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Abstract

In this paper, we study an efficient equality computatioroinreection tableaux,
and give a new variant of Brand, Bachmair-Ganzinger-Vooerénd Paskevich’s
modification methods, where the symmetry elimination raleéver applied. As
is well known, effective equality computing is very difficuh a top-down theo-
rem proving framework such as connection tableaux, due tdc estriction to
re-writable terms. The modification method with orderingistoaints is a well-
known remedy for top-down equality computation, and Paskeadapted the
method to connection tableaux. However the improved madifio method still
causes essentially redundant computation which origsnizitea symmetry elim-
ination rule for equational clauses. The symmetry elimigratmay produce an
exponential number of clauses from a given single claus&hihevitably causes
a huge amount of redundant backtracking in connectionaallein this paper, we
study a simple but effective remedy, that is, we abandon sygtmetry elimina-
tion for clauses and instead introduce new equality infegemles into connection
tableaux. These new inference rules have a possibilitylieaing efficient equal-
ity computation, without losing the symmetry property olatity, which never
cause redundant backtracking nor redundant contrap@sitisnputation. We im-
plemented the proposed methods in a sophisticated provieAB@vhich is orig-
inally designed to finding logical consequences, and showebngnary experi-
mental results for TPTP benchmark problems. This researdow in progress,
thus the experimental results provided in this paper artatiea ones.

1 Introduction

In this paper, we study an efficient equality computationanrection tableaux, and
give a variant of modification methods investigated by Bri@jdBachmair-Ganzinger-
Voronkov [1] and Paskevich [9]. We investigate a novel madifion method such that
a symmetry elimination rule is never applied.

1This research was partially supported by the Grant-in-Adédnf The Ministry of Education, Science and
Culture of Japan ((A) N0.20240016)
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Figure 1: Connection Tableaux for Modification with ordgrconstraints

As is well known, effective equality [1, 3] computing is vedifficult in a top-down
theorem proving framework such as connection tableauxd,to a strict restriction
to re-writable terms [12]. The modification method propobgdrand has the great
possibility for improving top-down equality computatioBachmair, Ganzinger and
Voronkov improved Brand’s method with ordering constrajraind Paskevich adapted
connection tableau calculus to the modification methodgusidering. However the
improved connection tableaux still causes redundant ceatipn which is essentially
involved by a symmetry elimination rule for equational das. The symmetry elimi-
nation may produce an exponential number of clauses fronemgingle clause, which
inevitably causes a huge amount of redundant backtracki@g@nnection Tableaux.

LetS; be asetof clauses—P, PVQVa ~ b, b % a, -QV P}. The modification
method transforms; into the following set of clauses with ordering constraints

Cy: =P

Co: (PVQVa~ur Vbru) (a>uiAb>u)
Cs: (P\/Q\/bzuz\/a;zéuQ)-(b>-uz/\aEU2)
Cy: (b;zém\/a;zém)v(biu;;/\aiu;;)

Cs: -QVP

Ref: z~z (Reflexivity Axiom)

A clause with ordering constraints takes the fornob whereD is an ordinary clause
andJ is a conjunction of ordering constrainds>- ¢, s = t or s = t. The ordering
constraint of D - ¢ is expected to be satisfiable together withNotice that the above
two clauses’s andC'; are produced from the single clauBe/ Qv a =~ b by symmetry
elimination rule (more precisely, together with transitihelimination rule). Figure 1
depicts two consecutive tableaux in a connection tableatixation, where we assume
the ordering >~ a over constants. The left tableau fails to be closed becégsgdal

a % ug Vviolates the ordering constraint= w3, where the variables is substituted
with b. The failure of derivation invokes backtracking, and euveally replaces the
tableau claus€’; below the top claus€’; with the clause’s. The right tableau in
Fig. 1 succeeded in being closed, and simultaneously satisfe ordering constraints.
Notice that there are identical subtableaux below the gpah both left and right
tableaux. Unfortunately, none of well-known pruning methosuch as folding-up/C-
reduction or local failure caching, can prevent the reduhdaplicated computation,
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because the clauge, containingQ in the left tableau is replaced withs in the right
tableau. Such a redundant computation essentially otiggna the duplication of a
given clause by symmetry elimination.

In this paper, we study a simple but effective remedy, thatésabandon such sym-
metry elimination of clauses, and instead introduce nevaktyunference rules into
connection tableaux. These new inference rules can aciffiernt equality compu-
tation, without losing the symmetry property of equalityieh never cause redundant
backtracking nor redundant contrapositive computatidnalfy, we evaluate the pro-
posed method through experiments with TPTP benchmark @bl Paskevich [9]
also gave a new connection tableau calculus which uses Eadulation instead
of symmetry elimination. Paskevich’'s paramodulationdaasonnection calculus is
very sophisticated, but seems to be a bit complicated afiidudifin efficient imple-
mentation. Although the calculus proposed in this papeupedicially a little bit
complicated, the underlying principle is very simple, andasy to implement. At last,
we emphasize that this research is now in progress, In tlgerpae show just some
tentative results.

2 Preliminaries

We give some preliminaries according to Paskevich [9]. Ayleage considered in this
paper is first-order logic with equality in clausal form chauseis a multi-set of literals,
usually written as a disjunctioh; Vv ...V L,,. The empty clause is denoted as

The equality predicate is denoted by the symisol We abbreviate the negation
—(s = t) ass # t. We consider equalities as unordered pairs of terms; thatisb and

~ a stand for the same formula. As is well known, the equalityhigracterized by the
congruence axiom$ consisting of four axioms, i.eteflexivity, symmetrytransitivity
andmonotonicity The symbok- will denote “pseudo-equality”, i.e., a binary predicate
without any specific semantics. We utilizein order to replace the symbsiwhen we
transform a clause set into a logic without equality. Thesomf arguments becomes
significant here.a ~ b andb ~ a denote different formulas. The expressiont ¢
stands for-(s ~ t).

We denote non-variable terms ly, nv; andnvs, and also arbitrary terms ky
r, s, t, uw andv. Variables are denoted hy y andz. Substitutions are denoted byand
0. The result applying a substitutianto an expressioy is denoted byo. We write
E[s] to indicate that a terma occurs inE, and also writeF'[t] to denote the expression
obtained fromFE by replacing one occurrence ofith ¢.

We use an ordering constraint as defined in Bachmair et alAXonstraintis a
conjunction ofatomic constraints = ¢, s > t or s = t. The lettersy and¢ denote
constraints. A compound constraifat= b A b > ¢) can be written in an abbreviated
forma = b > c. A substitutions solvesan atomic constraint = ¢ if the termsso and
to are syntactically identical. It is a solution of an atomimstaints > ¢ (s > t) if
so > to (so > to, respectively) with respect to a given term orderingThroughout
this paper, we assume that a term ordering areduction orderingwhich is total
over ground term3.We say that is a solution of a constraint if it solves all atomic
constraints iny; ~ is calledsatisfiablevhenever it has a solution.

2A reduction ordering> is an ordering over terms such that: (¢)is well-founded; (2) for any terms
s, t,u and any substitutiod, if s > t thenu[sf] > u[td] holds.
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S,(L1\/~"\/Lk) || I

Expansion (Exp): Ly - Ly
Strong Connection (SC):
S || F,‘\P(T),P(S) S || F7P(T)7ﬁP(S)
L-(r=ys) L-(r=ys)
Weak Connection (WC):
S || F,‘\P(T),A,P(S) S || F,P(T),A7‘\P(S)
L-(r=s) L-(r=s)

Figure 2: Connection calculd3T for a setS of clauses

Let S be a set of clauses. éonstrained clause tabledar S is a finite tree7” (See
Fig. 1 as an example). Each node except for a root node is dpajrwherel is a
literal and~ is a constraint. Any branch that contains the literalwhich represents
the false, ixlosed A tableau isclosed whenever every branch in it is closed and the
overall of constraints in it is satisfiable.

Each inference step grows some branch in the tableau by@ddim leaves under
the leaf of the branch in question. Initially, an inferentats from the single root
node. Symbolically, we describe an inference rule as fatow

ST
Li-v1 -+ Lp-mm

whereS is an initial given set of clauseg, is the branch being augmented (with con-
straints not mentioned), and.1 - v1),. .., (L» - 7,) are the added nodes. Whenever
we choose some claugéin S to participate in the inference, we implicitly rename all
variable inC' to some fresh variables. The standard connection tabldewies.[6, 9],
denoted byCT, for a setS of clauses has inference rules depicted in Fig. 2.

Any clause tableau built by the rules@f can be considered as a tree of inference
steps. Every tableau &T always starts with an expansion step; also that first expan-
sion step can be followed only by another expansion, sinneection step requires at
least two literals in a branch. In a tableau,expansion clausis the added clause in
an expansion step.

Let7 be atableau ofT for a setS of clauses. We say thdt is strongly connected
whenever every strong connection step in a tableau followexgansion step, and
every expansion step except for the first (or top) one is el by exactly one strong
connection step. Moreoveéf, is said to be aefutationfor S if 7 is strongly connected
and closed.

Theorem 1 (Letz et.al [6]) TheCT calculus is sound and complete in first-order logic
without equality.

Ordered paramodulation is a well-known efficient equalitierence rule. It is well
known that top-down (or linear) deduction systems, ineigdionnection tableaux, are
difficult frameworks for efficient equality computation lzese of hard restriction of
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redexes, i.e., subterms allowed to rewrite. For examphgg&rand Lynch [12] showed
that: paramodulation into a variable is necessary for cetepkess; ordering constraints
is incompatible with top-down theorem proving even if pacaiulation into a variable
is allowed. As a remedy, the modification proposed by Brahtig® been investigated
by many researchers.

2.1 Modification Method and Connection Tableaux

In this subsection, we firstly, show the modification methiveigby Bachmair, Ganzinger
and Voronkov [1] which uses ordering constraints. Secqna#yshow Paskevich’s con-
nection tableau calculus [9], denoted@%™ 2 for refuting a set of clauses generated
by the modification method.

2.1.1 Elimination of Congruence Axioms

Given a setS of equational clauses, we apply three kinds of eliminatigles and
replace the equality predicate by the predicate~ to obtain a modified clause set
&', such thatS’ is satisfiable iffS is equationally satisfiable. IR is a set of such
elimination rules, we say a constrained clause i&inormal form if no rule inR is
applicable to it. We denote hi(S) the set of allR-normal forms of a clause if.

We first show S-modification rules which replaces the equajimbol~ with the
pseudo-equalityr, and generates several clauses which can simulate conapmatat
effects of symmetry axiom.

e Positive S-modificatian
s~tvVv C = s~tVv C and t~s Vv C

¢ Negative S-modification
nvtVv C = nv#tvC

znvV C = nvzzxzVC
z¢yVv C = (C0

wheref is a substitutioq z/y}.

Remark: Positive S-modification rule is quite problematic, becaose equation is
duplicatedto two equations each of which has converse directions. \&# give a
remedy for it in the next section.

Secondly we give M-modification rules which flatten clausgsabstracting sub-
terms via introduction of new variables as follows:

P(...,nv,...) v C nv#zVP(..,z...)VC
-P(...,nv,...) vV C nv#zV-P(..,z...)VC
fG..,nv,..)~t Vv C nv#zVf(..,z..)=tv<C
fG..,nv,..) 2t Vv C nv#zVf(..,z..)%2tVvC
s~ f(...,nv,...) vV C nv#zVs~f(..,z,...)VvC
s f(...,nv,...) vV C nv#zVs#f(...,z,...) v C

N

wherez is a new variable, called abstraction variable
The third one is T-modification rule for generating clausésécl can simulate ef-
fects of transitivity axiom.

SNotice thatCT= was introduced to prove the completeness ofldlag paramodulation calculuis [9].
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Expansion (Exp): Equality Resoution(ER) :

SMT(S), (L1 V---V Lg) || T SMTES) || T, I #7r
i --- Ly L-(l=r)
Strong Connection (SC):

SMT(S) || I',~P(r), P(s) SMT(S) [| T, P(r), ~P(s)
L-(r=ys) L-(r=ys)
SMT(S) || Tynv #r,s~t SMT(S) || T,s~t,nv £ r
L -(nv=s>t=r) L -(nv=s>t=r)

Weak Connection (WC):

SMT(S) || F,‘!P(?”),A,P(S) SMT(S) || F7P(7‘)7A7“P(S)
L-(r=ys) L-(r=ys)
SMT(S) || T'ynv £ r, A, s~ t SMT(ES) || T,s~t,Anvr
L - (nv=s>=t=r) L - (nv=s>t=r)

Figure 3: Connection tablea®T = for SMT(S)

e Positive T-modification:
s~¥nvV (C = s~zVnvzzVC
¢ Negative T-modification:

s#2nvV C = s#zVnvz Vv C
wherez is a new variable, calledlank variable

Notice that if the ternt in s ~ ¢ is a variable, then T-modification doaething

Let SMT(S) denote a set T(M(H))), i.e., the set of normal clauses obtained from
S by consecutively applying S, M and T-modification. Noticattthe size of SMT§)
is exponentiato the one ofS.

Theorem 2 (Bachmair et al. [1]) S U € is unsatisfiable iff SMT(S) U {z ~ z} is
unsatisfiable, where- is a new symbol for simulating the equality.

Bachmair et al. [1] studied weak ordering constraints fodification. An atomic
ordering constraing > t (s > t) is assigned to each positive (or respectively, negative)
literal s ~ t (or respectivelys # t) in SMT(S), except for the negative equalityz~ y
for any variables: andy.

CEE(S) denote the set of clauses of SMl)(with ordering constraints.

Theorem 3 (Bachmair et al. [1]) S U € is unsatisfiable iff CEE(S) U {z ~ z} is
unsatisfiable, where- is a new symbol for simulating the equality.

2.1.2 Connection Tableaux for Modification with Ordering Constraints

Paskevich [9] adapted the calculd$ for computing CEES), and gave the connection
tableau calculu€T~ for modification with ordering constraints, which is debed
in Fig. 3. Notice thahv denotes a non-variable term@T=.
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Theorem 4 (Paskevich [9]) The calculu<CT= is sound and complete. That8,U £
is unsatisfiable iff there is a closed and strongly connetaédteau inCT= for
SMT(S).

3 Connection Tableaux for Modification without S-Mo-
dification

The size of SMTE) is unfortunatelyexponentiato the one of5, which is truly prob-
lematic and causes a huge amount of redundant computatfepdsitive S-modifi-
cation, hence, should be abandoned. We alternativelydat® new inference rules
for simulating the effects of symmetry axiom and construnew connection tableau
calculusCTwS (Connection Tableaux for modification Without S-modifioat).

Definition 1 Let P-modificationbe a transformation rule of clauses, which just re-
places the equality symbet with the pseudo symbat in positive equalities. We
define nSMTS) to be a a set of normal clauses obtained fr6nby just succes-
sively applying P-modification, negative S-modificatiorsrvbdification and negative
T-modification.

Notice that the size of NSME) islinear to the one ofS because positive S-modification
is never applied.

Once the positive S-modification is abandoned, no symmetmilat ~ s of an
initial equality s ~ ¢ is generated in the modification process, which means tleat th
succeeding positive T-modification is not accomplishelezit Therefore, we need a
mechanism compensating such a deficit of clause transfmnmaln this paper, we
introduce new inference rules which can simulate not onkjtp@ S-modification but
alsopositive T-modificatiofior keeping transitivity properties of a positive equality

We propose the following new rules, callsgmmetry and transitivity splitting
rules abbreviated a$T-splitting which can simultaneously simulate the computa-
tional effects of symmetry and transitivity axioms.

Naive ST-Splitting Rule:

nSMT(S) || I', s @ nv nNSMT(S) || T,s ~ x
s~z nvEz s~x

NSMT(S) || T',nv ~ ¢ NSMT(S) || T,z ~t
t~z nviz t~x

wherenv is a non-variable term andis a variable.

3.1 Controlling ST-Splitting I: A Raw Equality

ST-Splitting should be applied to each positive equalitynost one timebecause more
than two times applications of these rules are clearly rddoh Therefore we need a
controlling mechanism.

In this paper, we firstly give saw positive equalitydenoted a, which is
introduced into a tableau by the expansion rule. Some of msitipe equalitie
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are changed tordinary equality literalsby ST-splitting. Conversely ST-Splitting rule
is restricted to apply only to a raw positive equality. Morep the strong connection
rule for a negative equality is also restricted to apply dolyaw positive equalities.

Furthermore, we force every raw positive equality to bedieltd either by ST-Splitting

or by new strong contraction rules shown below.

Given a literal L, we write [L] to denote a framed literak ~ ¢, called araw
positive literalif L is a positive equality ~ t; otherwise[L] denotesL itself. We
modify the expansion rule into the one which produces a rsavdi for a positive
equality.

Expansion for nNSMT(S):
NSMT(S), (L1 V-~V L) || T

(La] - [Lx]
ST-Splitting Rule should be changed to treat only raw pasiiterals.

ST-Splitting Rule:

NSMT(S) || T',[s ~ nv] nSMT(S) || I\[s ~«]
s~z nv#z s~

NSMT(S) || I,[nv ~ t] nSMT(S) || I,[z ~¢]
t~z nvz t~x

Example 1 Consider the sef; of clauses in Section 1. The set nSKST of normal
clauses is:

Cl : =P.

Cs: PVQVax~b

Cy: (bxus V a#uz)

Cs: —QVP
Figure 4 shows two connection tableauwdmwsS for Sy, each of which corresponds
with the one in Fig. 1. Notice that no backtracking occursundoing the expansion
introducing the claus€’; in the derivation from the left tableau to the right one. Trer
fore none of duplicated computations invoked for the subgban CT= occur in the
calculusCTws.

3.2 Controlling ST-Splitting II: Strong Connection

The original form of strong connection for negative eqyaktno longer appropriate,
because it cannot deal with raw positive equalities nor@a@ie with ST-splitting rule.
The new calculu€TwS has to simulate all valid inferences involving the strong-co
nection inCT= for SMT(S) in order to preserve completeness. Let S be a clause
s~tV KyV---V K,. There are four possible clauses obtained by S-modification
and T-modification from C with respect to~ ¢:

Diy: s~zVnve22z2VKiV---V K, iftisanon-variable termvz

D> : s~z VKiV---VK, iftisavariabler
Ds: t~zVnve2zVK;V---VK, Iifsisanon-variable termv,
Dy : t~xzVK{V---VK,, ifsisavariabler

wherez is a fresh variable. All of these clauses have possibiltiiebe used as an
expansion clause for the strong connectiorCii~=. Next we consider new strong
connection rules foETwS in order to simulate these inferencesdm =.
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—p Ordering Constraint —p Ordering Constraint

e b>a o b>a
............... @

P Q i P Q | i
L '.':'\ :: ST-Left L i :-':\ : :-: ST-Right
$ H a=z b#z Q = b=z a*z
-Q P B s, <5 o i
Lo Order Violated !! figl iy @\ omx
b;t:US a;éu3 a>b b#u,; a#u, ZJ_ 2
: 1 L :
X G =(zluy, ugh, ...} 0=(2luy ugfa, ..} Xia Succeedll

Figure 4: Two connection tableaux @TwS for nNSMT(S;)

Firstly, we study a simulation of strong connection usirgittauseD; in SMT(S).
Consider an expansion inference for in CT=.

L
! !
s~z nvg #z K - K,

(Exp)

If L is a negative equalitivy 2 r such thatv; is non-variable and is unifiable with
s, then the following strong connection is availabledii ~:

nvy #r

M — (Exp)
- (SO nvagtz K| - K,

L - (nvi=s>=z=r)

On the other hand, if. is a positive equality. ~ v such that: is unifiable withnv,
then we have the following strong connectiordm=:

u>~v
(2) (Exp)

nva Z 2 SO Kj - K.
L~(nV2:u>v:z)( ) Lo o

s>z

The above first inference (1) @T= can be simulated in nSMT) with the new
expansion rule and ST-splitting for a raw equ and theweak connection

rule as follows:
nvy #£r
.
(ST) K1 - Kn

s~z
(WC) nvg #z

(new Exp)

L -(nvi=s>=z=r)

However, it is definitely better to use a sort of strong cotivecrule instead of the
weak connection, because a connection constraint for egalflecomes much simpler
and more effective to drastically reduce the search spaee h@hce, introduce a new
strong connection rule which can perform the above infezegieps as an integrated
one-step inference iIBTwS. The following is a naive form for directly simulating the
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inference (1):
NSMT(S) || T, nvi1 % r,
L -(nvi=s»=2z=7r1) nve#z
wherenv, andnvy are non-variable terms. We can eliminate the link variable

because never occurs elsewhere in a tableau, and moreover we camaaidi@ring
constraint. The final form of the above rule is:

nSMT(S) || T, nvy %,

L -(nvi=s>r) nve#r-(nvz =r)

Remark: The above ordering constraints = r is not explicitly used in the strong
connection inCT=, as shown in the inference (1). Thus this additional coimgtcan
reduce the alternative choices of expansion rules, cordpaita CT=. Recall the
termnvy initially occurs as an argument of the equakty nvs of the original clause
s~nvaVK;V---V K, inS. Thus we can sa; TwS directly uses full information
of the equalitys ~ nv, for strong connection and thus expansion, wi@le= just
uses this information indirectly through variable bindiiog a linked variable’. This
difference is a rather important point because severa-staarts top-down provers,
such as SETHEO [6] and SOLAR [8], often reorder goals for iovprg the efficiency
of inferences.

Similarly, the above inference (2) can also be simulatedIMM(S) with a raw

positive equalit as follows:

uU~v

(ST) K1 -+ Ky

nvg % z
s=E 1L -(ave=u>v=2) (WC)

(new Exp)

This observation leads to the following rule, which can aghithe above inference
steps as a single inference.

NSMT(S) || T, u v,

s~z L-(mve=u>v=2)

We can also eliminate the link variableand add an additional ordering fer~ z
without losing completeness. Finally, we obtain the follegvnew rule:

NSMT(S) || T, u ~ v,

s~v-(s>=v) L-(nve =u>v)

Notice that this rule superficially requirepasitiveraw Iiteral as a partner
of strong connection of positiveliteral u ~ v.

Next we study a simulation of strong connection using thasg#),. Consider the
following inference involving expansion and strong cortimcof D, in CT=.

nvy #r

© — (Ex0)

L (avi=s>=xz=r)

4See the variable binding afin the inference (1), for example.
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wherenv, is a non-variable term. The above (3) can simply be simulate8MT(S) with

the raw equality s ~ z] as follows:

VLT (new Exp,

(SN Ki - K.,

CRa-ay

L -(nvi=s>=z=r) (WC)

This observation derives the following strong connectigde in CTwS:

NSMT(S) || T, nvy % r,

L -(nvi=s>=z=r)

Moreover, we have to investigate inferences using strommections with the
clausesD; andD, of SMT(S), and can derive additional three rules for nSMT by
similar discussions. Eventually, we obtain the followireg sf strong connection rules
for nSMT(S):

Strong Connection for Negative Equality in nSMT(S):

SMT(S) | T, v 7 SMT(S) | T\ v 7

L -(nvi=s>r) nve#r-(nve >r) Ll -(nvi=s>z=r)
NSMT(S) || T, nvy % r, NSMT(S) || T, nvy £, [z~ 1]
L -(avi=t>r) nve#r-(avz=r) L-(avi=t-xz=r)

Strong Connection for Positive Equality in nSMT(S):

nSMT(S) || I', u ~ v, nSMT(S) || T, u~wv, |nvy ~ ¢

s~v-(s>=v) L-(ave=u>v) t~v-(t>=v) L -(nve=u>v)

wherenv,; andnv, denote non-variable terms,is a variable.
We show a total view of the connection tablea@XwS for nSMT(S) in Fig. 5.
The following is the first main theorem of this paper:

Theorem 5 The calculusCTwS is sound and complete. That U £ is unsatisfiable
iff there is a closed and strongly connected tableaGTwS for nSMTS).

3.3 Yet another Connection Tableaux for Modification

In this section, we consider yet another connection tablezalledCTwST, where the
strong connection for positive equality is further imprdweith a more strict ordering
constraint. As was shown in the previous subsection, onleeo$trong connection for
a positive equality for n"SM{S) is:

NSMT(S) || T, s ~¢, nvy %71

SC-PosE-1:
08 L - (avi=s>t=r)
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Expansion (Exp):
NSMT(S), (L1 V---V Lg) || T

(L] -+ (L]

ST Splitting (ST):

NSMT(S) || I'[s = nvi |

s~z nvyEz

NSMT(S) || T,[nv1 ~ ]

t~z nvy#z

Strong Connection for Non-Equality
NSMT(S) || T,—=P(r), P(s)

L-(r=ys)

Strong Connection for Neg. Equality

nSMT(S) || T, nvy %1,

Equality Resolution (ER)
NSMT(S) || T, I #r

L-(l=r)

nSMT(S) || T,[5=7]

ST

nSMT(S) || T,[z ~ ¢]
t~x

(SC—-NonE):

nSMT(S) || T, P(r),—P(s)
L-(r=ys)

(SC—NegE):

NSMT(S) || T, nvy % r,

L-(nvi=s>r) nvg#r (nvz =r)

NSMT(S) || T, nvy %7,

L - (avi=s>=z=r)

NSMT(S) || T, nvy % 7,

L-(nvi=t>=r) nveZr (nvz >=r)

Strong Connection for Pos. Equality
NSMT(S) || T, s~t, nvy % r

Ll-(nvi=s>t=r)

nSMT(S) || T, u ~ v,

s~v-(s>=v) L-(nvi=u>v)

Weak Connection (WC):
NSMT(S) || T,—P(r), A, P(s)

L-(r=ys)

NSMT(S) || T,nvy %27, A, s~
Ll-(nvi=s>t=r)

L - (avi=t>-z=r)

(SC—PosE):

NSMT(S) || T, u~ v,

t~v-(t>v) L1-(nvi=u>v)

nSMT(S) || T, P(r),A,~P(s)
L-(r=s)

NSMT(S) || T,s ~t,A,nvy %71
L-(nvi=s>t=r)

Figure 5: Connection tablea®TwS for nSMT(S)
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Recall that T-modification splits a given negative equdlitg r into the disjunction
l % zVr # zif ris not avariable. Thus, the literal2 z (or r # z) loses the
information about the initial partner term(or respectively]). Thus the above strong
connection rule cannot utilize full information providegl hegative equalities in a
clause sef which is initially given. As a remedy, we omit T-modificatifor negative
equality literals as well, and instead give a set of new cotioe rules for preserving
transitivity

Definition 2 We define nSNIS) to be a a set of normal clauses obtained fiSrby
just applying negative S-modification and M-modification.

The calculusCTwST differs from CTwsS in the following points; firstlyCTwST ac-
cepts nSMS) as an input set of clauses, not nS\T; secondly we add a new expan-
sion rule and T-splitting rules for treatingraw negativeequality; thirdly we replace
the strong connectioBC-PosE-1with new three rules witllaw negativeequalities.
We modify the expansion rule to the one which produces rasdis both for positive
and negative equalities. Given a liteda] we write [[L]] to denote the framed literal
, called araw literal if L is a positive equalitg ~ t or a negative equality 2 ;
otherwis€[[L]] denoted. itself.

Expansion Rule for nSM(S):
nSM(S), (L1 V-V Lg) || T
(L] - - (L]

We add the following T-splitting rules in order to treatingwr negative equalities,
which naturally correspond with T-modification.

T-Splitting for Negative Equality for nSM (S):[-0.5ex]

nSM(S) || T, nSM(S) || T,
s*tz nvi ¥z sty
At last, we replace the rul8C-PosE-1by the following three rules:

Strong Connection for Positive Equality for nSM(S):

nSM(S) || Tl ~r, nSM(S) || T,1 ~r,

L-(nvi=1l>7r) nva®r -(nve =) sEr-(s=r) L-(ave=1l>7)

nSM(S) || Tl ~r,

L -(avi=I0l>r=y)

4 Extended SOLAR and Experimental Evaluation

In this section, we show some tentative experimental resuth SOLAR [8], which
is an efficient consequence finding program based on Skigpidgred Linear Reso-
lution [4] by using Connection Tableaux technology [6, 5}.fidst we show the basic
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Table 1: Basic performance comparison of theorem provers

[ SOLAR [ Otter [ ELO] E 1.0 (AY

# of solved unit EQ. 170 | 474 | 589 630
# of solved non-unit EQ| 676 | 727 | 907 2013
# of solved non-EQ. 1163 | 1044 | 1131 1640

* Note: (A) means that E system uses the option“-xAuto -tAuto”

performance of SOLAR compared with state-of-the-art tegoprovers Otter 3.0 [7]
and E 1.0 [11]. Table 1 shows the numbers of problems of THrBrly v.3.5.0 which
each theorem prover can solve within the time limit of 60 ClRdonds. The first row
is for unit equation problems; the second is non-unit eguationes; the third is for
non-equational ones. SOLAR is competitive for the classoof-aquational problems,
but is not for equational problenis.

Table 2 shows the performances of several kinds of equalitypuitation methods
in connection tableauX.The first “Axioms” indicates a naive use of the congruence
axioms, and the second “M-mod” represents a method for yastgM-modification
together with reflexivity, symmetry and transitivity axismEach row denoted by “in-
fer” is the sum total of the numbers of inferences needecefprational problems
which can commonly be solved by all 6T~, CTwS andCTwST. The upper half of
Table 2 shows the results obtained by using ordinary M-meatifin, while the lower
half is for the ones obtained by using a semi-optimized M-ifigation, given in [1],
such that the flattening never applies to any occurrences ofdering-minimal con-
stant symbol. Regretfully, the best performance is praviole the naive use method
of the congruence axioms. Modification methods commonlgiitta disadvantage
caused by M-modification which increases the length of edahse by flattening.
CT= andCTwsS, however, significantly decrease the number of inferenggsstrom
M-modification method. With the semi-optimized M-modificet, CTwS is superior
to CT=. Certainly, CTWS decreases the amount of inference steps compared with
CT=, which means tha€CTwS succeeds to prevent redundant computations origi-
nating in S-modification. By comparison between the uppet gd the lower one
in Table 2, we can understand the importance of optimizatiok-modification for
avoiding redundant computations, which are invoked by ldisgunctions otthin neg-
ative equalities produced by flattening operations.

5 Conclusion and Future Work

We investigated Paskevich’s connection tableaux for égu@imputation, and pointed
out that a naive use of S-modification is problematic. We psagl, as some reme-
dies, improved connection tableau calculi for efficientagy computation. We also
showed tentative experimental results of evaluating tlop@sed methods using SO-
LAR. This research is now in progress. For example, we allesstidying a further

STPTP library v.3.5.0 has 2,175 non-equational problemsahieil equational problems, where there are
863 unit equational problems.

6Throughout experiments, we used non-recursive Knuth-Beoddering given by Riazanov and
Voronkov [10]. as a reduction ordering.
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Table 2: Comparison of equality computation methods in ection tableaux

| Axioms [ M-mod || CT= ] CmwS ]| CTwST
# of unit EQ. 170 161 180 183 179
# of non-unit EQ. 636 490 507 499 489
# of infer. of unit EQ. 4,883K | 12,900K || 8,903K | 1,403K 2,367K
# of infer. of non-unit EQ.| 38,621K | 251,244K || 86,837K | 78,339K | 119,094K
# of unit EQ. — — 183 185 183
# of non-unit EQ. — — 518 540 512
# of infer. of unit EQ. — — 5,545K | 5,212K 8,397K
# of infer. of non-unit EQ. — — || 66,529K | 58,588K | 86,253K

improvement of M-modification. Moreover, we found that thendmic term-binding
to variables in derivations frequently gives ill effects thhe behaviors oCTwS and
CTwST. In order to improve this situation, we will re-formalizeromethods in the
context of the basic method and the closure mechanism ireuefuture. Furthermore,
one of anonymous referees suggested that the effects gbliting can be achieved
by the following clause transformation:

stVC = Prew(@)VC, "Prew(@) Vs ~tand—Prew(Z) VE~s

whereP,.,, is a new predicate symbol amdienotes the list of variables occurringsin
andt. Notice that the literaP,,.., (Z) corresponds to a raw equality in our framework.
This rule can be used for simulating ST-splitting insteagos$itive S-modification
rule. This method seems to have a great possibility in seesgpects. We are now
conducting some theoretical studies and experimentaliatiahs.
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