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Abstract. Cadoli et al [BCM04,MC05,CM04] noted the potential of
first order automated reasoning for the purpose of analysing constraint
models, and reported some encouraging initial experimental results. We
are currently pursuing a very similar research program with a view to
incorporating deductive technology in a state of the art constraint pro-
gramming platform. Here we outline our own view of this application
direction and discuss new empirical findings on a more extensive range
of problems than those considered in the previous literature. While the
opportunities presented by reasoning about constraint models are indeed
exciting, we also find that there are formidable obstacles in the way of a
practically useful implementation.

1 Constraint Programming

A constraint satisfaction problem (CSP) is normally described in the following
terms: given a finite set of decision variables v1, . . . , vn with associated domains
D1, . . . , Dn, and a relation C(v1, . . . vn) between the variables, a state is an
assignment to each variable vi of a value di from Di. A state is a solution to
the CSP iff C(d1, . . . , di) holds. In practice, C is the conjunction of a number of
constraints each of which relates a small number of variables. It is common to
seek not just any solution, but an optimal one in the sense that it minimises the
value of a specified objective function.

Logically, C is a theory in a language in which the vi are proper names
(“constants” in the usual terminology of logic). A state is an interpretation of
the language over a domain (or several domains, if the language is many-sorted)
corresponding to the domains of the variables, and a solution is an interpretation
that satisfies C. On this view, CSP reasoning is the dual of theorem proving: it
is seeking to establish possibility (satisfiability) rather than necessity (unsatisfi-
ability of the negation).

Techniques used to solve CSPs range from the purely logical, such as SAT
solving, through finite domain (FD) reasoning which similarly consists of a back-
tracking search over assignments, using a range of propagators appropriate to
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different constraints to force some notion of local consistency after each assign-
ment, to mixed integer programming using a variety of numerical optimisation
algorithms. Hybrid solution methods, in which different solvers are applied to
sub-problems, include SMT (satisfiability modulo theories), column generation,
large neighbourhood search and many more or less ad hoc solver combinations
for specific purposes. The whole area has been researched intensively over the
last half century, generating an extensive literature from the automated reason-
ing, artificial intelligence and operations research communities. The reader is
referred to [DC03,MS98] for an introduction to the field.

Constraint programming is an approach to designing software for CSPs,
whereby the search is controlled by a program written in some high-level lan-
guage (sometimes a logic programming language, but in modern systems often
C++ or something similar) and specific solvers may be used to evaluate particu-
lar predicates or perform propagation steps, or may be passed the entire problem
after some preprocessing. The constraint programming paradigm gives a great
deal of flexibility, allowing techniques to be tailored to problems, while at the
same time accessing the power and efficiency of high-performance CSP solvers.

1.1 Separating Modelling from Solving

Engineering a constraint program for a given problem is traditionally a two-phase
process. First the problem must be modelled. This is a matter of determining
what are the decision variables, what are their domains of possible values and
what constraints they must satisfy. Then a program must be produced to evaluate

the model by using some solver or combination of solvers to search for solutions.
This program may be written by a human programmer, or derived automati-
cally from the model, or some combination of the two. Most of the Constraint
Programming (CP) and Operations Research (OR) literature concerns prob-
lem solving, assuming that “the problem” resulting from the modelling phase is
given.

In recent years, there has been a growing realisation of the importance of
modelling as part of the overall process, so modern CP or Mathematical Pro-
gramming (MP) platforms feature a carefully designed modelling language such
as ILOG’s OPL [Hen99] or AMPL from Bell Labs [FGK02]. Contemporary work
on modelling languages such as ESRA [FPg04], ESSENCE [FGJ+07] and Zinc
[MNR+08] aims to provide a rich representation tool, with primitives for ma-
nipulating sets, arrays, records and suchlike data structures and with the full
expressive power of (at least) first order quantification. It also aims to make the
problem representation independent of the solver(s) so that one and the same
conceptual model can be mapped to a form suitable for solution by mixed integer
programming, by SAT solving or by local search.
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1.2 Zinc

In the present report, the modelling language used will be Zinc, which is part of
the G12 platform currently under development by NICTA (Australia).1

The G12 platform provides a series of languages: Mercury, Cadmium and
Zinc. Mercury is a constraint logic programming language, Cadmium a rather
specialised programming language for syntax transformations based on term
rewriting, and Zinc a modelling language in which problems are specified in
an algorithm-independent way [MNR+08]. It is a typed (mostly) first order lan-
guage, with basic types int, float and bool, and user-defined finite enumerated
types. To these are applied the set-of, array-of, tuple, record and subrange
type constructors. These may be nested, with some restrictions mainly to avoid
such things as infinite arrays and explicitly higher order types (functions with
functional arguments). Zinc also allows a certain amount of functional program-
ming, which is not of present interest. It provides facilities for declaring decision
variables of most types and constants (parameters) of all types. Standard math-
ematical functions such as + and sqrt are built in. Constraints may be written
using the expected comparators such as == and ≤ or user-defined predicates
to form atoms, and the usual boolean connectives and quantifiers (over finite
domains) to build up compounds. Assignments are special constraints whereby
parameters are given their values. The values of decision variables are not nor-
mally fixed in the Zinc specification, but have to be found by some sort of search.

It is normal to place the Zinc model in one file, and the data (parameters,
assignments and perhaps some enumerations) in another. The model tends to
stay the same as the data vary. For example, without changing any definitions
or general specifications, a new schedule can be designed for each day as fresh
information about orders, jobs, customers and prices becomes available.

The user support tools provided by the G12 development environment should
facilitate debugging and other reasoning about models independently of any
data. However, since the solvers cannot evaluate a model until at least the do-
mains are specified, it is unclear how this can be done. Some static visualisation
of the problem, such as views of the Zinc-level constraint graph, can help a little,
but to go much further we need a different sort of reasoning: we need first order
deduction.

1 See http://nicta.com.au/research/projects/constraint programming platform.
We have benefited greatly from being in a team that has included Michael Norrish,
Rajeev Gore, Jeremy Dawson, Jia Meng, Anbulagan and Jinbo Huang, and from the
presence in the same laboratory of an AI team including Phil Kilby, Jussi Rintanen,
Sylvie Thiébaux and others. The G12 project involves well over 20 researchers,
including Peter Stuckey, Kim Marriott, Mark Wallace, Toby Walsh, Michael Maher,
Andrew Verden and Abdul Sattar. The details of our indebtedness to these people
and their colleagues are too intricate to be spelt out here.
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2 Deductive Tasks

There is no good reason to expect a theorem prover to be used as one of the
solvers for the purposes of a constraint programming platform such as G12.
In many practical cases the main issue is optimality, the existence of solutions
being obvious, and it is not clear how theorem proving can help with this. More-
over, the reasoning required to solve CSPs typically amounts to propagation of
constraints over finite domains rather than to chaining together complex infer-
ences, and for this purpose SAT solvers and the like are useful, but traditional
first order provers are not.2 However, for analysing the models before they have
been grounded by data, first order deduction is the only option. Previous work
[BCM04,MC05,CM04] has identified some tasks and practical experiences using
a first-order theorem prover. A serious deficiency of the previous accounts, how-
ever, is the absence of numerical reasoning. Zinc, like other modelling languages,
supports integer domains, and even floating point ones. These are crucial: there
is no hope of dealing adequately with industrial problems of scheduling and re-
source management without numbers. However, as we show below, even very
simple integer arithmetic poses major difficulties for first-order theorem provers.

We are interested in the following problems, which are all capable of automa-
tion.

2.1 Proof that the Model is Inconsistent

Inconsistency can indicate a bug, or merely a problem overconstrained by too
many requirements. It can arise in “what if” reasoning, where the programmer
has added speculative conditions to the basic description or it can arise where
partial problem descriptions from different sources have been combined without
ensuring that their background assumptions mesh.

A traditional debugging move, also useful in the other cases of inconsistency,
is to find and present a [near] minimal inconsistent core: that is, a minimally
inconsistent subset of the constraints. The problem of “axiom pinpointing” in
reasoning about large databases is logically similar, but in the constraint pro-
gramming case the number of possible axioms tends to be comparatively small
and the proofs of inconsistency comparatively long. The advantage of finding
a first order proof of inconsistency, rather than merely analysing nogoods from
a backtracking search, is that a proof can be presented to a programmer, thus
answering the question of why the particular subset of constraints is inconsistent.

2 The “typical” case is not the only case, of course. The satisfiability problem for
Zinc is undecidable, since the language can express Diophantine equations over the
unbounded domain of the integers. For Zinc models (without data) it is even easier
to find undecidable theories, since the problem of deciding whether an arbitrary first
order formula has a finite model is easily encoded, as are special cases like the word
problem for semigroups. Sometimes, therefore, theorem proving may be the best we
can do, but such cases do not arise in industrial process scheduling or other common
CP applications.
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2.2 Proof of Symmetry

The detection and removal of symmetries is of enormous importance to finite
domain search. Where there exist isomorphic solutions, there exist also isomor-
phic subtrees of the search tree. In some cases almost all of the search can be
eliminated if the symmetries are detected early enough. A standard technique
is to introduce “symmetry breakers”, which are extra constraints imposing con-
ditions satisfied by some but not all (preferably by exactly one) of the solutions
in a symmetry class. Symmetry breakers prevent entry to subtrees of the search
tree isomorphic to the canonical one.

It may be evident to the constraint programmer that some transformation
gives rise to a symmetry. Rotating or reflecting the board in the N Queens prob-
lem would be an example. However, other cases may be less obvious, especially
where there are side constraints that could interfere with symmetry. Moreover,
it may be unclear whether the intuitively obvious symmetry has been properly
encoded or whether in fact every possible solution can be transformed into one
which satisfies all of the imposed symmetry breakers.

It is therefore important to be able to show that a given transformation de-
fined over the state space of the problem does actually preserve the constraints,
and therefore that it transforms solutions into solutions. Since symmetry break-
ers may be part of the model rather than part of the data, we may wish to
prove such a property independently of details such as domain sizes. There is an
example in the next section.

2.3 Redundancy Tests

A redundant constraint is one that is a logical consequence of the rest. It is
common to add redundant constraints to a problem specification, usually in order
to increase the effect of propagation at each node of the search tree. Sometimes,
however, redundancy may be unintentional: this may indicate a bug—perhaps
an intended symmetry-breaker which in fact changes nothing—or just a clumsy
encoding.

Where redundant constraints are detected, either during analysis of the model
or during preprocessing of the problem including data, this might usefully be
reported to the constraint programmer who can then decide whether such re-
dundancy is intentional and whether the model should be adjusted in the light
of this information. It may also be useful to report irredundancy where a sup-
posedly redundant constraint has been added: the programmer might usefully
be able to request a redundancy proof in such a case.

2.4 Functional Dependency

Functions may also be redundant, in the sense that the values of certain functions
may completely determine the value of another for all possible arguments. As
in the case of constraint redundancy, functional dependence may be intentional

8



or accidental, and either way it may be useful to the constraint programmer to
know whether a function is dependent or not.

Consider graph colouring as an example. It is obvious that in general (that
is, independently of the graph in question) the extensions of all but one of the
colours are sufficient to fix the extension of the final one, but that this is not true
of any proper subset of the “all but one”. In the presence of side constraints,
however, and especially of symmetry breakers, this may not be obvious at all.
In such cases, theorem proving is the appropriate technology.

2.5 Equivalence of Models

It is very common in constraint programming that different approaches to a
given problem may result in very different encodings, expressing constraints
in different forms and even using different signatures and different types. The
problem of deciding whether two models are equivalent, even in the weak sense
that solutions exist for the same values of some parameters such as domain sizes,
is in general hard. Indeed, in the worst case, it is undecidable. However, hardness
in that sense is nothing new for theorem proving, so there is reason to hope that
equivalence can often enough be established by the means commonly used in
automated reasoning about axiomatisations.

Concrete applications of proving equivalence stem from all sorts of trans-
formations of constraint models. For instance, one might (automatically) de-
tect that certain variables must receive different values according to the current
model and pose a global all different constraint instead. Other transforma-
tions are inspired by optimising compiler technology, such as loop-invariants
hoisting (exchange “forall” and “exists” loops), common subexpression elim-
ination, algebraic rewriting (theory specific equational rewriting) and partial
evaluation (see [MKB+05]).

2.6 Simplification

A special case of redundancy, which in turn is a special case of model equivalence,
occurs in circumstances where the full strength of a constraint is not required.
A common example is that of a biconditional (⇔) where in fact one half of it
(⇒) would be sufficient. Näıve translation between problem formulations can
easily lead to unnecessarily complicated constraints such as a < sup(S) which is
naturally rendered as
∃y(∀z((∀x ∈ S(x ≤ z)) ↔ y ≤ z) ∧ a < y),
while the simpler ∃y ∈ S(x < y) would do just as well. Formal proofs of the
correctness of simplifications can usefully be offered to the programmer at the
model analysis stage.
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int: N;

array[1..N] of var 1..N: q;

constraint forall (x in 1..N, y in 1..x-1)

(q[x] != q[y]

∧ (q[x]+x != q[y]+y

∧ (q[x]-x != q[y]-y);

solve satisfy;

Fig. 1. Zinc model for the N Queens problem

int: N;

array[1..N] of var 1..N: q;

constraint forall (x in 1..N, y in 1..x where x != y)

(q[x] != q[y]

∧ (q[x]+x != q[y]+y

∧ (q[x]-x != q[y]-y);

solve satisfy;

Fig. 2. Alternative model for the N Queens problem

3 Experiments

We conducted some experiments in order to evaluate the feasibility of state of the
art automated reasoning technology to solve deductive proof tasks as explained
in Section 2.

3.1 N-Queens

We consider the N Queens problem, a staple of CSP reasoning. N queens are to
be placed on an a chessboard of size N ×N in such a way that no queen attacks
any other along any row, column or diagonal. The model is given in Figure 1
and the data consists of one line giving the value of N (e.g. ‘N = 8;’).

Index Refinement As a very simple example of equivalence of models, con-
sider the formulation of the n-queens problem in Figure 2. Notice how it differs
slightly from the one in Figure 1 in the use of indexing. One may expect that
re-formulations like these occur frequently and their correctness should be rather
straightforward to establish automatically.

Alldifferent Constraint. The alldifferent constraint on a set of variables
requires them to take pairwise different values. Because specialized, efficient con-
straint solving techniques have been developed for alldifferent, it may make
sense to replace or enrich parts of a given constraint model by an alldifferent

constraint. Clearly, in our example, any solution of the n-queens problem ob-
viously satisfies the alldifferent constraint for {q[1], . . . , q[N ]}. It is easy to
formulate this as a proof task: simply add the constraint

10



not(forall (x in 1..N, y in 1..x-1) (q[x] != q[y])) to the con-
straint model and prove unsatisfiability. Of course, a sufficiently rich set of ax-
ioms for the underlying theories (integer arithmetic, e.g.) has to be provided to
the prover as well.

Detecting Symmetries Suppose that as a result of inspection of this problem
for small values of N it is conjectured, either automatically or by the program-
mer, that the transformation s[x] = q[n+1−x] is a symmetry. We wish to prove
this for all values of N . That is, we need a first order proof that the constraints
with s substituted for q follow from the model as given and the definition of s.
Intuitively, this is obvious, as it corresponds to the operation of reflecting the
board, but intuitive obviousness is not proof and we wish to see what a standard
theorem prover makes of it.

One prover we took off the shelf for this experiment was Prover9 by McCune
[McC].3 A certain amount of numerical reasoning is required, for which addi-
tional axioms must be supplied. The full theory of the integers is not needed:
algebraic properties of addition and subtraction, along with numerical order,
suffice. All of this is captured in the theory of totally ordered abelian groups
(see e.g. [MA88]) which is quite convenient for first order reasoning [Wal01].
We tried two encodings: one in terms of the order relation ≤ and the other an
equational version in terms of the lattice operations max and min.

The first three goals:
(1 ≤ x ∧ x ≤ n) ⇒ 1 ≤ s(x)
(1 ≤ x ∧ x ≤ n) ⇒ s(x) ≤ n

s(x) = s(y) ⇒ x = y

are quite easy for Prover9 when s(x) is defined as q(n + 1− x). By contrast, the
other two

(1 ≤ x ∧ x ≤ n) ∧ (1 ≤ y ∧ y ≤ n) ⇒ s(x) + x 6= s(y) + y

(1 ≤ x ∧ x ≤ n) ∧ (1 ≤ y ∧ y ≤ n) ⇒ s(x) − x 6= s(y) − y

are not provable inside a time limit of 30 minutes, even with numerous help-
ful lemmas and weight specifications. It makes little difference to these results
whether the abelian l-group axioms are presented in terms of the order relation
or as equations.

To push the investigation one more step, we also considered the transforma-
tion obtained by setting s to q−1. This is also a symmetry, corresponding to
reflection of the board about a diagonal. This time, it is necessary to add an ax-
iom to the Queens problem definition, as the all-different constraint on q is not
inherited by s. The reason is that for all we can say in the first order vocabulary,
N might be infinite—it could be any infinite number in a nonstandard model of
the integers—and in that case a function from {1 . . .N} to {1 . . .N} could be
injective without being surjective.

The immediate fix is to add surjectivity of the ‘q’ function to the problem
definition, after which in the relational formulation Prover9 can easily deduce

3 Previous work [CM04,CM05] user Otter for similar problems in graph coloring; its
successor Prover9 is similar but generally superior.
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the three small goals and the first of the two diagonal conditions. The second is
beyond it, until we add the redundant axiom

x1 − y1 = x2 − y2 ⇒ x1 − x2 = y1 − y2

With this, it finds a proof in a second or so. In the equational formulation, no
proofs are found in reasonable time.

We also tried the Vampire prover (version 8) and came to the same conclu-
sions as with Prover9. With redundant axioms the proof is found easily, without
them, not. One message from this experiment is that care must be taken to avoid
implicit appeal to the fact that domains are finite. Another is that a range of
arithmetical reasoning tricks and transformations will have to be identified and
coded into the system. The above transformation of equalities between differ-
ences (and its counterparts for inequalities) illustrates this.

An encouraging feature is that a considerable amount of the reasoning turns
only on algebraic properties of the number systems, and so may be amenable to
treatment by standard first order provers.

A perhaps even more natural idea is to try theorem provers with native
support for arithmetic reasoning instead of “general” first-order logic theorem
provers. The development of such provers is still an active research topic, see,
e.g., [BFT08,KV07,WP06,Rüm08], but some of the available SMT-solvers (Satis-
fiability Modulo Theories [RT06]) already support the logic and theories that we
need. To explain, the proof obligation in the example is an entailment between
two universally quantified formulas with free functions symbols, over the theory
of linear integer arithmetic. SMT solvers are not full-fledged theorem provers for
first-order logic, and on proof tasks of that form, current SMT solvers need to
rely on (incomplete) instantiation heuristics to remove the universal quantifiers
in the premise of an entailment. Despite that, in the example, the two SMT
solvers that we tried, CVC3 [BT07] and Yices, had no difficulties even with the
original problem formulation, the one without any additional redundant axioms
(runtimes: less than one second). We found this a very encouraging result.

We also tried the default solver that comes with the G12 platform. Like any
constraint solver, it is not a theorem prover and cannot prove that the symmetry
property holds for all values of the board size N . However, we found it instructive
to prove, with G12, the symmetry property with specific values for N . The ratio-
nale behind this exercise is the methodology to first try some small instances, to
see if a conjecture is trivially falsified. Of course this is pointless in this example,
but in general it may help to find bugs in the coding, or counterexamples for
non-valid conjectures.

Table 1 summarizes the experimental results, for all problems described
above. The results indicate that the SMT solvers, YICES and CVC3, perform
much better on these problems than the theorem provers. Moreover, the formu-
lations for the theorem provers are highly sensitive to the axiomatization of the
background theory. Without a minimal “right” set of axioms, the proof will not
be found or proof times increase drastically.
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Problem E E-Darwin SPASS Vampire YICES CVC3 G12

alldifferent

implied
- < 1 1 < 1 < 1 < 1 < 1 (N = 10)

5 (N = 12)
137 (N = 14)

> 600 (N = 16)

Index
refinement

- - - (⇔)
6 (⇐)

12 (⇒)

- < 1 < 1 < 1 (N = 10)
8 (N = 12)

242 (N = 14)
> 600 (N = 16)

N-Queens
symmetry

- (-) - (3) - (-) - (6) < 1 < 1 < 1 (N = 10)
6 (N = 12)

182 (N = 14)
> 600 (N = 16)

Table 1. Systems on N-Queens related problems. All times in seconds. An entry “-”
means “no solution found within 100 seconds”. N-Queens symmetry: entries in paren-
thesis “(·)” refer to “tweaked” problem formulations, with redundant axioms; Index
refinement: (⇔): proof obligation is equivalence; (⇐) and (⇒): one direction only. E,
E-Darwin and Vampire can’t prove the latter either.

3.2 Puzzle

A toy example of redundant constraints is found in the following logic puzzle
[Ano]:

Five couples celebrate their wedding anniversaries. Their surnames are John-
stone, Parker, Watson, Graves and Shearer. The husbands’ given names are
Russell, Douglas, Charles, Peter and Everett. The wives’ given names are
Elaine, Joyce, Marcia, Elizabeth and Mildred.

1. Joyce has not been married as long as Charles or the Parkers, but longer
than Douglas and the Johnstones.

2. Elizabeth married twice as long ago as the Watsons, but half as long as
Russell.

3. The Shearers married ten years before Peter and ten years after Marcia.

4. Douglas and Mildred have been married for 25 years less than the Graves
who, having been married for 30 years, are the couple who have been
married the longest.

5. Neither Elaine nor the Johnstones married most recently.

6. Everett has been married for 25 years

Who is married to whom, and how long have they been married?

Parts of clue 1, that Joyce has been married longer than Douglas and also longer
than the Johnstones, are deducible from the other clues. Half of clue 5, that
Elaine has not been married the shortest amount of time, is also redundant. The
argument is not very difficult, and is left for the reader’s amusement. A finite
domain constraint solver has no difficulty with it.
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Presenting the problem of deriving any of these redundancies to Prover9 is
not easy. The small amount of arithmetic involved is enough to require a painful
amount of axiomatisation, and even when the addition table for the natural
numbers up to 30 is completely spelt out, the derivation is beyond the abilities
of the prover.

If the fact that the numbers of years are all in the set {5, 10, 15, 20, 25, 30} is
given as an axiom, and extra arguments are given to all function and relation
symbols to prevent unification across sorts, then of course the redundancy proofs
become easy for the prover. However, it is unreasonable to expect that so much
help will be forthcoming in general. Even requiring just a little of the numerical
reasoning to be carried out by the prover takes the problem out of range.

Part of the difficulty is due to the lack of numerical reasoning, but as before,
forcing the problem statement into a single-sorted logic causes dramatic inef-
ficiency. It is also worth noting that the proofs of redundancy are long (some
hundreds of lines) and involve nearly all of the assumptions, indicating that ax-
iom pinpointing is likely to be useless for explaining overconstrainedness at least
in some range of cases.

3.3 Radiation

The background for this example was given in [BBBS07], which considers the
problem of decomposing an integer matrix into a positively weighted sum of bi-
nary matrices that have the so-called consecutive-ones property. We do not need
the details of this problems here. Instead it suffices to say that the problem is
well-known and of practical relevance. It has an important application in cancer
radiation therapy treatment planning: the sequencing of multileaf collimators
to deliver a given radiation intensity matrix, representing (a component of) the
treatment plan.

The proof task here is along the lines as described in Section 2.6 above. It
requires to show that an occurrence of the “max” function between integers can
be replaced by stipulating the existence of a lower bound instead. This leads to
more efficient constraint solving. The solutions are preserved, essentially, because
the objective is to compute minimal solutions, and maxima and upper bounds
leading to minimal solutions coincide then (in this example).

Besides having to prove that minimal solutions are preserved, an additional
complication comes from a rather syntactically deep embedding of the max func-
tion in the constraint model. Furthermore, it occurs within a summation formula,
and this way stands for a parametric number n, the summation bound, of usages.
In addition, it occurs within a predicate definition, whose arguments are unary
arrays, and the predicate is “invoked” by taking sub-arrays of certain globally
defined non-unary arrays. Because it is a non-trivial exercise already to recast
this constraint model in a predicate logic formula we started with a coarse ab-
straction of the model. We defined five proof tasks, whose differences are shown
in the following table:
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Problem# model max(x, y, n) ⇔ model ub(x, y, n) ⇔

(1) n = max(x, y) ub(x, y, n)

(2) max(x, y) ≤ n ∃z (ub(x, y, z) ∧ z ≤ n)

(3) sum(max(x, y)) ≤ n ∃z (ub(x, y, z) ∧ sum(z) ≤ n)

(4) c + max(x, y) ≤ n ∃z (ub(x, y, z) ∧ c + z ≤ n)

(5) c + sum(max(x, y)) ≤ n ∃z (ub(x, y, z) ∧ c + sum(z) ≤ n)

The second and third column define different abstractions of the original
constraint model, models in terms of “max” and of “upper bound”, respectively.
It is not difficult to define minimal solutions. For the “max” version, for instance,
one defines:

∀x, y, z minsol model max(x, y, n) ⇔

(model max(x, y, n) ∧ ∀z (model max(x, y, z) ⇒ n ≤ z)) .

The definition for “minsol model ub(x, y, n)”, the minimal solutions in terms of
upper bounds, is given analogously. The proof task then is to show that together
with a (straightforward) axiomatization of “max” and “ub”, and possibly more
axioms, the equivalence

∀x, y, z (minsol model max(x, y, n) ⇔ minsol model ub(x, y, n))

follows. Table 3.3 contains the results.

Conclusions

While, as noted, the investigation is still preliminary, some conclusions can al-
ready be drawn. Notably, work is required on expanding the capacities of con-
ventional automatic theorem provers:

1. Numerical reasoning, both discrete and continuous, is essential. The the-
orems involved are not deep—showing that a simple transformation like
reversing the order 1 . . .N is a homomorphism on a model or restricting
attention to numbers divisible by 5—but are not easy for standard theorem
proving technology either. Theorem provers will not succeed in analysing
constraint models until this hurdle is cleared.

2. Other features of the rich representation language also call for specialised
reasoning. Notably, the vocabulary of set theory is pervasive in CSP models,
but normal theorem provers have difficulties with the most elementary of set
properties. Some first order reasoning technology akin to SMT, whereby spe-
cialist modules return information about sets, arrays, tuples, numbers, etc.
which a resolution-based theorem prover can use, is strongly indicated. Rea-
soning modulo a background theory, which originated with the introduction
of theory resolution, is the obvious starting point, but is it enough?
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Problem E E-Darwin SPASS YICES CVC3

⇔ 13 7 1 - -
(1) ⇒ 2 4 1 - -

⇐ 51 2 1 1 1

⇔ - - - - -
(2) ⇒ - - 2 - -

⇐ - - 2 - -

⇔ - - - - -
(3) ⇒ - - 23 - -

⇐ - - - - -

⇔ - - - - -
(4) ⇒ - - 2 - -

⇐ - - - - -

⇔ - - - - -
(5) ⇒ - - - - -

⇐ - - - - -
Table 2. Systems on abstractions of the radiation problem. All times in seconds. ⇔:
proof obligation is equivalence, as stated above; ⇐ and ⇒: one direction only. An entry
“-” means “no solution found within 100 seconds”.

3. Many-sorted logic is absolutely required. There are theorem provers able to
exploit sorts, but despite decades of literature on the subject, many still
do not. A telling point is that TPTP still does not incorporate sorts in its
notation or its problems.

4. Constraint models sometimes depend on the finiteness of parameters. Sim-
ple facts about them may be unprovable without additional constraints to
capture the effects of this, as illustrated by the case of the symmetries of the
N Queens problem. This is not a challenge for theorem provers as such but
rather for the process of preparing constraint models for first order reasoning.

5. In some cases, proofs need to be presented to human programmers who
are not working in the vocabulary of theorem proving, who are not logi-
cians, and who are not interested in working out the details of complicated
paramodulation inferences. Despite some efforts, the state of the art in proof
presentation remains unsatisfactory. This must be addressed somehow.4

Despite the above challenges, and perhaps in a sense because of them, con-
straint model analysis offers an exciting range of potential rôles for automated
deduction. Constraint-based reasoning has far wider application than most can-
vassed uses of theorem provers, such as software verification, and certainly con-
nects with practical concerns much more readily than most of [automated] pure
mathematics. Reasoning about constraint models without their data is a niche

4 The IPV tool associated with TPTP marks a good recent step towards addressing it.
More in the same style needs to be the object of wider research: any serious theorem
prover should routinely come with an advanced proof presentation package.
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that only first (or higher) order deductive systems can fill. Those of us who
are concerned to find practical applications for automated reasoning should be
working to help them fill it.5
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