using programmer supplied invariant checkers and numerical domain
constraints is proposed in [4]. This approach is applicableto more complex data
structures defined by counting, namely red-black trees.

In [25] pointer-based data structure of singly-linked lists and a theory of linked
lists is defined as a class of structures of many-sorted first-order logic. The theory is
expressive and allows for reasoning about cells, indexed collections of cells, and the
reachability of a certain cell from another. The theory is developed for linked lists only.

Alternative languages for modelling and reasoning includemodalµ-calculus [14,
28], expressive description logics [5], the propositionaldynamic logic [8] and temporal
logics [7], and rewriting approaches based on first-order logic [21].

5 Conclusion

In this paper we study imperative programs with destructiveupdate of pointer fields.
We model shape types, such as linked lists, cyclic lists, andbinary trees as least models
of logic programs. We approximate the inductive reasoning about least models by first-
order reasoning. We demonstrate that the method is effective for simple programs.
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[27] É.-J. Sims. Extending separation logic with fixpoints and postponed substitution.Theor.
Comput. Sci., 351(2):258–275, 2006.

[28] R. S. Streett and E. A. Emerson. An automata theoretic decision procedure for the
propositional mu-calculus.Inf. Comput., 81(3):249–264, 1989.

[29] C. Weidenbach, U. Brahm, T. Hillenbrand, E. Keen, C. Theobald, and D. Topic. SPASS
version 2.0. InCADE’02, LNCS 2392, pages 275–279. Springer, 2002.

[30] T. Wies. Symbolic shape analysis. Master’s thesis, Saarland University, Saarbrücken, 2004.
[31] T. Wies, V. Kuncak, K. Zee, A. Podelski, and M. C. Rinard.On verifying complex properties

using symbolic shape analysis. Technical Report MPI-I-2006-2-1, Max-Planck Institute for
Computer Science, 2006. Available at http://arxiv.org/abs/cs.PL/0609104.

[32] G. Yorsh, T. W. Reps, and S. Sagiv. Symbolically computing most-precise abstract
operations for shape analysis. InTACAS’04, LNCS 2988, pages 530–545. Springer, 2004.

89



Analysis of Authorizations in SAP R/3⋆

Manuel Lamotte-Schubert and Christoph Weidenbach

Max Planck Institute for Informatics, Campus E1 4,
D-66123 Saarbrücken

{lamotte,weidenbach}@mpi-inf.mpg.de

Abstract. Today many companies use an ERP (Enterprise Resource
Planning) system such as SAP R/3 to run their daily business rang-
ing from financial issues down to the actual control of a production line.
Already due to their sheer size, these systems are very complex. In partic-
ular, developing and maintaining the authorization setup is a challenge.

The goal of our effort is to automatically analyze the authorization setup
of an SAP R/3 system against business policies. To this end we formalize
the processes, authorization setup as well as the business policies in first-
order logic. Then, properties can be (dis)proven fully automatically with
our theorem prover Spass. We exemplify our approach on the purchase
process, a typical constituent of any SAP R/3 installation.

1 Introduction

Enterprise Resource Planning (ERP) systems are built to integrate all facets of
the business across a company including areas like finance, planning, manufac-
turing, sales, or marketing. The broader the functionality of such a system, the
larger the number of users, the greater the dynamics of a company, the more
complex is the administration of the authorizations. In particular, this applies
to the SAP R/3 system offered by SAP [1]. In this paper we investigate the
authorization setup of SAP R/3. Although SAP R/3 is not the newest release,
the most recent release SAP ERP 6.0 actually shares the same authorization
subsystem.

Our approach is depicted in Fig. 1. When a company decides to use an ERP
system like SAP R/3, it first formulates its business as processes. For example,
a typical purchase process starts with the creation of a purchase requisition out
of a purchase request, followed by the release of such a requisition, and finally
the transformation of the released requisition into the purchase that is eventu-
ally sent to a supplier. The processes directly induce an authorization concept.
Very often each step of a process corresponds to a particular role of a company
employee. For our example, the transformation of the released requisition into a
purchase is a typical buyer activity. The development of processes and the au-
thorization concept is guided by business policies. For our example, a business

⋆ SAP, SAP R/3 and SAP ERP 6.0 are registered trademarks of SAP AG in Germany
and in several other countries.
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Fig. 1. Analysis of authorizations in SAP R/3

policy might require that the activity of creating a requisition and creating a
purchase must always be separated, performed by different persons, and there-
fore must not be contained in one authorization role. This is a typical rule out
of the Segregation/Separation of Duties (SoD) approach. Once the processes
and authorization concept are defined, the configuration is implemented into an
SAP R/3 instance leading to a corresponding process and authorization setup.
Due to the sheer size of an SAP project, the number of processes, different em-
ployee roles and the highly dynamic development of such a system over time,
it is practically impossible to guarantee the compliance of the business policies
with the process and authorization setup. Furthermore, it is non-trivial to set
up new authorization roles for employees following organizational changes in the
business without destroying the overall compliance between the authorization
setup and the business policies.

We suggest to solve this problem by first-order logic theorem proving. We
model the process and authorization setup in first-order logic and automatically
analyze it with respect to a first-order formulation of the business policies. Spass

always terminates for provable (it ends with a proof) and non-provable cases (it
ends with a saturated set of clauses). The termination of Spass enables the use of
an abduction principle deriving missing facts. Then, defining new authorization
roles can be solved by saturating abductive queries (Sect. 5). Formulating the
processes and business policies has to be done by hand (Sect. 4). However, the au-
thorization setup can be formulated automatically and we suggest a tool pipeline
(Sect. 4.3). In practice, the changes to the authorization setup, e.g., caused by
organizational changes in a company, cause the most headache to SAP autho-
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rization administrators. Business policies and processes are less likely to change
and if they change this is not done on a daily basis but by additional smaller
SAP change/introduction projects. Therefore, our approach offers a reasonable
amount of automatization. As an example SAP R/3 instance for studying the
SAP internal process and authorization setup we used the SAP R/3 system run
by the Max Planck society.

There have been other efforts to address the verification of the authorization
setup in SAP R/3. SAP itself offers a tool collection for Governance, Risk and
Compliance. The main difference to our approach is that these tools are only
able to check compliance with respect to the transactions performed during
concrete runs of the system and are not able to prove the overall compliance
of the authorization setup with the business policies. Furthermore, there is no
tool support for the business policy compliant generation of new authorization
roles available up to now. Other efforts include the general verification of role-
based access control principle together with constraints like SoD [2] but they
are neither connected to the SAP R/3 system nor they do incorporate business
processes. To the best of our knowledge, there has been no attempt so far to
analyze the authorizations in SAP R/3 together with the business processes and
business policies.

The paper is organized as follows. After explaining the basic first-order no-
tation (Sect. 2) the SAP R/3 internal mechanisms are studied with respect to
processes and authorizations in Sect. 3, followed by the formalization in first-
order logic (Sect. 4). Due to space limitations we only explain important aspects
of the developed first-order theory, hiding details that are not needed to under-
stand the main ideas. Nevertheless, the overall formalization can be obtained
from the Spass homepage (spass-prover.org) in the “prototype and exper-
iments” section. Our results on experiments are contained in Sect. 5 and the
paper ends with a small conclusion and ideas for future work (Sect. 6).

2 Background

The formalization of the process, authorization setup and business policies is
accomplished using first-order logic without equality. The following syntax defi-
nition as well as the semantics of the used language is taken from [3].

A first-order language is constructed over a signature Σ = (F ,R), where F
and R are non-empty, disjoint, in general infinite sets of function and predicate
symbols, respectively. Every function or predicate symbol has some fixed arity.
In addition to these sets that are specific for a first-order language, we assume
a further, infinite set X of variable symbols disjoint from the symbols in Σ.
Then the set of all terms T (F ,X ) is defined as usual. A term not containing
a variable is a ground term. If t1, . . . , tn are terms and R ∈ R is a predicate
symbol with arity n, then R(t1, . . . , tn) is an atom. An atom or the negation of
an atom is called literal. Disjunctions of literals are clauses where all variables
are implicitly universally quantified. Formulae are recursively constructed over
atoms and the operators ⊃ (implication), ≡ (equivalence), ∧ (conjunction), ∨
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(disjunction), ¬ (negation) and the quantifiers ∀ (universal), ∃ (existential) as
usual. For convenience, we often write ∀x1, . . . , xn . φ instead of ∀x1 . . . . ∀xn . φ
and analogously for the existential quantifier and assume the descending binding
precedence ¬, ∧, ∨, ⊃, ∀, ∃.

The formal model uses predicate symbols whose first letter is always upper-
case and the predicate itself is italic, e.g. the predicate Access is used to represent
the authorization access relation for a user, the atom Access(MUELLER, ME51N) ex-
presses that user MUELLER holds all rights to perform the transaction ME51N, the
creation of a purchase requisition. Constants originating from SAP R/3 are al-
ways written in typewriter font, e.g. MUELLER. In general, function names start
with a lowercase letter different from “x”, e.g. the function authObj is used to
represent an authorization (object). Variables are always prefixed with “x” and
written lowercase, for example, xu, xwrk.

Although we do not explicitly define sorts, our formulae are actually many-
sorted. For the explanation of our predicate and function usage we sometimes
refer to these “implicit” sorts by putting them in square brackets. For example,
the “declaration”

Access(<user>, authObj(<auth object name>,<auth field>,<value>))
explains that the first argument of an Access atom is a user term and the second
argument a term representing an authorization (object).

3 SAP R/3 Setup and Business Policies in Detail

We use the SAP terminology throughout our work in order to describe the
relevant aspects of the SAP R/3 system. The definition of terms adopted from
SAP are written in italics.

Authorization Setup. The SAP R/3 authorization architecture is a complex
structure and consists of several components interacting with each other. The
key data structure is an authorization, an instance of an authorization object,
that is eventually assigned via a profile to a user and typically grants the access
to one particular action inside SAP R/3. In order to align authorizations with
process steps, they are grouped in roles.

In detail, an authorization object is a named entity that holds one or more
named authorization fields, similar to a class structure of a programming lan-
guage. Together with appropriate field values, the authorization object consti-
tutes the authorization. An authorization is therefore an instance of an autho-
rization object, similar to the instance of a programming language class. The
relation is shown in Fig. 2.

There are single and composite roles for the grouping of authorizations avail-
able. A single role groups authorizations whereas composite roles serve as con-
tainers for single roles. Single roles have a name and a list of authorizations. For
example, Fig. 3 shows the structure of single role with name ZBANF WRK INF ED

by means of the concrete authorization S TCODE with a field TCD and the value
ME51N. The overall role ZBANF WRK INF ED contains all authorizations required
to create requisitions.
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Single and composite roles generate profiles in SAP R/3 that are then even-
tually assigned to the user.

In our first-order model authorization objects become terms starting with
function authObj and ground instances of those are authorizations. For the
formulation of roles and profiles we use the respective predicates SingleRole,
CompositeRole, and UserProfile. Mappings between objects are represented by
functions and concrete values become constants.

Process Setup. A process is a consecutive flow of transactions in SAP R/3.
Typically, the different actions are enabled by the creation or change of data
inside the system due to preceding transactions. There is a unique identification
code for any transaction, for example, ME51N stands for the transaction to create
a requisition. If a user executes a particular transaction in the system then the
effective authorizations from the users’ authorization profile are checked. These
checks are called authorization checks.

Each authorization check consists of two parts: (i) the presence of the required
authorization object in the authorization profile associated with the user (for this
purpose only the authorization object name is compared) is checked, and if this
check succeeds, (ii) the required value(s) for the transaction are compared with
the value(s) present in the value field(s) of the authorization assigned to the user.
In particular, the second check succeeds if all value fields with the corresponding
values of the object match to the required fields and values (AND-combination).
A match can mean simple equality, e.g. the right to change data, or comparisons

94



with respect to some ordering, e.g. the amount of money is below some threshold.
If one check fails, then the overall check of the authorization fails.

The first authorization check in every transaction is the check for the trans-
action code which is triggered by the SAP R/3 system before the actual trans-
action starts. The name of the corresponding authorization object for this check
is S TCODE. This object has only one authorization field TCD which serves as a
container for the required transaction code. All further authorization checks are
implemented in the transaction.

Example: Purchase Process and its Authorization Checks. The purchase process
introduced in Sect. 1 is a typical constituent of the SAP R/3 system and is used
in this paper as a running example. The creation of the requisition as well as the
creation of the order are mapped by exactly one transaction in SAP R/3 whereas
the release transaction implicitly additionally calls the transaction to view the
requisition. Furthermore, releases of requisitions require release strategy settings
done once at the initial configuration of an SAP R/3 system.

An SAP R/3 purchase requisition document is created to request the pur-
chase of goods or services by calling the transaction ME51N in the SAP R/3 sys-
tem. This transaction code is subject to the first authorization check and must
be present as an authorization in the users’ authorization profile.

The creation of a requisition needs to fill different fields, for example, the
plant field for which the item is destined for. Some of these fields are protected
by authorization objects, for example, the plant field is protected by the au-
thorization object M BANF WRK with the two authorization fields ACTVT (activity)
and WERKS (plant). The field activity requires the concrete value 01 (for “create”)
and the value for the plant field depends on the data entered in the requisition.
If the data for the plant has been entered, the users’ authorization to perform
the action “create” for the entered plant is checked. The other protected fields
document type and purchase group are protected in a similar way.

Release procedures for requisitions are used in SAP R/3 to approve requi-
sitions which exceed a certain budget limit before they can be converted to an
order. The SAP R/3 system uses so-called release strategies to achieve such
approvals. A release strategy is an object that contains conditions for its ap-
plication as well as a small process definition. This process defines the required
actions to eventually release the requisition.

The order is the request to the supplier or another plant of the company to
deliver the requisitioned material or service under terms and conditions agreed
before. A released requisition is the prerequisite to create an order that is con-
nected to the requisition. The authorization checks in the create order transac-
tion are performed analogously to the checks occurring during the create requi-
sition transaction.

Business Policies. Business policies are constraints on the business. A lot of busi-
ness constraints follow best-practice approaches, for example, Segregation/Sep-
aration of Duties (SoD). This approach is considered in our work and requires
that there is no single individual having the control over two or more phases of
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a process, so that a deliberate fraud is more difficult to occur. In the purchase
process, this means that the requisitioner must be distinct from the releasing
person and the buyer.

On the SAP R/3 transactional level, it means that a single user is not al-
lowed to have the authorizations to perform the appropriate transactions to cre-
ate requisitions, release requisitions and orders for some plant, material group,
purchasing group and organization1.

4 SAP R/3 Formal Authorization Analysis

The SAP R/3 authorization system is formalized using first-order logic without
equality. The formalization represents the process (we use the purchase process
as example) and authorization setup as well as the formalized business policies.
The prerequisite for the construction of the formalization is a snapshot of an
SAP R/3 system, i.e. the formalization represents the state of the system at a
given time.

For the goal of proving compliance (abduce changes) of the authorization
setup with the business policies, we perform a number of abstractions, easing the
size and depth of the formalization. We assume that we always have only one item
per purchase requisition/order. We do not deeply model numbers, for example,
amounts of money. Numbers are formalized as constants, intervals of numbers
are also described as constants, for example GREATER 1000 LESS 10000 EUR,
and the corresponding ordering relations between these constants are established.
Within the authorization check procedure and the release strategy appliance
checks, the SAP R/3 system uses a comprehensive pattern matching mechanism.
For simplification, we formalized only exact matching and the asterisk symbol
matching every required value. Composed values of an asterisk and a string are
currently not supported by our formalization.

We formalized most of the SAP R/3 system parts in form of monadic predi-
cates because Spass offers particular reduction support for these predicates via
soft typing [4]. The large set of authorization components like roles and profiles
is modeled by the monadic predicates, while the assignment of these components
to the users is represented by an implication. The set of process states in the
SAP R/3 system is modelled by a set of predicates; and the abstraction of its
dynamic behavior, which is relevant for authorization, is captured implications.
The premise of such an implication represents the conditions for the process
step while the conclusion stands for the effects after the execution of the cor-
responding transactions in this step. The form of business policies is individual
and therefore the formalization of the policies depends on the type of the policy.

4.1 Authorization and Process Setup

The authorization setup layer consists of several predicates representing the way
where authorizations are arranged and eventually assigned to a user. A single

1 These are the properties protected by authorization objects.
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role is modeled by the unary predicate SingleRole. The function authObj with
arity 3 therein maps the authorization value to the authorization field of the
authorization object. The authorization object together with the value represents
the authorization that is then assigned to the single role by the binary function
singleRoleEntry. Each authorization that is contained in some SAP R/3 single
role results in a SingleRole atom in the formalization.

SingleRole(singleRoleEntry(< single role name >,
authObj(< auth object name >,< auth field >,< value >)))

A composite role is modeled by the unary predicate CompositeRole. The function
compositeRoleEntry therein associates the single role given by its name with the
composite role.

CompositeRole(compositeRoleEntry(< composite role name >,
< single role name >))

The effective authorizations associated with a user are stored in the authorization
profile. This profile is modeled by the unary predicate UserProfile. The function
userProfileEntry maps the authorizations given by the function authObj to the
user; any authorization check looks for the required authorization only in the
users authorization profile.

UserProfile(userProfileEntry(< user >,
authObj(< auth object name >,< auth field >,< value >)))

The following formula exactly models the mechanism of the SAP R/3 user au-
thorization profile creation. The assignment of a role to a user implies the as-
signment of the appropriate generated authorization profile. Whenever a single
role or composite role is going to be assigned to a user via the predicate Holds,
the authorization part is extracted and the corresponding authorization profile
entry (representing the effective authorization) for the user is created:

∀ xu, xpn, xsrn, xcrn, xaon, xaof, xav .
(SingleRole(singleRoleEntry(xsrn, authObj(xaon, xaof, xav))) ∧
Holds(xu, xsrn)) ∨

(CompositeRole(compositeRoleEntry(xcrn, xsrn)) ∧
SingleRole(singleRoleEntry(xsrn, authObj(xaon, xaof, xav))) ∧
Holds(xu, xcrn))

⊃
UserProfile(userProfileEntry(xu, authObj(xaon, xaof, xav)))

The authorization check result – access or decline – is represented in our
first-order formalization by the binary predicate Access. If the atom Access is
valid, the access to the function or data protected by the authorization object
is granted. Otherwise, it is not. In other words, a valid instance of the follow-
ing Access atom expresses that the user <user> has successfully passed the
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authorization check of the appropriate authorization which is denoted by the
authorization object with its field and value.

Access(< user >, authObj(< auth object name >,< auth field >,< value >))

In the authorization check procedure, the required authorization object in-
formation together with the appropriate authorization value are compared to the
authorization present in the users authorization profile. All properties, namely
the authorization object name, the field and the value must be equal in the check
in order to succeed. This is modeled by the following implication. If the required
authorization is present in the user authorization profile, then the access to this
authorization is granted.

∀ xu, xaon, xaof, xav .
UserProfile(userProfileEntry(xu, authObj(xaon, xaof, xav)))

⊃
Access(xu, authObj(xaon, xaof, xav))

Example: Purchase Process. The formalization of the transaction layer with
its authorization checks is done manually in our example. We have introduced
an additional layer by overloading the predicate symbol Access. The following
transition shows the abstraction for the transaction “create a requisition”. It
groups all authorization checks occurring during the execution of the transaction.

∀ xu, xwrk, xbsa, xekg .
Access(xu, authObj(S TCODE, TCD, ME51N)) ∧
Access(xu, authObj(M BANF WRK, ACTVT, 01)) ∧
Access(xu, authObj(M BANF WRK, WERKS, xwrk)) ∧
Access(xu, authObj(M BANF BSA, ACTVT, 01)) ∧
Access(xu, authObj(M BANF BSA, BSART, xbsa)) ∧
Access(xu, authObj(M BANF EKG, ACTVT, 01)) ∧
Access(xu, authObj(M BANF EKG, EKGRP, xekg))

⊃
Access(xu, ME51N)

The first check represents the check of the transaction code (ME51N) carried
out by the SAP R/3 system at the start of every transaction. The authorization
objects M BANF WRK, M BANF BSA, and M BANF EKG check the plant, document type
and purchase group, respectively. They have constants in the first field (ACTVT)
checking the type of action (01 stands for “create”, 02 stands for “change”, 03
stands for “view”) and variables in their second field standing for the values of
the corresponding fields: plant, document type and purchase group. If the atom
Access(xu, ME51N) holds, then the user is allowed to execute the transaction in at
least one instance, for example for one plant (variable xwrk), one document type
(variable xbsa) and one purchase group (variable xekg). Later in the context of
the requisition creation, when the exact values are known from the requisition,
the values of the variables have to be evaluated and checked again.
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The previously mentioned additional transactional layer for authorization
checks makes it more comfortable to model the formalization of the purchase pro-
cess steps. The purchase process starts with the existence of a purchase request
whose data is then entered into the SAP R/3 system by the purchase requisi-
tioner. After the data has been entered, the request has become an SAP R/3 req-
uisition object that is represented by the atom RequisitionCreated. An instance
of this atom contains all needed details.

RequisitionCreated(<user>, <document type>, <position>,
<material>, <plant>, <purchasing group>,
<purchasing organization>, <material group>, <price>, <id>)

The following implication represents the creation of the corresponding SAP
R/3 requisition object. The predicate Requisition is an arbitrary purchase re-
quest for an item and the predicate RequisitionCreated is represents this item in
the SAP R/3 system, created by the user denoted by the variable xu. This user
xu needs access to the create transaction (ME51N). As mentioned, the values of
the variables xwrk, xbsa, xekg are again subject to authorization checks because
at this point the values of the variables are known (namely the values from the
requisition that is going to be created). This results in the following formula.

∀ xu, xbsa, xpos, xmat, xwrk, xekg, xekorg, xmatkl, xgswrt, xid .
Requisition(xbsa, xpos, xmat, xwrk, xekg, xekorg, xmatkl, xgswrt, xid) ∧
Access(xu, ME51N) ∧
Access(xu, authObj(M BANF WRK, WERKS, xwrk)) ∧
Access(xu, authObj(M BANF BSA, BSART, xbsa)) ∧
Access(xu, authObj(M BANF EKG, EKGRP, xekg))

⊃
RequisitionCreated(xu, xbsa, xpos, xmat, xwrk, xekg, xekorg, xmatkl,

xgswrt, xid)

A more complex and interesting step in the purchase process is the release of
a requisition where a release strategy has applied. The function property relates
a value to a property name and represents a condition property for the applica-
tion of some release strategy. The class construction is eventually used to group
several properties belonging to a release strategy.

ReleaseStrategy(< release strategy name >,
class(< characteristics class name >,

property(< property name >,< value >)))

Release strategies consist of one or more single release steps which are de-
clared by the atom ReleaseRequirement. This atom groups the strategy name
and the required code for each step.

ReleaseRequirement(< release strategy name >,< release code >)

Figure 4 shows the formalization of one release step for an existing requisition
object. The existence of the requisition is checked by the first atom Requisition-
Created in the premise. Subsequent atoms address the application checks of the
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release strategy xfrgstrat for which the characteristics denoted by the variables
xekg (purchasing group), xwrk (plant), and xgswrt (total amount of money of
the requisition) are used. The predicate ReleaseRequirement retrieves the release
code for the release step in the release strategy and is then subject to an autho-
rization check. In order to proceed with the release step, the user, denoted by the
variable xu2, needs authorizations for the release (with the code xfrgco) as well
as for the transaction (ME54N) in order to perform the release step. Please note
that the user performing the release step (xu2 ) is different from the user who
has created the requisition (xu1 ) which is enforced by the business policies (see
Sect. 4.2). The conclusion expresses the fact that the user xu2 has performed
the release step with the code xfrgco in the overall release of the requisition.

∀ xu1, xu2, xbsa, xpos, xmat, xwrk, xekg, xekorg, xmatkl, xgswrt,
xfrgstrat, xfrgco, xcl, xid .

RequisitionCreated(xu1, xbsa, xpos, xmat, xwrk, xekg, xekorg, xmatkl,
xgswrt, xid) ∧

ReleaseStrategy(xfrgstrat, class(xcl, property(FRG CEBAN EKGRP, xekg))) ∧
ReleaseStrategy(xfrgstrat, class(xcl, property(FRG CEBAN WERKS, xwrk))) ∧
ReleaseStrategy(xfrgstrat, class(xcl, property(FRG CEBAN GSWRT, xgswrt))) ∧

ReleaseRequirement(xfrgstrat, xfrgco) ∧

Access(xu2, authObj(M EINK FRG, FRGCO, xfrgco)) ∧

Access(xu2, ME54N) ∧
Access(xu2, authObj(M BANF WRK, WERKS, xwrk)) ∧
Access(xu2, authObj(M BANF BSA, BSART, xbsa)) ∧
Access(xu2, authObj(M BANF EKG, EKGRP, xekg))

⊃
RequisitionReleasedStep(xu2, xfrggr, xfrgstrat, xfrgco, xbsa, xpos, xmat,

xwrk, xekg, xekorg, xmatkl, xgswrt, xid)

Fig. 4. Single release step in the SAP R/3 purchase process

Concerning the overall release of a requisition, there are further formulae
which define the required single release steps for a complete release of the req-
uisition.

The released requisition is eventually the precondition to create an order ob-
ject in SAP R/3 that is connected to the requisition. The formalization of this
step is analogous to the creation of a requisition.
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4.2 Business Policies

The SoD business policy for the purchase process expresses that there should be
no user having the control over two or more phases of a process. Very often in
smaller companies, this is relaxed into a less strict requirement stating that there
should be no user who is allowed to perform the complete purchase process in
one instance. The relaxed version of SoD is formalized by the following formula.
Starting from the purchase request, there are no values for which the user xu
can perform the three steps of the purchase process.

¬∃ xu, xbsa, xwrk, xekg, xekorg, xmatkl, xgswrt, xpos, xmat, xid .
RequisitionCreated(xu, xbsa, xpos, xmat, xwrk, xekg, xekorg, xmatkl,

xgswrt, xid) ∧
RequisitionReleased(xu, xbsa, xpos, xmat, xwrk, xekg, xekorg, xmatkl,

xgswrt, xid) ∧
OrderCreated(xu, xbsa, xpos, xmat, xwrk, xekg, xekorg, xmatkl, xgswrt,

xid)

4.3 Automatic Authorization Extraction

The authorization checks occurring in the SAP R/3 system can be extracted by
looking directly into the source code and by exploring the connection between
the transaction and the associated program code. The authorization check at the
beginning of a transaction can be read from an internal data dictionary. This is
done by the transaction SE93 which is used to manage the association between
the transaction code, the program code and the authorization check. All further
checks are implemented into the program code using the AUTHORITY-CHECK
statement. For convenience, we used the SAP R/3 System Trace tool which
monitors, among other things, the authorization checks taking place during the
execution of a transaction.

The extraction of the SAP R/3 system users and its authorizations is achieved
using the User Information System2. It is able to report information about users,
their roles and profiles as well as information about authorizations, authorization
objects or transactions. The result of a query to this information system can be
easily stored in text-format (see Fig. 5) and lists, for example, all authorizations
present in a profile.

5 Results

We used the theorem prover Spass, Version 3.0 [5] for our experiments. The
theory containing the SAP R/3 general authorization structure and its instan-
tiation to the purchase process consists of 156 formulae with a size of 41 KByte
resulting in 177 clauses. The experiments ran on a Dell PowerEdge 1950 server

2 Transaction SUIM
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Profile

|

--- Z:EK1_INFO <PRO>

|

|-- M_BEST_WRK <OBJ> Plant in Purchase Order

| |

| --- M_BEST_WRKAL <AUT> Plant in Purchase Order

| |

| |-- ACTVT <FLD> Activity

| | |

| | ------*

| |

| --- WERKS <FLD> Plant

| |

| ------INFO

...

Fig. 5. Export of authorizations from SAP R/3

running at 3.14 GHz equipped with 16 GB RAM, 64-bit Debian Linux, Kernel
2.6.24.2.1.amd64-smp.

One of the key results is that the overall formalization can be finitely satu-
rated. This is mainly due to the fact that there is no recursion over the business
processes, and consequently, ordering mechanisms are sufficient for saturation.
Our experiments also include the user authorization data. Spass always termi-
nated within the experiments, ending with either a saturated set of clauses or a
proof. A finite saturation means that the given conjecture could not be proven
and therefore doesn’t hold. If no conjecture was given, it states there is no con-
tradiction in the input formulae and consequently the authorization setup and
the business policies are compatible. The fact that Spass always terminates is
also an important prerequisite for the actual development of the theory as it
enables inspection of models and detection of accidental inconsistencies.

Every experiment run took less than 20 seconds. The saturation of the input
theory, including the user data and business policy, took 13 seconds with Spass

run with default settings. It can be tweaked by predefining a particular selection
strategy to less than 1 second.

The ability to run a variety of different queries in addition to the general
inspection of the setup was also one of the original motivations to do this work.
Having Spass terminating on queries further enables the use of an abduction
principle [6, 7]. We give Spass the query to be proven and then the saturated
clauses out of the query represent a set of abductive answers. This is complete
for the propositional case as stated in [6]. Completeness is open for the full first-
order case. For example, it is interesting whether a particular user, e.g., MUELLER
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in our running example, is able to perform the step to create a requisition, maybe
for the given plant INF. Such a conjecture is formalized and fed to Spass as the
conjecture:

∃ xbsa, xekg, xekorg, xmatkl, xgswrt, xpos, xmat, xid .
Requisition(xbsa, xpos, xmat, INF, xekg, xekorg, xmatkl, xgswrt, xid)

⊃
RequisitionCreated(MUELLER, xbsa, xpos, xmat, INF, xekg, xekorg,

xmatkl, xgswrt, xid)

In our example setup the conjecture holds and can be proved in less than 1 sec-
ond.

Removing MUELLER’s access rights to the corresponding transaction ME51N

from the theory and rerunning the above conjecture results in a saturation with-
out proof in 8 seconds. Now the purely negative clauses resulting from the query
can be interpreted as abductive answers to the query. For example, the generated
clause

¬Access(MUELLER, ME51N)

expresses that the right to execute transaction ME51N is missing in order to
successfully create a requisition.

6 Conclusion and Future Work

This paper has presented an effort to the automatic analysis of an SAP R/3
process and authorization set up with respect to given business policies using
the purchase process as a case study.

To accomplish automatic verification, the SAP R/3 process setup, the autho-
rization setup and the business policies have been formalized in first-order logic.
The formalization decisions were taken from a detailed analysis of the SAP R/3
system instance run by the Max Planck society. We could show that the devel-
oped formalization can be automatically analyzed by Spass. Any proof attempt
with Spass we have done in this context terminated. We can automatically check
compliance of business policies, properties with respect to specific user autho-
rization configurations as well as automatically abduce compliant changes to the
authorization set up.

There are a number of open questions left for future work. Our model of
numbers by first-order constants could be overcome by using Spass(LA) [8], our
currently experimental prover for the hierarchic extension of linear arithmetic by
first-order logic. For the first-order formula class presented in this paper as well as
for such an extended first-order formula class over linear arithmetic decidability
is open.

Eventually, it is an open question how our model scales with respect to a more
integrated formalization of an SAP R/3 instance. In our example, we analyzed
only the purchase process and up to ten users while a typical instance has about
50–200 processes and up to several thousand users. We are optimistic that this
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is not out of range to first-order theorem proving because processes as well as
users can be analyzed almost independently.

The concrete formalization of authorizations differs for individual (non-SAP)
software systems. However, theoretic aspects of our approach like termination,
scalability or completeness in verification tasks remain similarly and can be
transferred to other systems.
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Abstract. We study an extension of the relational transducers intro-
duced by Abiteboul, Vianu, Fordham, and Yesha, which are capable of
specifying transaction protocols and their interplay with security con-
straints. We investigate the decidability of relevant verification problems
such as goal reachability and log validation.

1 Introduction

Web-services providing e-commerce capabilities to support business transactions
between several parties over the Internet are more and more widespread. The
development of such services involves several issues involving security, authenti-
cation, and the design of business models to name a few.

Relational transducers have been proposed [17] to model the transaction be-
havior of e-services for e-commerce and to allow for the analysis of the underlying
transaction protocols. Roughly, a relational transducer is a machine capable of
translating an input sequence of relations into an output sequence of relations;
its state being a relational database. A particular class of relational transducers,
called semi-positive cumulative (spocus) transducers, has been identified and
studied because its specification is declarative and simple to understand, and
some interesting verification problems turn out to be decidable (see again [17]).
The input-output mapping in spocus transducers is implicitly defined by a set of
non-recursive (variant of) Datalog rules. This is based on the observation that
any set of Datalog rules defines a query which is a (partial) function from rela-
tional databases (the input relations of the transducers) to answer relations (the
output relations of the transducer), see, e.g., [16].

Although spocus transducers support declarative specifications and some in-
teresting verification problems are decidable, one of their major shortcomings is
the lack of support for the specification and verification of security requirements.
In particular, the class of security requirements pertaining to authorization play
a crucial role in several business transactions. For example, failure to meet au-
thorization constraints may cause economic losses and may even have legal im-
plications. In this paper, we propose an extension of the spocus transducers
that overcome this problem. In particular, following [12], we extend the rules for
input-output in spocus transducers with constraint Datalog rules to formalize
access policy statements. This allows us to develop our ideas in the framework of



first-order logic and to adapt and reuse specification techniques belonging to the
line of research which uses extensions of Datalog to express policy statements
(see, e.g., [7, 2, 11]). Technically, the situation is more complex than with spocus
transducers as certain patterns in authorization policies (typically, delegation)
require recursion (see, e.g., [3]). The (variant of) Datalog rules used in [17] for
spocus transducers were assumed to be non-recursive.

Plan of the paper. Section 2 introduces some background notions on first-order
logic, relational databases, and Datalog rules. Section 3 extends spocus transduc-
ers with (constraint) Datalog rules for access policy specifications and introduces
two verification problems. In Section 3.1, a simple (yet representative) business
process specified by means of a policy-aware transducer illustrates the need to
have recursive Datalog rules and a first-order theory to be able to correctly spec-
ify delegation and trust relationships, respectively, which are relevant to capture
important business rules. As the verification problems can be reduced to satisfi-
ability problems for a certain class of formulae, Section 4 defines such a class and
proves the decidability of the satisfiability problem under suitable assumptions
(for lack of space, proofs are in the extended version [13] of this paper) and Sec-
tion 5 shows how to reduce verification to satisfiability. In particular, Section 5.1
discusses the hypotheses under which the fix-point computation of the query
induced by a set of constraint Datalog rules terminates. Section 6 concludes.

2 Preliminaries

We assume familiarity with the basic syntactic and semantic notions of first-
order logic (see, e.g., [8]). We work in first-order logic with equality and consider
the equality symbol = as a logical constant. A constraint is a (finite) conjunction
of literals. An expression is a term, an atom, a literal, or a formula. A Σ(x)-
expression is an expression built out of the symbols in a signature Σ where
at most the variables in the sequence x may occur free, and we write E(x) to
emphasize that E is a Σ(x)-expression. (Below, by abuse of notation, we consider
sequences also as finite sets and use the standard set-theoretic operations to
combine them.)

Let Σ be a signature. A Σ-theory T is a set of Σ-sentences. In this paper,
we assume that all theories are consistent (i.e. they admit at least one model).
A Σ-formula ϕ(x) is T -satisfiable iff there exists a model M of T (i.e. M |=
T ) such that M |= ∃x.ϕ(x). The satisfiability modulo theory T (in symbols,
SMT(T )) problem consists of establishing the T -satisfiability of any quantifier-
free Σ-formula. A formula ϕ(x) is T -valid if for every model M of T , we have
M |= ∀x.ϕ(x). Two formulae ϕ and ψ are T -equivalent iff the formula ϕ ↔ ψ
is T -valid. A theory T admits quantifier elimination if for an arbitrary formula
ϕ(x) (possibly containing quantifiers), it is possible to compute a T -equivalent
quantifier-free formula ϕ′(x). A Σ-theory T is locally finite if Σ is finite and, for
every set of constants a, there are finitely many ground terms t1, ..., tka

, called
representatives, such that for every ground (Σ ∪ a)-term u, we have T |= u = ti
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for some i. If the representatives are effectively computable from a and ti is
computable from u, then T is effectively locally finite. For simplicity, we will
often say “locally finite” to mean “effectively locally finite.”

We consider the Bernays-Schönfinkel-Ramsey (BSR) class, also called Ef-
fectively Propositional Logic, whose satisfiability problem is well-known to be
decidable. A formula of the BSR class is of the form ∃x.∀y.ϕ(x, y), where x, y
are (disjoint) tuples of variables and ϕ is a quantifier-free formula built out of a
signature containing only relation and constant symbols (i.e. no function symbol
occurs in ϕ).

A finite instance of (a n-ary relation) r is a formula of the form

∀x.r(x)↔
m∨

j=1

x = cj ,

where x = x1, ..., xn is a sequence of variables, cj = cj1, ..., c
j
n is a sequence of

constants (for j = 1, ...,m), and x = cj abbreviates (x1 = cj1 ∧ · · · ∧ xn = cjn).
Let R be a finite set of predicate symbols, a database over R is a conjunction of
finite instances of r ∈ R; we sometimes call R a database schema.

A Datalog formula is a BSR formula of the form

∀x, y.
n∧

i=1

Ai(x, y)→ A0(x) also written as a rule A0(x) ←
n∧

i=1

Ai(x, y),

where Ai is an atom (for i = 0, 1, ..., n) and x, y are disjoint tuples of variables.
Furthermore, A0 is said the head,

∧n
i=1 Ai(x, y) the body of the rule, and when

n = 0, the Datalog rule is also called a fact. A set of Datalog rules is semi-positive
if whenever a negative literal appears in the body of a rule, then the relation
symbol of this literal is not the relation symbol of any literal which is the head
of a non-trivial rule in the set. Another generalization of Datalog rules is that of
constraint Datalog rule where, for some Σ-theory T , one quantifier-free Σ(x, y)-
formula may appear in its body. A set of Datalog (semi-positive or constraint
Datalog) rules is recursive if some predicate symbol occur both in the heads and
the bodies of the rules; otherwise, we say it to be non-recursive.

3 Security-Aware Transducers

For the rest of the paper, we fix a Σ-theory T and a relational signature R :=
In ∪ Out ∪ DB ∪ Policy such that X ∩ Y = ∅ and X ∩ Σ = ∅ for X,Y ∈
{In,Out,DB ,Policy}.

Definition 1. A (cumulative and policy-aware) transducer (over (Σ,R)) is a
tuple (past , τ, ω, π) where

– past = past i1 , ..., past in
for In = {ri1 , ..., rin

} is a sequence of fresh predicate
symbols, i.e. past ∩ (Σ ∪R) = ∅,
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– given a finite database over the database schema I ⊆ In of the form

∧

ri∈I

(∀x.ri(x)↔
ni∨

j=1

x = cji ),

where cji are constant symbols, τ(I) is a finite set of (cumulative) transitions
of the form

∀x.past ′ri
(x)↔

ni∨

j=1

x = cji ∨ pastri
(x),

for each ri ∈ I and

∀x.past ′ri
(x)↔ pastri

(x),

for each ri ∈ In \ I. Let τ be the set of cumulative transitions for every finite
instance over every possible sub-set of In;

– ω is a a finite set of semi-positive non-recursive rules of the form A0 ←∧n
i=1 Ai such that (i) A0 is an Out-atom, (ii) Ai is a (In∪past ∪DB)-literal

(for i = 1, ..., n), and (iii) every variable appearing in a rule must occur in
at least one positive literal;

– π is a finite set of (possibly recursive) constraint Datalog rules of the form
A0 ←

∧n
i=1 Ai ∧ ψ such that (i) A0 is a Policy-atom, (ii) Ai is a (DB ∪

Policy ∪ past)-atom, for i = 1, ..., n, (iii) ψ is a quantifier-free Σ-formula,
and (iv) the set of variables occurring in A0 are a sub-set of the variables
occurring in

∧n
i=1 Ai.

To understand why what we have just defined is a transducer, recall that (con-
straint) Datalog rules define queries on databases; which, in turn, can be seen as
mappings associating a so-called answer relation to each database (see, e.g., [6]
for details). In this perspective, we can consider the union of (non-recursive)
semi-positive rules in ω with the constraint (Datalog) rules in π as defining a
mapping between databases over In∪past ∪DB to databases over Out∪past . By
taking Policy = ∅ and T to be the empty theory, it is easy to see that our notion
of transducer reduces to that of relational Spocus transducer in [17]. Notice that
the set π may contain recursive (constraint) Datalog rules. Recursion is cru-
cial to express important mechanisms in policy management such as delegation.
So, although, recursion complicates the reduction of verification problems for
cumulative and policy-aware transducers to logical satisfiability problems (see
Section 5 below), it is of paramount importance for naturally expressing several
patterns of policy management.

Below, given a cumulative and policy-aware transducer (past , τ, ω, π) over
(Σ,R) and a (Σ ∪R ∪ past)-formula ϕ, the formula obtained by replacing each

symbol s ∈ In ∪ Out ∪ past occurring in ϕ with a fresh symbol sj and each

symbol p′ ∈ past ′ with fresh symbols pj+1 will be denoted by ren(ϕ, j) for j ≥ 0.
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Definition 2. Let (past , τ, ω, π) be a cumulative and policy-aware transducer
over (Σ,R) and db be a finite instance over DB. The sequence I1,O1; ...; In, On

is a (finite) run (with length n) of (past , τ, ω, π) iff the formula

db ∧
∧

p∈past ∀x.p
0(x)↔ false ∧∧n

j=1 ren(Ij , j) ∧ ren(τ(Ij), j) ∧ ren(ω, j) ∧ ren(π, j) ∧ ren(Oj , j)
(1)

is T -satisfiable, where I1, ..., In is a finite sequence where each Ij is an instance
over In, for j = 1, ..., n, called the input sequence, and O1, ...,On is a finite
sequence where each Oj is an instance over Out, for j = 1, ..., n, called the
output sequence.

Given a cumulative and policy-aware transducer (past , τ, ω, π) over (Σ,R) and
a (Σ ∪ R ∪ past)-formula ϕ, R1; ...;Rn be a run of the transducer, and Log ⊆
(In ∪ Out); then, prj (Log ,R1; ...;Rn) is a finite sequence of formulae obtained
from R1; ...;Rn by forgetting all those finite instances over (In ∪Out) \ Log. A
goal is a BSR formula of the form

∃x.
n∧

j=1

Aj(x)

where Aj is an Out-literal, for j = 1, ..., n.

Definition 3. Let (past , τ, ω, π) be a cumulative and policy-aware transducer
over (Σ,R) and Log ⊆ In ∪Out. We define the following two verification prob-
lems for (past , τ, ω, π):

Goal reachability: does a given goal γ hold in the last output of some run of
(past , τ, ω, π)?

Log validity: given a finite sequence L1, ...,Ln where each Lj is a finite in-
stance over Log for j = 1, ..., n, does there exist a finite run S1; ...;Sn of
(past , τ, ω, π) such that L1, ...,Ln = prj (Log ,S1; ...;Sn)?

Goal reachability consists of checking whether a set of goals can be reached
by some run of the transducer. This verification problem is a first sanity check
on the design of the business model underlying the transducer as the latter is
usually conceived to reach a certain goal, e.g., delivering a product provided that
certain conditions are met. Log validation consists of checking whether a given
log sequence can be generated by some input sequence. This problem arises, for
example, when the transducer of a supplier is allowed to run on a customer’s site
for efficiency or convenience. The trace provided by the log allows the supplier
to validate the transaction carried out by the customer.

3.1 Example

We consider a business model where a customer wants to buy a book, is billed
for it, pays, and then takes delivery and a discount voucher for his/her next
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purchase if he/she is a preferred customer and is an employee of an accredited
company. One kind of preferred customers are those affiliated to a organization
EOrg, which issues credentials to certify that a person is one of its members.
The business process has a database for accredited companies which are trusted
by the business model to pass to other companies the fact of being accredited
as well as the possibility of declaring other companies being accredited. The
identification of an employee of a company is done by issuing a certificate signed
by the company. Companies are organized according to a certain hierarchy which,
for the purpose of this paper, can be assumed to be a partial order. The customer,
willing to get a discount voucher should provide suitable valid credentials that
he/she is a preferred customer (e.g., a member of EOrg) and an employee of an
accredited company.

We need the theory of partial orders Tpo to specify the trust relationship
between companies. The signature Σpo of Tpo consists of the binary relation
is trusted by (written infix) and its axioms are the following three sentences:

∀x, y, z.(x is trusted by y ∧ y is trusted by z → x is trusted by z),
∀x.x is trusted by x , and ∀x, y.(x is trusted by y ∧ y is trusted by x→ x = y) .

Intuitively, x is trusted by y means that company y trusts company x with respect
to the fact of being accredited and the possibility of delegating this capability.

The business model can be formalized by a policy-aware transducer (whose
policies use the theory Tpo) as follows. We fix the following relational signature
R := In ∪Out ∪ DB ∪ Policy , where In := {order , pay , eorg , emplcert}, Out :=
{sendbill , deliver , sendvoucher}, DB := {price, available , accredited}, Policy :=
{preferred , employee , employeeof }.

The business process has three databases price, available , and accredited
storing the prices of books, their availability, and the set of (root) accredited
companies, respectively. A customer interacts with the business system by in-
serting tuples in four input relations, order , pay , eorg , and emplcert . The system
responds by producing output relations sendbill , deliver , and sendvoucher and
it keeps track of the history of the business transaction using the state relations:
pastorder, pastpay, pasteorg, and pastemplcert. The state of the transducer cumu-
latively adds the tuples inserted into the input relations. The output rules ω of
the transducer are the following:

sendbill (X,Y, Z)← order (X,Z) ∧ price(X,Y ) ∧ ¬pastpay(X,Y, Z)

deliver (X,Z)← pastorder(X,Z) ∧ price(X,Y ) ∧

pay(X,Y, Z) ∧ ¬pastpay(X,Y, Z)

sendvoucher (Z)← pastdeliver(X,Z) ∧ preferred(Z) ∧ employee(Z) .

The first rule governs the sending of a bill whose amount is Y about a book X
to a customer Z when an order is placed on X by Z, the price of X is Y , and Z
has not already been paid for X . The second rule enables the delivery of a book
X to Z if X has been ordered by Z and it is being paid the correct price by Z.
Finally, the last rule is about sending the discount voucher to Z if a book has
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input
sequence

order(Book1,Alice)
order(Book2,Bob)
eorg(Alice)

pay(Book1, 8,Alice)
pay(Book2, 15,Bob)
emplcert(Alice,Comp3)

eorg(Bob)

output
sequence

sendbill(Book1, 8,Alice)
sendbill(Book2, 15,Bob)

deliver(Book1,Alice)
deliver(Book2,Bob)

sendvoucher (Alice)

Table 1. A run of a policy-aware transducer

been delivered to Z and this last is both a preferred customer and an employee
of an accredited company. Finally, the policy rules π of the transducer are the
following:

preferred(Z)← pasteorg(Z)

employee(Z)← pastemplcert(Z,U) ∧ employeeof (Z,U)

employeeof (Z,F )← accredited(F )

employeeof (Z,U)← employeeof (Z,F ) ∧ U is trusted by F

The first rule simply establishes whether Z is a preferred customer by checking if
the credential saying that Z is an EOrg member has been presented. (There can
be other rules of this kind once the business model establishes that customers
having a certain affiliation become preferred customers.) The last three rules
check if Z has presented a certificate saying that he is an employee of a com-
pany which is in the suitable trust relationship with some accredited company.
Notice the use of recursion to express delegation of the capability of certifying
the fact of being an employee of an accredited company to some of its units.
Since employeeof is a recursive predicate, ω ∪ π is not a set of non-recursive
semi-positive rules and, hence, the associated transducer is not spocus; all the
techniques developed in [17] cannot be used to investigate verification problems
for this business process. Also the results in [14] cannot be used here as the
rules considered in that work (which allow for non-cumulative transducers) are
assumed to be non-recursive. An interesting line of future work is to allow for
non-cumulative rules also for the policy-aware transducers considered in this
paper (i.e. in presence of recursive rules for policy specification).

Table 1 shows an example of a run for the transducer specified above. We
have assumed that price(Book1, 8), price(Book2, 15), accredited(Comp1), Comp3

is trusted by Comp2, and Comp2 is trusted by Comp1 . Now, if we take Log = Out ,
then the instance of the log validity problem for the run in Figure 1 reduces to
the checking Tpo-satisfiability of the following formula (only an excerpt is shown
for the sake of conciseness):



∀x, y.price(x, y)↔ ((x = Book1 ∧ y = 8) ∨ (x = Book2 ∧ y = 15)) ∧
∀x.accredited(x)↔ x = Comp1 ∧
(Comp3 is trusted by Comp2) ∧ (Comp2 is trusted by Comp1)


 ∧

(
∀x, y.past0

order(x, y)↔ false ∧ ∀x, y, z.past0
pay(x, y, z)↔ false ∧

∀x.past0
eorg(x)↔ false ∧ ∀x, y.past0

emplcert(x, y)↔ false

)
∧
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∀x, y.(order 0(x, y)↔ (x = Book1 ∧ y = Alice) ∨ (x = Book2 ∧ y = Bob)) ∧

∀x, y.(eorg0(x)↔ x = Alice ∧

∀x, y, z.(order0(x, z) ∧ price0(x, y) ∧ ¬past0
pay(x, y, z)→ sendbill0(x, y, z)) ∧ ...

From the piece formula above, it is not difficult to see that the output sequence
(at time instant 0) of the transducer is exactly the one depicted in the first
column, second line of Table 1.

4 An extension of the BSR class

Since the goal reachability and the log validity problems will be reduced to the
satisfiability of a certain class of first-order formulae (see Section 5), we define
such a class of formulae and study their decidability.

Let T be Σ-theory, we are interested in studying the T -satisfiability of for-
mulae of the form

∃x.∀y.ϕ(x, y)

where ϕ is a quantifier-free ΣR-formula and ΣR := Σ ∪R such that Σ ∪R = ∅.
Sentences of this form are called BSR(ΣR)-sentences. If T is the empty theory,
then BSR(ΣR)-sentences are BSR formulae.

We show the decidability of BSR(ΣR)-sentences under suitable hypotheses
on the theory T in two steps. First, we eliminate universal quantifiers by identi-
fying finitely many instances which are sufficient for (un-)satisfiability checking
(under suitable hypotheses). Second, we show the decidability of the resulting
quantifier-free formulae.

Lemma 1 (Instantiation). Let T be a locally finite Σ-theory and the class of
models of T be closed under sub-structures. Furthermore, let R be a finite set of
predicate symbols such that Σ ∩R = ∅. The BSR(ΣR)-sentence

∃x.∀y.ϕ(x, y)

is satisfiable iff it is satisfiable in a finite model iff the quantifier-free formula

∃x.
∧

σ

ϕ(x, yσ)

is satisfiable, where σ ranges over the substitutions mapping the variables y into
the set of representative Σ(x)-terms and yσ denotes the simultaneous application
of σ to the variables of the tuple y.

We are left with the problem of showing the decidability of the satisfiability of
quantifier-free formulae over ΣR.

Theorem 1 (Decidability). Let T be a locally finite Σ-theory whose class of
models is closed under sub-structures and the SMT(T ) problem be decidable; R
be a finite set of predicate symbols such that Σ ∩ R = ∅. Then, the satisfiability
of BSR(ΣR)-sentences is decidable.
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The assumption of the background theory T to be locally finite, at first, seems to
be quite restrictive. However, the constraint domains considered as relevant for
trust management in [12] have quite simple algebraic structures so as to allow
for efficient algorithm to answer policy access queries. We believe that locally
finite theories can be put to productive use for the verification of policy-aware
transducers as suitable abstractions of this class of constraint domains.

5 Decidability of goal reachability and log validity

Before describing the reduction of the goal reachability and the log validity
problems to the satisfiability of the extension of the BSR class considered in
the previous section, we re-consider how semi-positive (non-recursive) rules and
(constraint) Datalog rules define queries on databases, or, equivalently, mapping
of databases to answer relations. As already observed in Section 3, this is crucial
to characterize the input-output behavior of the class of relational transducers
considered in this paper.

5.1 Constraint Datalog queries

A database query is a mapping associating to each database an (answer) relation.
A set of (constraint) Datalog rules can be seen as a way to implicitly define
queries as follows. Let T be a Σ-theory admitting quantifier-elimination and R
be a database schema such that Σ ∩ R = ∅. Let Π = ω ∪ π be a finite set
of rules such that R = B ∪ E for some cumulative and policy-aware transducer
(past , τ, ω, π), where B is the set of predicate symbols occurring only in the body
of the rules in Π and not in their heads, and E is the set of predicate symbols
occurring both in the body and head of the rules in Π . Consider a rule ρ ∈ Π of
the form e(x)←

∧n
i=1 bi(x, y) ∧ ψ(x, y) where e ∈ E, the predicate symbol of bi

is in R (for i = 1, ..., n), and ψ is a quantifier-free Σ(x, y)-formula, the constraint
query associated to ρ is the formula

∃y.
n∧

i=1

bi(x, y) ∧ ψ(x, y).

If bi contains only symbols in B (as it is the case of the semi-positive non-
recursive rules in ω), then it is possible to replace each occurrence of such sym-
bols with disjunctions of conjunctions of equalities (recall the definition of finite
instance in Section 2). In this way, the resulting (existentially quantified) for-
mula turns out to be a Σ(x, y)-formula and the decidability result above (i.e.
Theorem 1) can be used. This is the key insight used in reducing both log va-
lidity and goal reachability to the satisfiability of BSR formulae in [17] which in
our framework corresponds to the case there π = ∅. However, this is not enough
for the class of transducers considered in this paper because of the presence of
the constraint Datalog rules in Π which may be recursive (we have already ar-
gued that this complication is necessary to be able to express certain patterns
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function constraintFixPoint(F : constraint facts, R : constraint Datalog rules)
1 results ←− F ; Changed ←− true;
2 while Changed do

3 Changed ←− false
4 foreach rule ∈ R do

5 foreach tuple of constraint facts constructed from results do

6 newres ←− constraint facts obtained by
constraint rule application between rule and tuple

7 foreach fact ∈ newres do

8 if (results 6|= fact) then results ←− results ∪ {fact};
9 Changed ←− true ;
10 end

11 end

12 end

13 end

14 return results

Fig. 1. Least fix-point computation of constraint Datalog rules

of policy management such as delegation). As a consequence, we need a fix-
point characterization for the queries associated to a set Π of possible recursive
rules. To this end, we proceed as follows. First, we regard each finite instance of
r ∈ In ∪Out ∪DB as a constraint fact, i.e. ∀r(x)↔

∨m
j=1 x = cj is transformed

into the Datalog rule r(x) ←
∨m

j=1 x = cj , where x is a tuple of variables and

cj is a tuple of constants, for j = 1, ...,m. Let r0(x) ←
∧n

i=1 ri(x) ∧ ψ0(x) be a
constraint Datalog rule in Π for ri ∈ R and i = 0, 1, ..., n and ri(xki

)← ψi(xki
)

be a constraint fact for ψi be a Σ(xi)-quantifier-free formula, ki the arity of
ri, and i = 1, ..., n. A constraint rule application produces m ≥ 0 facts of the
form r0(x) ← ψ′j(x) where ψ′j is a quantifier-free Σ(x)-formula for j = 1, ...,m

(m ≥ 0) and
∨m

j=1 ψ
′
j is equivalent (by the elimination of quantifiers in T ) to the

formula

∃y.(
n∧

i=1

ψi(xki
) ∧ ψ0(x)),

where y is the tuple of variables occurring in the body of the rule but not in the
head. The least fix-point of a set of constraint Datalog rules can be computed
by the algorithm in Figure 1. The function constraintFixPoint terminates when
all derivable new facts are implied by previously derived facts.1 The requirement

1 The test at line 8 can be reduced (by eliminating quantifiers) to a T -satisfiability test
on a conjunction of two quantifier-free Σ-formulae. To understand how, consider two
facts r1(x)← ψ1(x) and r2(y)← ψ2(y). To check that latter is a logical consequence
of the former (modulo T ), it is sufficient to check the T -validity of ∀x.ψ1(x) →
∀y.ψ2(y). This, reasoning by refutation, is equivalent to check the T -unsatisfiability
of the negation of the previous formula, which, by eliminating quantifiers can be
reduced to a quantifier-free formula.
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that T admits elimination of quantifiers is not sufficient to guarantee termination
of the algorithm in Figure 1. We need the following notion which is adapted
from [16].

Definition 4. Let T be a Σ-theory and x be a finite set of variables. If for
every (possibly infinite) T -satisfiable set S of Σ(x)-constraint, there exists a
finite subset Sfin ⊆ S such that for every ψ in S, there exists a ψ′ in Sfin for
which ∀x.ψ(x) → ψ′(x) is T -valid, then T is said to be constraint compact. If
Sfin is effectively computable from S, then T is said to be effectively constraint
compact (in the following, when we say ‘constraint compact’, we in fact always
mean ‘effectively constraint compact’).

Constraint compactness is a sufficient condition for the termination of the algo-
rithm in Figure 1.

Theorem 2 ([16]). Let T be a constraint compact theory. Then, the algorithm
in Figure 1 terminates for every query.

The sketch of the proof is as follows. By contradiction, assume that the algorithm
does not terminate. Thus, every iteration of the loop produces at least one fact
which is not a consequence of those which were already derived. Since there
are only finitely many different predicate symbols, there must be at least one
such symbol for which the algorithm derives an infinite set S of facts. But,
T is assumed to be constraint compact and so we can replace S with a finite
subset Sfin such that the facts in S \ Sfin are consequence of those in Sfin . As
the algorithm checks for the logical consequence of newly derived facts before
adding it to the resulting set of derived facts, all the facts in S \ Sfin should not
be considered: a contradiction.

Interestingly, locally finite theories are also constraint compact.

Proposition 1. If T is an (effectively) locally finite theory, then it is also (ef-
fectively) constraint compact.

Proof. Let S be a set of constraints over a finite set x of variables. Then, since
the theory T is locally finite, there exists a finite set RTerms of Σ(x)-terms
such that for every term u in S, there exists t ∈ RTerms, T |= u = t. By using
the terms in RTerms and the finite signature Σ, it is possible to build only
finitely many distinct Σ(x)-atoms ψ1(x), ..., ψn(x) (also called representative
atoms) such that for any further Σ(x)-atom ψ(x), there exists i ∈ {1, ..., n},
T |= ∀x.ψi(x) ↔ ψ(x). If we consider a Σ(x)-constraint φ(x), it is possible
to collect all the atoms occurring in it, say {α1, ..., αm}; for each αj (for j =
1, ...,m), find the equivalent representative atom ψkj

, and then substitute each
αj with the corresponding ψkj

in φ and then eliminating duplicates. The result
will be a constraint taken from the finitely many distinct conjunctions of literals
built out of the finitely many representative atoms ψ1(x), ..., ψn(x). This can be
generalized to sets of constraints in the obvious way. Clearly, this implies the
constraint compactness of T . ⊓⊔

As an immediate consequence of the last two facts we obtain the following result.
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Corollary 1. Let T be an (effectively) locally finite theory. Then, the algorithm
in Figure 1 terminates for every query.

This will be a crucial ingredient in the reduction of goal reachability and log
validity to the satisfiability of the BSR(ΣR) class.

5.2 Reduction to satisfiability

We first consider the log validity problem as goal reachability can be reduced to
this problem.

Lemma 2. Let T be a locally finite Σ-theory admitting elimination of quanti-
fiers. Furthermore, let (past , τ, ω, π) be a cumulative and policy-aware transducer
over (Σ,R), db be a database over DB, and Log ⊆ In ∪ Out. The log validity
problem for (past , τ, ω, π) reduces to the T -satisfiability problem of an effectively

computable BSR(ΣR)-formula.

Proof. The proof is along the lines of Theorem 3.1 in [17] for Spocus transducers.
A log L1, ..., Ln is valid if there exists an input sequence I1, ..., In generating it.
We view I1, ..., In as database over the set of predicate symbols obtained by
making n copies of each relation r ∈ In yielding r1, ..., rn. To state that the
input sequence I1, ..., In yields the log L1, ..., Ln, we require that the relations in
I1, ..., In recorded by the log have the values specified by L1, ..., Ln together with
the relations in Out determined by I1, ..., In. For input relations, the situation is
easy (we analyze concrete cases as the generalization are straightforward). For
example, suppose that Lj requires that a tuple c belongs to the relation rj in
the input sequence; this can be stated by the following BSR(R) formula:

∃x.(rj(x) ∧ x = c). (2)

For example, if the log specifies that rj contains the tuples c and d, the inclusion
of rj in the log is state by the following BSR(R) formula:

∀x.(rj(x)→ (x = c ∨ x = d)). (3)

For relation in the output sequence, we need to resort to Corollary 1 above:
the fix-point algorithm in Figure 1 terminates on all queries and generates a
(finite) set of constraint facts. Then, for each fact of the form rj(x)← ψi

j(x) in

the output set, we take the disjunction of each ψi
j for i ≥ 0. Let ϕj(x) be the

resulting quantifier-free Σ(x)-formula. The remainder is similar to the case of
input relations. Requiring that a tuple belongs to the relation rj in the output
sequence can be expressed by a formula similar to (2) except that rj is replaced
by ϕj obtained by the fix-point computation. Similarly, if the log specifies that
rj contains the two tuples c and d, the inclusion of rj in the log is stated by a
formula which is similar to (3) except that rj is replaced by ϕj obtained by the
fix-point computation. It is easy to see that the resulting formula is a BSR(R)
formula and its satisfiability is equivalent to the existence of an input sequence
yielding the desired log. ⊓⊔
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Before stating our main decidability results for log validity and goal reachability
of cumulative and policy-aware transducers, we observe the following. An imme-
diate consequence of Lemma 2 and Theorem 1 is the decidability of both verifi-
cation problems for cumulative and policy-aware transducers whose Σ-theory is
locally finite and admits elimination of quantifiers. Unfortunately, local finiteness
and elimination of quantifiers are difficult to reconcile as the former is obtained
for theories with simple “algebraic structure” while the latter is satisfied for
those with rich “algebraic structure”. To illustrate, we consider three theories.
The theory whose signature contains only constants c1, ..., cn and axiomatized
by the following sentences:

ci 6= cj for i, j = 1, ..., n and i 6= j

∀x.x = c1 ∨ · · ·x = cn,

is both locally finite and admits elimination of quantifier. The theory Tlo of linear
orders whose signature contains the binary relation � and axiomatized by the
following sentences:

∀x, y, z.(x � y ∧ y � z → x � z) ∀x, y.(x � y ∧ y � x→ x = y)

∀x.x � x ∀x, y.(x � y ∨ y � x)

is locally finite, the SMT(Tlo) problem is decidable, but it does not admit elim-
ination of quantifiers. The theory Tdlo of dense linear orders is the theory over
the same signature of Tlo and obtained by adding the following two sentences to
the set of axioms of Tlo:

∀x, y.(x ≺ y → ∃z.(x ≺ z ∧ z � y)) and ∃x, y.x 6= y ,

where t1 ≺ t2 abbreviates t1 � t2 ∧ t1 6= t2 for t1, t2 variables. The SMT(Tdlo)
problem is decidable, Tdlo admits elimination of quantifiers, but it is not locally
finite.

Fortunately, it is sometimes possible to reconcile local finiteness and quan-
tifier elimination. For the theories Tlo and Tdlo, it is possible to show that a
quantifier-free formula is Tlo-satisfiable iff it is Tdlo-satisfiable. So, to check the
Tlo-satisfiability of BSR(ΣR) sentences, we can use its being locally finite to ap-
ply the instantiation procedure underlying the proof of Lemma 2 while we can
use the fact that Tdlo admits elimination of quantifiers to obtain the termination
of the fix-point algorithm in Figure 1 (as we know that the Tlo-satisfiability of
quantifier-free formulae is preserved). This phenomenon is not an accident but
an application of the notion of model completeness of a theory.

A Σ-theory T is model complete iff, for all models M,N of T , if M is a
sub-structure of N , then M is also an elementary sub-structure of N , i.e. for
every Σ-formula ϕ(x) and all elements a, we have thatM |= ϕ(a) iff N |= ϕ(a).
Intuitively, the elementary sub-modelM of a model N preserves the set of satis-
fiable first-order formulae (and hence of quantifier-free formulae in particular). It
is possible to show that Tdlo is model complete (see, e.g., [4]). The key property
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(see Remark 3.5.6 in [4]) is that M is a sub-model of the set of universal sen-
tences which are logical consequences of Tdlo (if T is a theory, the set of universal
sentences which are T -valid is denoted with T ∀) iff M is a sub-model of some
model of T ∀dlo. (The validity of universal sentences is the dual of the satisfiability
of quantifier-free formulae.) Now, since T ∀dlo = T ∀lo (see [10]), we have formally
justified the use of Tlo in Lemma 2 and that of Tdlo to eliminate quantifiers in
the algorithm of Figure 1. Notice that the class of models of Tlo is closed under
sub-structures since its axioms are universal sentences (see, e.g., [4]). Further-
more, these observations constitute the sketch of the proof of our first (main)
decidability result about the verification of cumulative and policy-aware trans-
ducers.

Theorem 3. Let (past , τ, ω, π) be a cumulative and policy-aware transducer over
(Σ,R), db be a database over DB, and Log ⊆ In ∪ Out. If (a) T is a locally fi-
nite theory such that the SMT(T ) problem is decidable and its class of models
is closed under sub-structures, (b) T∗ ⊇ T is a model complete theory admitting
elimination of quantifiers, and (c) T ∀ = T ∀∗ , then the log validity problem for
(past , τ, ω, π) is decidable.

We are now ready to state and prove our second (main) decidability result.

Theorem 4. Let (past , τ, ω, π) be a cumulative and policy-aware transducer over
(Σ,R), db be a database over DB, and Log ⊆ In ∪ Out. If (a) T is a locally fi-
nite theory such that the SMT(T ) problem is decidable and its class of models
is closed under sub-structures, (b) T∗ ⊇ T is a model complete theory admitting
elimination of quantifiers, and (c) T ∀ = T ∀∗ , then the goal reachability problem
for (past , τ, ω, π) is decidable.

Proof. Again the proof is along the lines of Theorem 3.2 in [17] for Spocus trans-
ducers. First of all, observe that only runs of length two should be considered.
To understand why this is so, consider an input sequence I1, ..., In with n > 2.
Since outputs depend only on the current input, the database, and the state
relations (storing the union of all previous inputs), the last output in the run
of the transducer on I1, ..., In is the same as the last output on the run of the
same transducer on the following input sequence of length 2: (I1 ∪ · · · In−1), In.
At this point, the problem is reduced to that of the satisfiability of a BSR(R)
with the same technique described in the proof of Lemma 2. ⊓⊔

6 Conclusion

We have introduced a class of policy-aware relational transducers. We have stud-
ied the hypotheses under which log validity and goal reachability are decidable
for this class of transducers by a reduction to the satisfiability problem of an
extension of the BSR class of formulae.

There are two main lines of future work. First, we intend to study the de-
cidability of those verification problems involving two or more transducers such
as containment and equivalence [17]. Second, it would be interesting to see how
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to implement the algorithm for checking the satisfiability of the extension of the
BSR class on top of state-of-the-art theorem provers or Satisfiability Modulo
Theories solvers. The latter, in particular, with the recent interest in developing
decision procedures for the BSR class (see, e.g., [5]) and techniques for quantifier
instantiation (see, e.g., [9]) seem to be ideal candidates.
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Abstract. This position paper is concerned with the reference in com-
puter science. We have a formal representation of lazy references in con-
trast to eager and failure ones. The representation problem is motivated
by static analysis in Web accessibility. A fixed point theory is adopted
for such an analysis.

1 Introduction

To make analyses in Web usability or accessibility, we aim at capturing the link
situation on the Web sites and referential relations among Web site pages. For
an apperception of the link structure, this position paper deals with static anal-
ysis of relations of references which are concretized as Web site pages. The total
reference structure is described by a fixed point of an associated mapping for the
structure. As regards static analysis, several frameworks have been well estab-
lished. Hybrid logic, which involves both state-dependent and modal operators,
is a formal system with logical meanings of states and worlds ([1, 2]). Relations
between the events are discussed through predicates in classical and modal logic
([3, 9]). The event as the cause-and-effect relationship is made clear from the
view of rule-based system ([21]). Correlation between action and knowledge has
also been studied ([14]). A mathematical behaviour of action is formulated in
[13], while action may be captured by modal logic ([6]). The agent technology
style is current as in [15], where algebraic approach to process originates from
[8, 12] such that a logical viewpoint is given in the paper ([10]). A multi-agent is
well designed in terms of modal logic ([7]).

In this position paper, based on the first-order logic (or the propositional
logic) analysis approach ([5]), we see a mathematical aspect of reference struc-
tures relevant to Web site pages with fixed point theory. A Web site page recur-
sively includes page references, where the page is itself a reference from other
site pages. So far we see that there is a simple structure for some page A as
a primary one: A primary reference A (recursively) includes references B1, . . . ,
Bn, where A may be referred to by others, and some of B1, . . . , Bn may not be
available without any correct link. As regards how to make use of the references,
we can think that:

– To visit the (page) reference is regarded as eager.
– Not to visit (but to see only the name of) the (page) reference is regarded

as lazy.



– Non-available reference for visit is regarded as a failure.

Whether or not a (page) reference is visited is supposedly determined by the
user (visitor). The primary reference (which the user now pays attention to and
which includes other references in) is thus interpreted as:

(i) eager if all the included references are eager.
(ii) lazy if it never occurs as a primary one such that it is designated as lazy, or

if it is a primary one where at least one included reference is not eager and
other included references are eager or lazy.

(iii) a failure if it is not available as a primary one, or if a primary reference with
at least one included reference is a failure.

Note that the primary reference is interpreted as eager if it contains no reference.
The classification of eager and lazy references for this case looks like the standard
evaluation about call-by-value (eager) and call-by-name (lazy) modes of [17].
We then have a problem to see what set of lazy references is. The set of all
considerable references is still finite, but it must be large enough to want to
have a treatment to cover the case that the set may be countably infinite. A
fixed point theory for the complete lattice is a technique as in [11, 18], to be
incorporated into analysis and classification of eager and lazy reference sets,
where the references are organized likely by recursive rule structures of the form:
the reference including reference sequences.

2 Representation of References

In this paper, we consider recursive structures of references, which are given as
a set of finite or countably infinite rules of the form A�A1 . . . Al (l ≥ 0), where
A, Ai are references. A is the head, while A1 . . . Al is the successor (sequence).
We suppose in a set of rules that each head is followed by a unique successor.

Syntactically, we assume:

(i) a set P of rules of the form A � A1 . . . Al (l ≥ 0) where any two rules with
the same head, A � B1 . . . Bm and A � C1 . . . Cn, have the same successor,
and

(ii) a set BP of all references occurring in the set P .

The interpretation of references is defined as eager, lazy and a failure: Assume
a set P of rules. Given a set L, we have inferences to inductively define the
predicates eager and lazyL which are mutually exclusive:

(ir1) A� is in P
eager(A)

(ir2)

A�A1 . . . Am is in P (m > 0)
for all Ai (1 ≤ i ≤ m), eager(Ai)

eager(A)
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(ir3)

A does not occur in the head of any rule
A is in L

lazyL(A)

(ir4)

A�A1 . . . Am is in P (m > 0)
for all Aj (1 ≤ j ≤ m), eager(Aj) or lazyL(Aj)
for some Ak (1 ≤ k ≤ m), not eager(Ak)

lazyL(A)

Semantically, we say that:

(i) If eager(A), the reference A is eager.
(ii) If lazyL(A), the reference A is lazy.
(iii) If neither eager(A) nor lazyL(A), the reference A is a failure.

Example 1. Assume a set P containing: (i) A�B, and (ii) B �A C. Note that
neither a rule A� nor a rule A�B,C can be included into the set P , as long as
the rule A �B (with the head A) is in P . What set of references may be lazy?
To see it, we have exhaustive cases:

(1) A,B,C are failures, unless there is some lazy reference.
(2) C may be lazy, whether or not both of A and B are lazy. Neither A nor B

can be lazy, if C still remains to be a failure.
(3) For A and C to be lazy, all the A,B,C are lazy. Similarly for B and C to

be lazy, all are lazy.

A mapping TP : 2BP → 2BP is defined to be

TP (I) = {A | ∃A�A1 . . . Al ∈ P. A1, . . . , Al ∈ I}.

Note that the mapping TP is similar to the mapping associated with a logic
program ([11]), such that it collects eager references based on the set I of eager
references. Such a mapping is often adopted. As easily seen, if I ⊆ J , then
TP (I) ⊆ TP (J), that is, TP is monotone. In what follows, we have the notation:

T n
P (I) =

{
I (n = 0)
TP (T n−1

P (I)) (n > 0)

for a subset I ⊆ BP . The mapping TP is continuous: For any ω-chain I0 ⊆ I1 ⊆
I2 ⊆ . . . ,

∪k∈ω TP (Ik) = TP (∪k∈ω Ik).

Thus TP has the least fixed point, ∪n∈ω T n
P (∅), which is denoted by lfp(TP ).

The following mapping looks like the one for logic programs with negation
(as in [16, 19, 20]), but the present usage is not relevant to the treatment of
negations in 3-valued logic. To capture the set of lazy references, we make use
of the following mapping SP . With respect to a subset K ⊆ BP ,

P [K] = {A�A1 . . . Am |
∃A�A1 . . . AmB1 . . . Bn ∈ P (m ≥ 0, n ≥ 0). B1, . . . , Bn ∈ K}.

Note that P [∅] = P . A mapping SP : 2BP → 2BP is defined to be
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SP (K) = ∪j∈ω T j
P [K](∅) = lfp(TP [K]).

The set SP (K) denotes the collection of eager and lazy references based on the
set K of lazy references. It follows that SP (∅) = lfp(TP [∅]) = lfp(TP ). When
J ⊆ K, A ∈ T i

P [J](∅)⇒ A ∈ T i
P [K](∅). It is because:

(i) (basis) In case that i = 0, it trivially holds.

(ii) (induction step) In case that i > 0:

A ∈ T i
P [J](∅)

⇒ ∃A�A1 . . . Am ∈ P [J ]. A1, . . . , Am ∈ T
i−1
P [J](∅)

⇒ ∃A�B1 . . . Bn ∈ P [K] such that {B1, . . . , Bn} ⊆ {A1, . . . , Am}

It follows that B1, . . . , Bn ∈ T i−1
P [J](∅). By induction hypothesis, we can

assume that B1, . . . , Bn ∈ T
i−1
P [J](∅)⇒ B1, . . . , Bn ∈ T

i−1
P [K](∅). Therefore A ∈

T i
P [K](∅).

This concludes that SP (J) = ∪i∈ω T i
P [J](∅) ⊆ ∪i∈ω T i

P [K](∅) = SP (K). That

is, the mapping SP is monotone. By monotonicity of SP , SP (Ji) ⊆ SP (∪i∈ω Ji)
for any ω-chain J0 ⊆ J1 ⊆ J2 ⊆ . . .. Thus ∪i∈ω SP (Ji) ⊆ SP (∪i∈ω Ji). On
the other hand, to show the opposite subset relation, we firstly assume that
A ∈ SP (∪i∈ω Ji). Then:

A ∈ SP (∪i∈ω Ji)

⇒ ∃j ∈ ω. A ∈ T j
P [∪i∈ω Ji]

(∅)

⇒ ∃k ∈ ω. A ∈ T j
P [Jk](∅)

⇒ A ∈ ∪j∈ω T j
P [Jk](∅) = SP (Jk)

Therefore SP (∪i∈ω Ji) ⊆ SP (Jk) for some k ∈ ω such that SP (∪i∈ω Ji) ⊆
∪k∈ω SP (Jk). That is, SP is continuous. By means of the definition of SP (K)
with respect to the mapping TP [K], SP (K) is the least fixed point of TP [K] such
that we can see the following lemma.

Lemma 1. (1) For any A�A1 . . . Am ∈ P [K] (m ≥ 0),

A1, . . . , Am ∈ SP (K) iff A ∈ SP (K).

(2) For any A�A1 . . . Am ∈ P (m ≥ 0),

A1, . . . , Am ∈ SP (K) ∪K iff A ∈ SP (K).

(3) For any A�A1 . . . Am ∈ P (m > 0),

A1, . . . , Am ∈ SP (K) ∪K and there is at least one Ai 6∈ SP (∅)
iff A ∈ SP (K)− SP (∅).
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Proof. (1) For the rule A�A1 . . . Am ∈ P [K] (m ≥ 0):

A ∈ SP (K)
⇔ A ∈ ∪i∈ω T i

P [K](∅)

⇔ A1, . . . , Am ∈ ∪i∈ω T i
P [K](∅)

⇔ A1, . . . , Am ∈ SP (K)

(2) For the rule A�A1 . . . Am ∈ P (m ≥ 0), we can derive a rule A�B1 . . . Bn ∈
P [K] such that {B1 . . . Bn} ⊆ {A1 . . . Am}. The set {B1 . . . Bn} is obtained
by removing each Ai of {A1 . . . Am} for Ai ∈ K. By means of (1), B1 . . . Bn ∈
SP (K) iff A ∈ SP (K). Thus

A1, . . . , Am ∈ SP (K) ∪K iff A ∈ SP (K).

(3) By means of (2), A1, . . . , Am ∈ SP (K) ∪K (m ≥ 0) iff A ∈ SP (K). There
is some Ai 6∈ S(∅) iff A 6∈ SP (∅), by (2) for the case that K = ∅. It follows
that

A1, . . . , Am ∈ SP (K) ∪K (m > 0) and there is at least one Ai 6∈ SP (∅)
iff A ∈ SP (K)− SP (∅).

3 Lazy Reference Set Related to Fixed Point

In this section, we examine the set of lazy references.

Lemma 2. Assume the set P of rules. A reference A is in SP (∅) iff it is eager.

Proof. (1) Assume eager(A).
(i) If eager(A) by means of (ir1), then A� is in P such that A ∈ SP (∅) (by

Lemma 1 (2)).
(ii) If eager(A) by means of (ir2), then a rule A�A1 . . . Am is in P and for

all Ai (1 ≤ i ≤ m), the predicates eager(Ai) are supposed. By induction
hypothesis for eager(Ai) (1 ≤ i ≤ n), Ai ∈ SP (∅), such that by Lemma
1 (2), A ∈ SP (∅). This completes the induction.

(2) Assume that A ∈ SP (∅). We prove it by induction on m for the rule A �

A1 . . . Am (m ≥ 0), with respect to A ∈ SP (∅).
(i) If m = 0, that is, A� is in P , then eager(A) (by the inference (ir1)).
(ii) If m > 0 such that A � A1 . . . Am is in P , by induction hypothesis of

eager(Ai) (1 ≤ i ≤ m) for Ai ∈ SP (∅), we have eager(A) with the
inference (ir2). This completes the induction.

Lemma 3. Assume the set P of rules. A reference A ∈ BP does not occur in
the head of any rule iff A ∈ SP (BP ).

Proof. (i) Assume that the reference A occurs in the head of some rule such that
there is a rule A�A1 . . . Am in P (m ≥ 0). It follows that A� is in P [BP ]. Thus
A ∈ TP [BP ](∅) ⊆ SP (BP ).
(ii) On the other hand, assume that A ∈ SP (BP ). Then A ∈ SP (BP ) =
∪i∈ω T i

P [BP ](∅), which demonstrates that A occurs in the head of some rule.
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For the lazy reference, we need the superset relation L ⊇ SP (L) − SP (∅)
for a subset L ⊆ BP . By Lemma 2, a set of lazy references has no common
reference with the set SP (∅) (the set of eager references). Assume a set M ⊆
SP (BP ) ⊆ SP (∅) such that M may be a set of references not occurring in the
heads and be designated as lazy. We next investigate a fixed point of the equation
L = (SP (L)−SP (∅))∪M for some M ⊆ SP (BP ) by the following two theorems.

Theorem 1. The set P of rules is supposedly given, where L ⊆ SP (∅). If L =
{A | lazyL(A)},

L = (SP (L)− SP (∅)) ∪M for some set M ⊆ SP (BP ).

Proof. If L = ∅, then the theorem trivially holds. Assume that L = {A |
lazyL(A)} 6= ∅. Suppose lazyL(A) (A ∈ L by the assumption). We prove in-
ductively that:

– A ∈ L occurs in the head of some rule iff A ∈ SP (L)− SP (∅).
– A ∈ L does not occur in the head of any rule iff A ∈ M for some M ⊆
SP (BP ).

We see that:

A occurs in the head of some rule
⇔ there is a rule A�A1 . . . Am ∈ P (m > 0) such that

∃Ai. (Ai is not eager), and
∀Aj . (Aj is eager or lazy)

⇔ there is a rule A�A1 . . . Am ∈ P (m > 0) such that:
∃Ai.(Ai 6∈ SP (∅)) and ∀Aj .(Aj ∈ SP (L) ∪ L)

⇔ A ∈ SP (L)− SP (∅)
(by Lemma 1 (3))

A ∈ L does not occur in the head of any rule iff A ∈ SP (BP ) (Lemma 3) such
that A ∈M for some M ⊆ SP (BP ). This completes the proof.

Lemma 4. Assume a fixed point L of the equation L = (SP (L)− SP (∅)) ∪M
for some set M ⊆ SP (BP ). Then

(i) L ⊆ SP (∅).
(ii) SP (L)− SP (∅) ⊆ SP (SP (∅)).

(iii) M ⊆ SP (SP (∅)).

Proof. (i) SP (L) − SP (∅) ⊆ SP (∅). M ⊆ SP (BP ) ⊆ SP (∅). It follows that
L ⊆ SP (∅).
(ii) By (i), applying the monotone mapping SP , SP (L) ⊆ SP (SP (∅)). Then
SP (L)− SP (∅) ⊆ SP (SP (∅)).
(iii) Since SP (SP (∅)) ⊆ SP (BP ) by monotonicity of the mapping of SP , SP (BP )

⊆ SP (SP (∅)). On the assumption that M ⊆ SP (BP ), M ⊆ SP (SP (∅)).

In Lemma 4, we suppose that a set M is designated as lazy.
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Theorem 2. Assume that a set P of rules is given, such that L = (SP (L) −
SP (∅)) ∪M where M ⊆ SP (BP ). Then L = {A | lazyL(A)}.

Proof. If L = ∅, the theorem trivially holds. We now suppose that L 6= ∅.
(1) Take any reference A ∈ L. We prove inductively with the following cases (i)
and (ii) that lazyL(A). (It follows that L ⊆ {A | lazyL(A)}.)

(i) Assume that A ∈ SP (L)− SP (∅) 6= ∅.

A ∈ SP (L)− SP (∅)
⇒ there is a rule A�A1 . . . Am (m > 0) in P such that:

A1, . . . , Am ∈ SP (L) ∪ L and at least one Ai is not in SP (∅)
(by Lemma 1 (3))

⇒ there is a rule A�A1 . . . Am (m > 0) in P such that:
A1, . . . , Am are eager or lazy, and at least one Ai is not eager

(by induction hypothesis) : Aj ∈ SP (L)− SP (∅)⇒ Aj is lazy;
Aj ∈ SP (∅)⇒ Aj is eager;Aj ∈ L− (SP (L)− SP (∅))⇒ Aj is lazy

⇒ A is lazy, that is, lazyL(A)

(ii) Assume that A ∈M ⊆ SP (BP ). By Lemma 3, A does not occur in the head
of any rule. If A ∈ L, then lazyL(A).
By (i) and (ii), we conclude that L ⊆ {A | lazyL(A)}.

(2) We next prove that if lazyL(A) then A ∈ L.

(i) If A occurs in the head of some rule, then there is a rule A�A1 . . . Am such
that each Aj is eager or lazy (Aj ∈ SP (∅) ∪ L), and at least one Ai is not
eager (Ai 6∈ SP (∅)). It follows that A ∈ SP (L)− SP (∅) ⊆ L.

(ii) If A does not occur in the head of any rule, A ∈ L because of lazyL(A).

As the conclusion of (2), L ⊇ {A | lazyL(A)}, by which we conclude that L =
{A | lazyL(A)}, as well as the proof (1). This completes the proof.

By Theorems 1 and 2, we see that L is a fixed point of the equation:

L = (SP (L)− SP (∅)) ∪M for some set M ⊆ SP (BP )

iff L = {A | lazyL(A)}. As is seen, there is a least fixed point of the equa-
tion. Note that M ⊆ SP (BP ) is not uniquely determined for the equation
L = (SP (L) − SP (∅)) ∪M . In the next section, instead of the equation L =
(SP (L)− SP (∅)) ∪M , we take a superset relation L ⊇ SP (L) − SP (∅) without
such a set M .

4 Soundness and Completeness of Reference Laziness

We firstly have a soundness theorem of the predicate lazyL(A) (which states
that A is lazy with the set L ⊆ SP (∅)), with respect to membership of A in L
or in SP (L)− SP (∅) with some set L′, where
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SP (L)− SP (∅) ⊆ SP (L′)− SP (∅) ⊆ L′ ⊆ SP (∅).

Theorem 3. Given a set P of rules, assume lazyL(A), where L ⊆ SP (∅). Then
A ∈ L, or there is L′ such that A ∈ SP (L) − SP (∅) ⊆ SP (L′) − SP (∅) ⊆ L′ ⊆
SP (∅).

Proof. Assume that lazyL(A). (1) We prove inductively that A ∈ L, or A ∈
SP (L)− SP (∅) as follows:

(i) If A doe not occur in the head of any rule, A must be in L because of the
predicate lazyL(A).

(ii) If A occurs in the head of some rule, then:

there is a rule A�A1 . . . Am ∈ P (m > 0) such that:
∃Ai. (Ai is not eager), and
∀Aj . (Aj is eager or lazy)

⇒ there is a rule A�A1 . . . Am ∈ P (m > 0) such that:
∃Ai.(Ai 6∈ SP (∅)) and ∀Aj .(Aj ∈ SP (L) ∪ L)

⇒ A ∈ SP (L)− SP (∅)

(2) Now we assume the case that lazyL(A) such that A ∈ SP (L)− SP (∅). With
L0 = L and L1 = SP (L) − SP (∅), we have an ω-chain L1 ⊆ L2 ⊆ . . ., owing to
monotonicity of SP ,

SP (L0)− SP (∅) = L1

SP (L0 ∪ L1)− SP (∅) = L2

. . . . . .

. . . . . .
SP (∪i∈ω Li)− SP (∅) = ∪i≥1 Li

where SP (∪i∈ω Li) = ∪i∈ω SP (Li) by continuity of SP . Take L′ = ∪i∈ω Li ⊇
∪i≥1 Li. Then

A ∈ L1 ⊆ ∪i≥1 Li = SP (∪i∈ω Li)− SP (∅) = SP (L′)− SP (∅) ⊆ L′.

Because Li ⊆ SP (∅) (i ∈ ω) by the construction of Li, L
′ = ∪i∈ω Li ⊆ SP (∅).

This completes the proof.

We next have a completeness theorem of the predicate lazyL(A) (which states
that A is lazy with the set L ⊆ SP (∅)), with respect to membership of A in
SP (L)− SP (∅), where

SP (L)− SP (∅) ⊆ L ⊆ SP (∅).

Theorem 4. Assume a set P of rules such that ∅ 6= SP (L)− SP (∅) ⊆ L for a
set L ⊆ SP (∅). If A ∈ SP (L)− SP (∅), then lazyL(A).

Proof. Assume that A ∈ SP (L)− SP (∅). By Lemma 1 (3), there is a rule
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A�A1 . . . Am (m > 0)

such that A1, . . . , Am ∈ SP (L) ∪ L and at least one Ai in in SP (∅). Because
A1, . . . , Am are all in SP (L)∪L and at least one Ai is in SP (∅), we see the cases
for each Aj :

(i) Aj ∈ L
(ii) Aj ∈ SP (∅) ⊆ SP (L)⇒ eager(Aj) (by Lemma 2)
(iii) Aj ∈ SP (L)−SP (∅) ⊆ SP (L)⇒ lazyL(Aj) (by induction hypothesis for Aj)

If Ai is in SP (∅), then Ai is in L or lazyL(Ai) excluding the case (ii). By the
inferences (ir3) and (ir4), we can conclude that lazyL(A).

5 Concluding Remarks

We have dealt with a finite or countably infinite set of rules, where the set of
lazy references is represented by means of fixed point approach. Practically only
a finite set is needed, where the theoretical considerations are available from
static analysis views as in this paper. Given a set of P of rules with a set L
of designated lazy references, we have soundness and completeness of reference
laziness in the following sense:

(1) (soundness) The predicate lazyL(A) (which states that the reference A is
lazy with the set L ⊆ SP (∅)) is sound with respect to membership of A in
L or in SP (L)− SP (∅), with some set L′ such that

SP (L)− SP (∅) ⊆ SP (L′)− SP (∅) ⊆ L′ ⊆ SP (∅).

(2) (completeness) The predicate lazyL(A) (which states that A is lazy with the
set L ⊆ SP (∅)) is complete with respect to membership of A in SP (L) −
SP (∅), where

SP (L)− SP (∅) ⊆ L ⊆ SP (∅).

In addition to the soundness, the designation of lazy references may step by
step construct some set L′ which is relative to the soundness of the predicate
lazyL(A) with respect to membership of A in SP (L)− SP (∅).

The set of finite-failure references (the finite-failure set) may be defined. This
is similar to finite failure of logic programming ([11]), however, a unique successor
(which may be the empty) for each head may be allowable in this case.

We can define the finite-failure set FFP to be FFP = ∪d∈ω FF d
P , where:

FF 0
P = {A ∈ BP | A does not occur in the head of any rule} − L,

FF d
P = {A ∈ BP | ∃A�A1 . . . Am ∈ P, ∃Ai. Ai ∈ FF

d−1
P } − L (d > 0).

When L = ∅, regarding the reference as a proposition with the propositional
Horn logic, we have

FFP = ∩i∈ω T i
P (Bp) (where T i

P stands for i-times applications to the set BP ).
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If we allow the case that there are more than two rules with a head including
different successors, which is prohibited in the set of rules of this paper, the rule
set conceives the interpretation that the reference A is both eager and lazy. Even
if such a case is involved, the properties as in the propositional Horn logic may
be of use for the treatments of references. It may be a problem to see a relation
between the lazy reference set and the set ∩i∈ωT

i
P (BP ). How we temporarily

have a set L may affect some reasonable considerations about the relation.
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Abstract. Static analysis techniques have been studied for many years
in the functional programming community, most prominently the use
of inferred types to eliminate run-time checks. In analogy, if we regard
checking whether an instance is useful for a proof as run-time checks and
we can find types that eliminate irrelevant instances, we may also be
able to prevent proof searches from checking those irrelevant instances,
thereby improving the performance. This paper introduces a method that
employs types as heuristics in proof search.

1 Introduction

Instance-based theorem proving techniques have been implemented in many the-
orem provers: [1], [2], [3], [4], and [5], among others. Some of these provers have
been shown to prove problems in some categories faster than or comparable to
resolution-based theorem provers[6]. On the other hand, resolution-based theo-
rem provers continue to lead on other problem categories. While instance-based
theorem provers are believed to have a number of advantages, such as being ca-
pable of generating models for satisfiable problems and making use of the highly
efficient SAT solvers, their run-time performance is suboptimal without guidance
from instance generation heuristics such as resolution, semantics, etc..

Static analysis techniques in compilers, such as using types to eliminate run-
time checks, have been studied for many years. In analogy, if we regard check-
ing whether an instance is useful for a proof as run-time checks, then we may
find types that prevent proof searches from checking some irrelevant instances,
thereby improving the performance. In general, static analysis techniques gener-
ate heuristics from the input, in contrast to various static transformation tech-
niques which preprocess the input. Following is a (incomplete) list of the tech-
niques used in static analysis:

Strategy Selection chooses a strategy that is believed to best suit the prob-
lem. Implementation: E[7], Vampire[8], and DCTP[5], among others.

Restriction finds instances that may be pruned from the search space. Imple-
mentation: FM-Darwin[9], Paradox[10], and OSHL-S, among others.

Ordering determines what kind of ordering can lead to contradiction faster.
Implementation: E(literal ordering), among others.



This paper introduces a method that employs inferred types from resolution as
heuristics in first-order logic proof search. The general idea is deriving a type
inference algorithm from a complete calculus, and using types to filter out a
subset of instances that are not generated by the calculus by searching only well-
typed instances. Properly designed types should bring some of the advantages
from one method to another.

2 Notations

A vector is written as [a1, . . . , an], or vertically as in (5). The ith component of a
vector v is vi. We write vn to explicitly mark that v has n components. A vector
is implicitly converted to a set. For example, in v ⊂ x. Given a signature Σ and
a set of variables Var, Term is the set of terms over Σ ∪ Var; GrTerm the set of
terms over Σ. An expression is a term or a literal. Expr is the set of expressions
over Σ ∪ Var; GrExpr the set of expressions over Σ. By default, Σ = FS(S) and
Var = V S(S), given a clause set S. Constants are nullary function symbols. The
empty clause is denoted by ∅. The function fv maps an expression to a set of free
variables occurring in that expression. fv(x) is the vector constructed from fv(x)
by sorting the element lexicographically (other total orderings should also work).
A substitution is a partial function θ : Var→ Term. fv(θ) =

⋃
v∈dom(θ) fv(θ(v)).

A substitution of variables v with terms t is denoted by [t/v]. If dom(θ) ⊂ D,
the domain extension θ|D of θ to D is defined by θ|D(v) = θ(v), if v ∈ dom(θ)
and θ|D(v) = v, if v ∈ D\dom(θ). If fv(e) 6⊂ dom(θ), eθ = eθ|dom(θ)∪fv(e).
The well-formedness requirement for a substitution θ is that θ(v) = v, for all
v ∈ fv(θ)∩dom(θ), namely, the substitution is idempotent. The well-formedness
requirement for an mgu σ of literals L,N is that fv(σ) ⊂ dom(σ) = fv(L) ∪
fv(N). The complement of a literal L is denoted by L.

3 A Theory

3.1 An Example

Example 1. S = {{P (X), Q(f(X)}, {¬P (f(Y )),¬Q(Y )}, {Q(a)}, {¬Q(f(f(a))}}.

Since S is unsatisfiable, there exists a minimal (but not necessarily minimum)
set S1 of ground instances of S that is unsatisfiable. By minimality of the
instances in S1, for all ground literals N ∈

⋃
S1, N ∈

⋃
S1. For example,

S1 = {{P (f(a)), Q(f(f(a))}, {¬P (f(a)),¬Q(a)}, {Q(a)}, {¬Q(f(f(a)))}}. If we
use a brute force method to find S1, then both X and Y are initiated to terms in
x = {a, f(a), f(f(a)), . . .}. Our goal is to restrict the instantiation of variables
to proper subsets of x given by a instantiation function I : Term→ P(GrTerm).
We establish a similar minimality requirement for I: for any literal N ∈ S and
any ground instance N1 in I(N), there exists L s.t. N1 ∈ I(L). Rewriting this
requirement as an inequality of sets, we obtain:

⋃

L∈
S

S

I(L) ⊃
⋃

L∈
S

S

I(L) (1)
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Informally speaking, all instances of literals in S should be resolvable. In the ex-
ample, the only literal in S that is unifiable with P (X) is ¬P (f(Y )). Therefore,
any instance of P (X) must have a complement, which must be an instance of
¬P (f(Y )). Hence I(¬P (f(Y ))) ⊃ I(P (X))). If I(e) = {e[t/v]|ti ∈ I(vi),v =
fv(e)}, then {f(t)|t ∈ I(Y )} ⊃ I(X). We restrict the proof search by instantiat-
ing any variable v to elements of I(v), which we refer to as the semantics of the
type of the variable v.

3.2 Algebra V

In this section, we introduce an algebra V . The motivation of V is to enable
simultaneously manipulating functions and sets, as in linear algebra. There are
several groups of notations used in this paper. Algebra V : ρ, τ type; v variable;
X term of the form [vi]

n
i=1; A,A,B, F,G,H, T,T term. Mathematics: D do-

main; x, y set; f, g function; a,b,v vector; l,m, n, o, p natural number. Logic:
u, v,X, Y variable; t term; e expression; L,N literal; C,D clause; S clause set;
a, c, f function symbol.

Definition 1. The types are: set of vectors of length n {n} ; function τ → τ ′.

Types are mainly used to define what terms are meaningful in V . To avoid the
complexity of recursive domain equations, we define families of constructors in-
dexed by natural numbers. The indices do not affect the mapping of the function
that a term denotes, but the domain and range of that function.

Definition 2. T : τ denotes that T is a term of type τ . τm,n = {m} → {n}.

∅n : {n} SumUnit λvn.∅m : {n} → {m} FSumUnit
∪n : {n} → {n} → {n} Sum ⊔m,n : τm,n → τm,n → τm,n FSum
∩n : {n} → {n} → {n} Inter ⊓m,n : τm,n → τm,n → τm,n FInter
[] : {0} ProdUnit λvn.[] : {n} → {0} FProdUnit

p = m+ n

•m,n : {m} → {n} → {p}
Prod

p = m+ n

�l,m,n : τl,m → τl,n → τl,p
FProd

pi/n : {n} → {1} Proj ◦m,n,p : τm,n → τn,p → τm,p Comp
v ⊃ fv(e)

Λvn.e : {n} → {1}
TFunc v : {1} Var

v ⊃ fv(e)

Λ−1vn.e : {1} → {n}
RTFunc

T : ρ→ τ T ′ : ρ

TT ′ : τ
App

We use parentheses to delimit terms when ambiguous. We omit subscripts and
superscripts indicating vector length and type indices when not ambiguous.
There are two kinds of terms used in the paper: a term in the set Term and
a term in V . We refer to the latter as a term of V to disambiguate only when
necessary. TFunc is called a term function; RTFunc a reverse term function.

Let us now switch context to mathematical objects. As in domain theory,
we say that a function f is continuous if x0 ⊂ x1 ⊂ . . . implies

⋃∞
i=0 f(xi) =

f(
⋃∞

i=0 xi). Define ambn = [a1, . . . , am, b1, . . . , bn], x× y = {ambn|am ∈ x,bn ∈
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y},
∏n

i=1 xi = x1 × (. . . × xn × {[]}),
⋃n

i=1 xi = x1 ∪ . . . ∪ xn,
⋂n

i=1 xi = x1 ∩
. . .∩xn, and [xi]

n
i=1 = [x1, . . . , xn]. For example, [a][f(a)] = [a, f(a)], {[a], [a′]}×

{[f(a)]} = {[a, f(a)], [a′, f(a)]}. If we define Dn = {[xi]
n
i=1|xi ∈ GrExpr}, then

the domains Dτ are defined as follows, where [Dρ → Dτ ] is the set of functions
from Dρ to Dτ .

D{n} = P(Dn) Dρ→τ = [Dρ → Dτ ]

Definition 3. An interpretation is a partial function I : Var→ P(GrTerm). An
interpretation is trivial if I(v) = ∅ for some variable v.

Given an interpretation I, the semantic function ()∗I maps a term T : τ of V to
an element of Dτ .

Definition 4. The semantic function ()∗I is defined as follows. The semantics
of function terms are given by partial evaluation.

(∅n)∗I = ∅ (λv.∅n)∗I(x) = ∅
(∪n)∗I(x)(y) = x ∪ y (⊔m,n)∗I(f)(g)(x) = f(x) ∪ g(x)
(∩n)∗I(x)(y) = x ∩ y (⊓m,n)∗I(f)(g)(x) = f(x) ∩ g(x)

([])∗I = {[]} (λv.[])∗I (x) = {[]}
(•m,n)∗I(x)(y) = x× y (�l,m,n)∗I(f)(g)(x) = f(x)× g(x)

(pi/n)∗I(x
n) = xi (◦m,n,p)

∗
I(f)(g)(x) = f(g(x))

(Λv.e)∗I(x) = {e[t/v]|t ∈ x} (v)∗I = I(v)
(Λ−1v.e)∗I(x) = {t|e[t/v] ∈ x} (FT )∗I = (F )∗I((T )∗I)

Notations such as ∅,∪,∩ are reused as both set-theoretical notations and terms
of V . A term is variable-free if there is no subterm that is a variable. Since
the denotations of variable-free terms are independent of I, we usually make
I implicit when the term is variable-free. For example, (Λ[v1].f(v1))

∗{[a]} =
{[f(a)]}, (Λ−1[v1].f(v1))

∗{[f(a)]} = {[a]}, (p1/2)
∗{[a, f(a)]} = {[f(a)]}.

I |= T = T ′ if and only if (T )∗I = (T ′)∗I . T = T ′ if and only if it holds for all
I. A subset order is defined on set terms: I |= T ⊏ T ′ if and only if (T )∗I ⊂ (T ′)∗I .
The order is extended to functions I |= F ⊏ G if and only if for all terms T ,
I |= FT ⊏ GT . T ⊏ T ′ if and only if it holds for all I. The reverse is denoted
by ⊐. F is continuous if and only if (F )∗I is continuous for all I.

We write [Ti]
n
i=1 = [T1, . . . , Tn] = T1 • . . . • Tn • [], [Fi]

n
i=1 = [F1, . . . , Fn] =

T1� . . .�Tn�λv.[]. We usually want to convert a vector to a term of the form
[vi]

n
i=1 and conversely, which we call algebraify and dealgebraify. If v is a vector

of variables, then Av is a term v1 • . . . • vn • []; if X is a term of the form [vi]
n
i=1,

then A−1X = v. As a convention, we have X = Av and v = A−1X.
We make the following auxiliary definitions, where ve = fv(e), f is a function

symbol of arity o, vf = [v1, . . . , vo], and Fn : {n} → {n} for some natural number

n. F 0
n , ∪n∅n. F k+1

n , FnF
k
n . f−1 , (Λ−1vf .f(v1, . . . , vo)). e , (Λve.e)Xe.

I(e) , (Λve.e)
∗I(ve). I(v

n) ,
∏n

i=1 I(vi). For example, if f is binary, then
f(X,Y ) = (Λ[X,Y ].f(X,Y ))[X,Y ], f−1 = Λ−1[X,Y ].f(X,Y ). We write binary
functions as infix, for example, ⊔FG is written as F ⊔G except for composition
where we write ◦FG as FG.
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It can be proved that (a) if F ⊐ G and F ⊐ H , then F ⊐ G⊔H ; (b) F⊔G ⊐ F
and F ⊔ G ⊐ G; (c) (F ⊔ G)H = FH ⊔ GH ; (d) F (G ⊔ H) = FG ⊔ FH ; (e)
[Fi]

n
i=1T = [FiT ]ni=1 (f) (λv.∅)F = λv.∅; (g) pi[Tk]nk=1 = Ti, where i ∈ {1, . . . , n}.

3.3 Constraints

Definition 5. (a) An instantiation set of an expression e is a set of ground
substitutions Θ s.t. for every θ ∈ Θ,dom(θ) ⊃ fv(e). The instance set of e w.r.t.
Θ is {xθ|θ ∈ Θ}. (b) An instantiation set of v induced by an interpretation I s.t.
dom(I) ⊃ v is the set {[t/v]|t ∈ I(v)}. (c) An instantiation set is complete for a
clause set S if the instances obtained from it are inconsistent. An interpretation
is complete if the induced instantiation set is complete.

In this section we formalize the ideas discussed in Section 3.1 in terms of V . In
the following discussion, S is a set of clauses s.t. ∅ /∈ S and for any C,D ∈ S,
fv(C) ∩ fv(D) = ∅.

Suppose that L,N ∈
⋃
S and that σ is a well-formed mgu of L,N . We require

that for every v ∈ fv(L), σ(v) 6= v, t = σ(v),v = fv(t)

I |= v ⊐ (Λv.t)X (2)

and for every u ∈ fv(L), σ(u) 6= u, t = σ(u),v = fv(t), v = vi,

I |= v ⊐ pi(Λ
−1v.t)u (3)

The apparent minimum solution to (1) is the constant function I(v) = ∅ for
any variable v. Therefore, we add the following constraints to ensure that the
solution is complete for S. Given an arbitrary partial function g : Var→ GrTerm

s.t. dom(g) ⊃ fv(S), for all v ∈ fv(S), c = g(v),

I |= v ⊐ c (4)

In effect, (4) pins down a specific class of inconsistent sets of instances which are
generated by instantiating a resolution proof to a ground resolution proof.

The algorithm for constraints generation (2), (3), and (4) is shown as follows.

Algorithm 1. (Constraints Generation)

1. Given a set of nonempty clauses S, rename so that any two clauses have no
common variables.

2. For every clause C, every literal L in C, every clause D in S, and every
literal N in D such that N and L are unifiable by mgu σ, generate constraint
(2) and (3).

3. For all variable X generate constraint (4).

Denote the constraints generated by a clause set S by cons(S). If I makes a
constraint true, then we say that I is a solution to the constraint. If any solution
to constraints K is also a solution to constraints K ′ and vice versa, then we say
that K ≡ K ′.

Next, we look at an example.
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Example 2. We choose g(X) = f(a), g(Y ) = a and generate constraints for
Example 1. Because P (X) is unifiable with ¬P (f(Y )) with mgu [f(Y )/X ], the
algorithm generates the following constraints I |= X ⊐ f(Y ), I |= Y ⊐ p1f

−1X .
Other constraints are generated similarly. We usually write the constraints in an
equivalent but more compact form. I |= X ⊐ f(Y ) ∪ p1f

−1(Y ) ∪ f(a), I |= Y ⊐
f(X) ∪ p1f

−1(X) ∪ a. We also make I implicit when not ambiguous.

Sometimes it is more compact to present a theory if we write inequality con-
straints in a vector normal form. For example, the constraints in Example 2 can
be rewritten in the vector form:

I |= X ⊐

[
Λv.f(Y ) ⊔ p1Λ

−1v.f(X)p2 ⊔ Λv.f(a)
Λv.f(X) ⊔ p2Λ

−1v.f(Y )p1 ⊔ Λv.a

]
X , where X =

[
X
Y

]
(5)

Definition 6. A normal form of constraints is I |= X ⊐ AX, where X is of the
form [vi]

n
i=1 and A is of the form [Ai]

n
i=1, where Ai is produced by the following

grammar A → λv.∅|
(
Λv.t|p(Λ−1v.t)p′

)
∗,⊔ where t ∈ Term, v ⊂ Var, p and p′

are Proj, there is no repeated terms in A, and the terms in A are ordered in a
certain total order.

3.4 Theorems1

In this section, we look at a few theorems. Theorem 1 shows that X ⊐ AX is
solvable. Theorem 2 shows that a solution to constraints cons(S) is complete for
S, which is the main result of this section. Lemma 1 shows that resolution does
not affect the solution of the constraints. If we assume that the semantics of S
is given by resolution, then Lemma 1 is analogous to preservation (or subject
reduction) of a type system.

Theorem 1. The minimum solution I to an inequality X ⊐ AX is given by
I(v) =

⋃∞
i=0(A

i)∗∅. The rhs is a fixpoint of the function f(x) = (A)∗(x).

Lemma 1. Given a set of clauses S s.t. for any clauses C,D ∈ S, fv(C) ∩
fv(D) = ∅, the binary resolvent D of two clauses C1 and C2 in S by some
well-formed mgu, cons(S) ≡cons(S ∪ {D}).

Theorem 2. Given a set of clauses S s.t. for any clauses C,D ∈ S, fv(C) ∩
fv(D) = ∅, any solution I to cons(S) is complete for S.

4 Context Free Type

Generally speaking, I may have complicated structures. We need to find a finite
representation for these sets that facilitates enumeration of terms, as one of the
purposes of types is generating terms. By Theorem 1, A is a finite representation
of the minimum solution of the constraint, but it is not very efficient as it includes

1 A long version of this paper can be found at http://cs.unc.edu/~xuh/oshls.
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RTFuncs which require pattern matching. Besides, it is also hard to generate
terms in certain order, say, the size-lexicographic order. The approach introduced
in this section converts the constraints into a grammar that produces a solution
without RTFuncs.

Given a FProd A = [Ai]
n
i=1 in the normal form, for any component A of A,

we denote the FSum of TFunc or FSumUnit by A→, and the FSum of other
terms (which contain RTFuncs) by A←, for example, A→ =

⋃n
i=1(Λv.ti) and

A← =
⋃n

i=1 pi(Λ
−1v.ti)pi. Using this notation, an inequality can be written in

the following form.
X ⊐ (A→ ⊔A←)X (6)

Example 3. Suppose (5). A→ =

[
Λv.f(Y ) ⊔ Λv.f(a)
Λv.f(X) ⊔ Λv.a

]
. A← =

[
p1Λ

−1v.f(X)p2

p2Λ
−1v.f(Y )p1

]
.

A←A→ =

[
p1Λ

−1v.f(X)Λv.f(X) ⊔ p1Λ
−1v.f(X)Λv.a

p2Λ
−1v.f(Y )Λv.f(Y ) ⊔ p2Λ

−1v.f(Y )Λv.f(a)

]
=

[
Λv.X

Λv.Y ⊔ Λv.a

]
,

by equations
pi(Λ

−1v.f(vi))Λv.f(t) = Λv.t
piΛ
−1v.f(vi)Λv.a = λv.∅

.

We generalize the idea illustrated in Example 3. A←A→ can be expanded to
an FProd of FSum of terms of the form pk(Λ−1v.t)(Λv.t′) or λv.∅. In general,
not all terms of the form pk(Λ−1v.t)(Λv.t′) can be converted to a simpler, equal
term. The inequalities shown as follows, where ll′ ∈ Pos, l ∈ Pos, can be used to
simplify them to simpler terms.

pk(Λ−1v.t)(Λv.t′) ⊏





pk(Λ−1v.t′′)pk′ σ = mgu(t′, t), σ(vk) = vk,

vk ∈ fv(t
′′), t′′ = σ(vk′ ) /∈ Var

Λv.t′′ σ = mgu(t′, t), σ(vk) = t′′

λv.∅ t′, t not unifiable

For example, if v = [X,Y ], then p1(Λ
−1v.f(f(X)))(Λv.f(Y )) ⊏ p1(Λ

−1v.f(X))p2,
p1(Λ

−1v.f(X))(Λv.f(f(Y ))) ⊏ Λv.f(Y ), p1(Λ
−1v.f(f(X)))(Λv.a) ⊏ λv.∅. If

two simplifications are applicable simultaneously, then we choose one arbitrar-
ily. The reduced term can be rearranged into an equal normal form. If the orig-
inal term is T, then we denote the normal form of the reduced term by s(T).
s(T) ⊐ T for any T.

Algorithm 2. (CFT) Given an inequality X ⊐ AX, compute Bk as follows.

B0 = A

Bk+1 = Bk ⊔ s(B
←
k B→k )

Theorem 3. (Termination) For any constraint X ⊐ AX, there is an integer N
s.t. BN = BN+1.

Lemma 2.
⋃∞

i=0(B
i
N )∗∅ =

⋃∞
i=0((B

→
N )i)∗∅.

Theorem 4. (Soundness) If I(v) =
⋃∞

i=0((B
→
N )i)∗∅, then I |= X ⊐ AX.
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Unlike A, B→N does not contain RTFuncs. Constraint X ⊐ B→N X can be
straightforwardly converted to BNF productions by syntactically converting "∪"
to "|" and "⊐" to "→". The resulting grammar generates the solution I.

Example 4. Suppose (5). B0 = A. s(A←A→) is shown in (b). B1 is shown in
(a). s(B←1 B→1 ) ⊏ B1. Therefore, we may choose N = 1. X ⊐ B→1 X is shown
in (c). A grammar is generated as shown in (d). The solution generated by this
grammar is I(v) = {[f(a)], [f(f(f(a)))], . . .} × {[a], [f(f(a))], . . .}.

[
p1Λ

−1v.f(X)p2 ⊔ Λv.f(Y ) ⊔ Λv.f(a) ⊔ Λv.X
p2Λ

−1v.f(Y )p1 ⊔ Λv.f(X) ⊔ Λv.a ⊔ Λv.Y

]

(a)[
Λv.X

Λv.Y ⊔ Λv.a

] [
X
Y

]
⊐

[
f(Y ) ∪ f(a) ∪X
f(X) ∪ a ∪ Y

]
X → f(Y )|f(a)|X
Y → f(X)|a|Y

(b) (c) (d)

5 Related Work

The (Inst-Gen) rule introduced in [11] uses unification as guide for instance
generation. The algorithms presented in [12] also make use of unification to
find blockages. [13] shows that using a proper semantics for OSHL is implicitly
performing unification. One of the differences between our approach and others
is that we infer types before proof search, which divides a theorem proving
algorithm into the static analysis stage and the run-time stage. About clause
linking, we have the following observation(probably others also have the same
observation): in order for any instance Cσ of C to be useful, each literal Lσ
in Cσ should be resolvable with some other literals. Given a set of clauses S,
a clause C, and a literal L in C, we may decompose C on L w.r.t. S to a set
of instances of C, {Cσi|i ∈ {1, 2, . . . , n}}, s.t. for any literal N in S, σi is an
mgu of L and N for some i ∈ {1, 2, . . . , n} without affecting the completeness.
Our approach generates criteria inspired by this observation. For a survey of
instance-base methods, refer to [14].

Sort inference algorithms are implemented in some finite model finders such
as Paradox[10] and FM-Darwin[9]. Sorted unification[15] uses sets of unary pred-
icates as sorts. A key difference between our approach and multi-sorted logic is
that the types are inferred from S, instead of being part of the logic itself. There-
fore, we need to guarantee that the types inferred are backward compatible with
the untyped version S. Theorems in this paper is essential for our approach
but irrelevant to a multi-sorted logic without inferred sort. Our approach can
be viewed as a type system[16] that is equipped with a type inference algo-
rithm. The difference between our type system and those that are usually found
in programming languages is that our type system is used to restrict instance
generation while type systems in programming languages are usually used to
eliminate expressions whose reduction leads to errors. In advanced compilers,
some type systems are also used to guide optimization, in which sense it is sim-
ilar to our type system. The presentation of this paper makes (very primitive)
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use of domains[17] and is loosely related to a type theory[18] in the sense that a
type system is related to a type theory.

A closely related concept to grammar is tree grammar, where the rhs is
composed of trees instead of sequences. The choice of grammar reflects the fact
that terms can be internally represented by sequences instead of trees.

6 Discussion

It is possible to refine the constraints (2) and (3) by transforming them into
FInters. We denote the FSum of rhs of all constraints (2) and (3) generated
by L by ALX. With this notation, we can combine multiple constraints (2) and
(3) generated by L into one constraint: for every L ∈ C,C ∈ S, v ∈ fv(L),
I |= vL ⊐ ⊓L∈CA

LX.
The granularity of types is the key to the efficacy of these types. CFT is useful

for some problems as shown in Table 1.2 Finer granularity may be achieved by
using enhanced grammars. These grammars are useful when a variable occurs
twice in a literal, for example, P (f(X,X)). If we have a literal ¬P (Y ), then
productions produced by CFT include Y → f(X,X) which does not reflect the
correlation between the two occurrences of X . If we make use of an enhanced
grammar to mark that X should always be instantiated to the same term, then
we have better approximation to the minimum solution. A possible solution is
adding correlation markers to correlated variables.

Table 1. Comparison of Performance with and without CFT in OSHL-S 0.5.0

Problem Set Total CFT on CFT off Difference

SYN 902 487 454 7.3%
PUZ 70 54 49 10.2%
SWV 479 136 123 10.5%

The constraints generated by CFT may have redundancy which affects the
time and space complexity of the term generator. We implemented the following
algorithms to reduce redundancy. Suppose that X ⊐ T, where X = [vk]nk=1,T =
[Tk]nk=1, Ti =

⋃m
s=1 Ti,s, i ∈ {1, 2, . . . , n}. In each iteration of Algorithm 2, if

Ti,o = vj and Tj,p = vi, then put vi, vj into an equivalence class; choose a
representative for each equivalence class; for every representative vi and vj 6= vi

in the equivalence class, set Ti to Ti ∪ Tj and Tj to vi and replace vj by vi in
T; and for every Ti s.t. Ti,o = vi for some o, remove vi from Ti. A variable is
nontrivial if the rhs of its production contains a term containing only variables
that are nontrivial. We slightly modify constraint (4): for some T = [Ti]

n
i=1,

2 Problem sets: TPTP 3.2.0, unsatisfiable or theorem only. Time limit: 30s. Running
environment: P4 2.4GHz, 512M, Windows XP, Sun JDK 6.0, OSHL-S 0.5.0, Prover-
Tools. Website for the prover and tools: http://cs.unc.edu/~xuh/oshls/.
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where Ti = c or ∅, for i ∈ {1, 2, . . . , n} so that there is no trivial variable, X ⊐
T. To find a minimal T, first mark all trivial variables; then, break a chain of
trivial variables by adding a constant to one of them; repeat the process until
there is no trivial variable. Other optimizations include inlining productions that
contain no variable and removing redundant terms.
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