Inductive Reasoning for Shape Invariants

Lilia Georgieva and Patrick Maier

1 School of Math. and Comp. Sciences, Heriot-Watt Univer&tinburgh
http://www.macs.hw.ac.uk/"1ilia/
2 LFCS, School of Informatics, University of Edinburgh
http://homepages.inf.ed.ac.uk/pmaier/

Abstract. Automatic verification of imperative programs that destinaty ma-
nipulate heap data structures is challenging. In this papgropose an approach
for verifying that such programs do not corrupt their datacttires. We specify
heap data structures such as lists, arrays of lists, and imdactively as solu-
tions of logic programs. We use off-the-shelf first-ordexdtem provers to reason
about these specifications.

1 Introduction

In this paper we show how to reason effectively about poiotegrams using automatic
first-order theorem provers. Common approaches to suchniasrely on transitive-
closure to express reachability in linked data structuresvever, first-order theorem
provers cannot handle transitive closure accurately, usecahere is no finite first-
order axiomatisation. Instead, various approximationglmeen proposed for proving
(non-)reachability in linked data structures. Yet, thesenb universal scheme for
approximating transitive closure — the choice of approstioradepends on the data
structure and on the type of (non-)reachability problemeatch

We propose a different approach to reasoning about poimtgrgms. Instead of
reasoning about reachability, we reason abouegtensiorof heap data structures, i. e.,
about sets of heap cells. This is sufficient to express mamy-freachability problems,
e.g., “r is reachable from the head of the list”, or “the lists pointedy = andy are
separate”.

We define common data structures, including acyclic ligtslic lists, sorted lists,
and binary trees, as logic programs. More precisely, thilpgpgrams definshape
types i. e., monadic predicates capturing the extension (seeaptlcells) of the given
data structure. These logic programs, if viewed as uniVdéirs&order theories, have
many models, some of which will contain junk, i. e., unreditbdeap cells; see Hg 3,
showing a shape type for a singly linked list containing juflke issue of junk models
can be avoided if we confine ourselves to least models, 0 @ductive reasoning. We
approximate this inductive least model reasoning by firdeoverification conditions.
The main contributions of this paper are the following:

— We present logic programs defining a number of common shagess §Sectiofl2).
The programs are carefully chosen to harness the power ofmatic resolution-
based theorem provers (in our case st@#sSsS [29]) and SMT solvers with
heuristic-driven quantifier instantiation (in our casedstlYices [6)]).

http://www.macs.hw.ac.uk/~lilia/
http://homepages.inf.ed.ac.uk/pmaier/

— We describe a methodology to verify that pointer programmtasn shape invari-
ants (Sectiofd3), which may express properties like “a datectsire is a sorted
doubly-linked list”. The method relies on user-providedie@annotations and on
verification condition generation.

2 Modelling Data Structures

2.1 Logical Heap Model

We work in the framework ofany-sorted first-order logic with equaljtgssuming
familiarity with the basic syntactic and semantic concepts

Notation. A signatureX’ declares finite sets of sorfSs, function symbols¥» and
relation symbols¥z. Function symbolsf and relation symbols? have associated
arities, usually written a2 C 71 x --- x Ty, resp.f : Ty x --- x T, — Tp (or
f:Tif fisaconstant). Given signatur&sand A, their unionX A is a signature. We
call A anextensiorof X if A = Y A; we call the extensiorelational if additionally
As = YsandAr = X r.

A Y-algebraA interprets sort§” € s as carrierd™®, function symbolsf € X~
as functionsf#, and relation symbol® € Yz as relationsR*. We call B a A-
extension(or simply extensioh of A if A is an extension of’ andB is a A-algebra
whoseX'-reductB|y is A.

First-order formulas ovel’ are constructed by the usual logical connectives (in-
cluding the equality predicate). We write A, o |= ¢ to denote that formula is true
in X'-algebraA under variable assignment we may drop if ¢ is closed.

Logical model of program statéle consider programs in a subset of the programming
language C. With regard to the heap, these programs mayatdl@nd free records
(structsin C terminology) on the heap, and they may dereference jathatel pointers

to these records. However, they may not perform addres$svattc, pointer type casts,
or use variant recordsifions in C terminology). Under these restrictions, any given
program state (i.e., heap plus values of program varialdas)be viewed a many-
sortedX'-algebraA in the following way. (i) The C types are viewed as sorts. Eher
are two classes of sortgaluesorts corresponding the C base typist(float, etc.)
andpointer sorts corresponding to C record types. (i) The elementh@tarrierl

of a value sortl" are the values of the C type A interprets the standard functions
(like addition) and relations (like order) on value sortdrasnded. (iii) The elements
of the carrierT of a pointer sorfl” are the addresses of records of the C typethe
given heap, plus the special addradisL L, which representSULL pointers of typeT.

(iv) A field £ of typeT’ in a record of type corresponds to a unary function symbol
f: T — T'. lts interpretationf* maps addresses ii* to elements of "2 (i.e., to
values or addresses, depending on whethes a value or pointer sort). (v) To capture
the values of program variables, we extend the signalumgith constants, one per
program variable. For example, the program variabt# typeT is represented by the
logical constant: of sort7’; the value of is the interpretation® of 2 in A.

76

typedef double D; // data values Value sorts: D

struct L_Node { // list nodes Pointer sorts.. T
struct L_Node* next; ’
struct L_Node* prev; Constants: NULLL - L
D data; .)
}; NULLr : T

typedef struct L_Nodex L; // lists

Functions: nextprev: L — L
struct T_Node { // tree nodes

struct T_Nodex left; data: L — D
struct T_Nodex right; left, right, parent: T — T
struct T_Node* parent;
D val; val: T — D
}; .
typedef struct T_Node*x T; // binary trees Relations: < C D x D

Fig. 1. Data type declaration in C (left) and corresponding sigreaktu(right).

Figurell shows a sample C data type declaration and the pomdig signature
X, As an aside, note that the unary functions in our heap madebtal, unlike models
of separation logic where the heap is represented by péutiations. AX-algebraA
may thus contain junk, i. e., unreachable cells pointing hatsver they like. This does
not matter as we will restrict our attention to the well-behclusters of the heap cells
that are cut out by the shape types presented in the nextiseatid ignore all the relt.

2.2 Shape Types as Logic Programs

Logic programs.Let X' and A be signatures such thatA is a relational extension of
Y. A clause (ovet’ A) is calledA-Horn (resp.definite A-Horn) if it contains at most
one (resp. exactly one) positivi-literal. A (X, A)-LP is a finite set ofA-Horn clauses
overX A.

Given a Y-algebraA, we call a(X'A)-extensionB of A an A-modelof P if
B = P; we callP A-satisfiableif it has anA-model. Note that for soma., P may
not beA-satisfiable (because may contain non-definité\-Horn clauses). However, a
standard argument (Propositidn 1) shows th@t i§ A-satisfiable then it has a leaAt
modelBy (in the sense tha&®Be C RB for all R € Ak and allA-modelsB of P); we
denoteBy by Im(P, A). Thus,P may be viewed as a transformer taking aalgebra
and computing its leagt” A)-extension consistent witR (if it exists).

Proposition 1. LetP be a(¥, A)-LP andA a X-algebra. If P is A-satisfiable then it
has a leastA-model.

Shape typesinformally, ashape typas a unary predicate on the heap, characterising
the collection of heap cells that form a particular datacttrte (e. g., a sorted list). Its
purpose is twofold: It serves to enforce integrity consiig{like sortedness) on the data
structure, and it provides a handle to specify invarianke @eparation of two lists).

3 This is very much what a programmer does, who is also not coadeabout the contents of
unreachable memory locations.

77

In the remainder of this section, we will define a number opghigpes by X', A)-
LPsP, whereX is the signature of the heap (cf. Section 2.1), whiei extends with
a unary predicaté. Given a heapA, the least model Iif?, A) may be viewed as
anannotated heaptagging heap cells (as belonging to the interpretatiof)ofvhich
form the data structure specified By We note that the existence of least models will
be guaranteed by Propositibh 1 because the LPs will be elyddnsatisfiable in all
intended heapA (i. e., in all A where the data structure in question is not corrupt).

Shape types of segments of linked listsFigure[2 presentéX, A)-LPs defining the
shape types of various list segments (singly- or doublied) sorted or not). The
programs are parameterised by input and output signatueesl A (the latter declaring
only the single symba¥).

The simplest LPPit defines the shape typg& of unsorted singly-linked list
segments. The input signature comprises the sort of ligé dgl the nextpointer
function, the pointep to the head, and the pointerto the tail of the list beyond the
segment. The clauses express (in order of appearance))ttia {irst cell of the tail
(pointed to byy) does not belong té, (ii) the head of the segment belongsfanless
p points to the tail, (iii) no cell inS points to the head, (i} is closed under following
nextpointers up tog, and (v) each cell inS is pointed to by at most one cell ii
(i.e., no sharing inS). FigurelB (top) shows two models &f_is;. The first one is the
intended least model, where the interpretatios @éally is the set of cells forming the
list segment fronp to ¢, whereas in the second model the interpretatiof abntains
somejunk, i. e., cells that are unreachable from the head.

The LP Pp.ist defines the shape typ® of doubly-linked list segments from head
cell p to last cellr (where the cells ahead pfand behind- ares andg, respectively),
see the picture in Figufd 3 (middle). The program defifies both, anextlinked list
segment fronp to ¢, and aprewvlinked list segment from to s. Moreover, it demands
thatp belongs taS iff » does, and that andr are the only cells irt' that may point to
s andgq, respectively. Finally, the last two clauses forcetilegtpointers insides to be
converses of thprevpointers, and vice versa.

The LP Ps_is; defines the shape type of sorted, singly-linked list segments. Its
parameter list extends that Bf;s; by the data sorD, the total ordering< on D, and
thedatafield. It adds one more clause®;s;, for comparing the data values of adjacent
elements in the list segment.

Finally, the LPPspist combines the LP®p st andPsyist, defining the shape type
S of sorted, doubly-linked list segments.

Shape types of cyclic lists.The LP Pcpist in Figure[2 defines the shape typseof
cyclic singly-linked lists. Its input signature compridlg sort of list cells., the next
pointer function, and the pointerinto the cyclic list. The clauses express (in order of
appearance) that: (WULL does not belong td, (ii) the cell pointed to by belongs to

S unless points toNULL, (iii) S is closed under followingextpointers, and (iv) each
cell in S is pointed to by at most one cell i (i. e., no sharing irb).

The LPPcpList defines the shape typeof doubly-linked cyclic lists by extendinBcy st
with a clause forcingiextandprevinsideS to be converses. We remark that the LPs for

78

LP for singly-Tinked list segments
Pust[L;next: L — L,p,q: L;S C L]
={=5(q),
S(p) Vp=aq,
Va:L . S(p) A S(z) = nex(z) # p,
Va:L . S(x) A nex{(z) # q = S(nex(z)),
Va,y,z:L.S(x) ANSy) AS(z) Anex{z) =z Anex(y) =z =z =y}
LP for doubly-linked list segments
Pouist[L;nextprev: L — L,p,q,r,s: L; S C L]
= Puist|L; next p, q; S] U Puist[L; prev, r, s; S|
U {S(r) = S(p), S(p) = S(r),
Va:L . S(z) AN ~S(prevz)) = = = p A preV(z) = s,
Va:L . S(z) A = S(nex(z)) = =z = r A nex{(z) = gq,
Va:L . S(x) A S(nex{(z)) = prevnex{z)) = =,
Vy:L . S(y) A S(prevy)) = nextprev(y)) = y}
LP for singly-linked sorted list segments
Pstist|D, Lynext: L — L,data: L — D,p,q: L,< C D x D;S C L]
= Pust|L; nexi p, g; S]
U {Va:L . S(x) A S(nex(z)) = data(z) < data(nexi(x))}
LP for doubly-linked sorted list segments
PspList(D, L;nextprev: L — L,data: L — D,p,q,r,s: L,< C D x D;S C L]
= Pouist|L; next prev; p, g, 7, 5; S| U Psiis(D, L; next data p, g, <; S]
LP for singly-linked cyclic lists
Petist|L;next: L — L,p,NULLy, : L; S C L]
= {~ S(NULLy),
S(p) Vp=NULLL,
Va:L . S(xz) = S(nex{(x)),
Va,y,z:L . S(x) ANS(y) ANS(z) Anex(z) =z Anex{y) =z =z =y}
LP for doubly-linked cyclic lists
PeoList[L;nextprev: L — L,p,NULLy, : L; S C L]
= Peuist[L; next p, NULLL; S] U {Va:L . S(z) = prenex{xz)) = = A nexipre|z)) = =}
LP for arrays of singly-linked NULL-terminated lists
’PListArray[I, Linext: L — L,a: I — L,NULL; : L; S C I x L]
= {Vi:I . = S(i,NULLy),
Vi:I . S(i,a(i)) V a(i) = NULLL,
Vi:l Va:L . S(¢,a(i)) A S(i,z) = nex(x) # a(i),
Vi:I Va:L . S(i,z) A nex{z) # NULL;, = S(i,nex{(x)),
Vil Vo, y, z:L . S(i,x) NS, y) A S(i,z) Anex{(z) =z Anex{(y) =z =>z =y,
Vi, j:I Va:L . S, z) A S(j,z) = i=j}
LP for arrays of singly-linked cyclic lists
Petistarray[, Lynext: L — L,a: 1 — L,NULLg, : L; S C I x L]
= {Vi:I . = S(i,NULLy),
Vi:I . S(i,a(i)) V a(i) = NULLL,
Vi:l Va:L . S(i,z) = S(i,nex(z)),
Vil Va,y,z:L . S(i,x) ANS(i,y) A S(i,z) A nex{z) = z A nex{(y)
Vi, j:I Va:L . S(i,x) NS, z) =i1=4}
LP for binary trees
Prree[T left, right : T — T, »,NULLy : T; S C T
= {~ S(NULLy),
S(r) v r =NULLp,
Va:T . S(r) A S(x) = (left(x) # r Aright(z) # r),
Va:T . S(x) A left(x) # NULLy = S(left(x)),
Va:T . S(x) A right(z) # NULLy = S(right(z)),
Ve,y,z:T . S(x) ANS(y) A S(z) ANleft(z) =z Aleftly) =z =>z =y,
Va,y,z:T . S(x) A S(y) N S(z) Aright(z) = 2z Aright(y) = z = =z = v,
Va,y,zT . S(x) AS(y) A S(z) Aleft(z) = z Aright(y) =z =z =y,
Va,y,z:T . S(x) ANSy) AS(z) Aleft(z) =y Aright(z) = z = y # 2z}
LP for binary trees with parent pointers
Perred T; left, right, parent: T — T, r, s, NULLy : T'; S C T7]
= Pree[T; left, right, , NULLz; S|
U {s # NULLy = S(»),
S(r) = s = paren(r),
—5(s),
Va:T . S(xz) A S(left(z)) = paren(left(z)) = =,
Va:T . S(x) A S(right(x)) = paren(right(z)) = z,
Vy:T . S(y) A S(pareniy)) = (left(parenty)) = y V right(parenty)) = y)}

z=xT=1,

Fig. 2.LPs defining shape types of list segments, cyclic listsyarodlists, binary trees.

79

g | 1 T 1 f 1 \‘777\ next
<_{ T prev | ! prev i ! prev i ! previ ! prev‘

i —

K 774‘ next ‘ ne:a L ‘
S~ ™

Fig. 3. From top to bottom: shape typ&sof singly-linked list segments (intended least
model and model with unreachable junk), doubly-linked $isgments, array of cyclic
lists, and binary trees.

cyclic lists are more elegant than the corresponding LPsifagly- and doubly-linked
list segments.

Shape types of arrays of lists.The LPPcistaray in Figurd2 defines the shape tyfef
arrays of singly-linked cyclic lists, see Figuiie 3 (bottaeft) for a graphical depiction.
The input signature comprises the array index gottie list cell sortZ, thenextpointer
function, and the function mapping array indices to pointers into the lists. The shape
type S is a binary relation between array indices and list cellsteNtbat we model
arrays as functions from index type to elementﬂ(ﬂ@qoring array bounds. In the light
of this, the shape typ€& may be viewed as an array of sets of list cells rather than as a
binary relation.

The first four clauses oPciisiaray State that for each index the unary relation
S(i,-) — S with fixed first argument — is the shape type of a cyclic singly-linked
list pointed to bya(i); note how these four clauses correspond to the clauspg,@f.

4 Our model assumes that arrays do not live in the heap.

80

The last clause states that the shape tyfiés) and.S(j, -) must be disjoint for distinct
indicesi andj.

The LPPistarray defines the shape tygeof arrays of singly-linkedULL-terminated
lists in a similar way. Its first five clauses force each shgpe 5(i, -) to be a singly-
linked list segment from(¢) to NULL,, and the last clause forces disjointness of distinct
shape types$'(i,-) andS(j, -).

Shape types of binary trees.The LP Pre defines the shape type of plain binary
trees, see the picture in Figuide 3 (bottom right). The inmnaure comprises the sort
of tree nodeq’, theleft- andright-pointer functions and the pointerto the root. The
clauses borrow heavily from the LR js; for singly-linked list segments (withreplaced
by NULL7) and express that: (NULL does not belong t&, (2) the root belongs t6
unlessr points toNULL, (3) no node inS points to the root, (4-5% is closed under
following left- andright-pointers up taWULL, and (6-9) there is no sharing fbecause
each node irb is pointed to by at most one node$h(clauses 6-8) and has distireft-
andright-successors (clause 9).

The LP Pprree defines the shape typg of binary trees with parent pointers by
extendingPree The additional clauses express that (1323 the parent of the root
unlessr is notin.S, in which cases must beNULL, (3) s does not belong t&, and (4-6)
theparentpointers are converse to the union of tef- andright-pointers.

3 Verifying Pointer Programs

We aim to verify imperative programs that manipulate dyradzta structures on the
heap. Given the code of a C function plus specifications ahjsit and output (and
possibly of loop invariants), we want to verify that the prag maintains certaishape
invariants e. g., that the sorted list being updated remains a list aridcs

Notation. Given a signatureX, we define the signatur&”’ as a copy ofY where
all functions f (except the constantdULLy) and relationsk are replaced byrimed
functionsf’ resp. relationg®’. Given aX-formula¢ (resp. a(X, A)-LP P), we write
¢’ (resp.P’) for the X-formula (resp.(X’, A’)-LP) that arises fromy (resp.P) by
replacing all functiong (exceptNULL7) and relationsk by f’ andR’, respectively.

3.1 \Verification Problem

We verify C functions by checking verification conditiong do this, we convert the
code of a function into a control flow graph (CFG) and find a detu locations,
to which we attach shape invariants. Each path between catiéms gives rise to a
verification condition (VC), which claims that the path ddishes the invariant at its
end location, given that the invariant at the start locatias assumed.

We will not elaborate on the well-known techniques for ttatisg C code to CFGs
and identifying cut locations; the reader may consult Fefifor an example. The figure
shows the code for inserting an elemerihto a non-empty sorted list pointed to by
The CFG has three cut locatiohs(the entry location) tds (the exit location), with
four pathss; to o4 between them.

81

void insert(L p, L e)

{

Ls=p; L
Lt s—>next;
while (t != NULL) {

if (e->data >= t->data) {

»
©

t = s—>next;

o= t: I (t==NULL)
3 t = s—>next; [(@=NuLy || (e->data <t->data)
)
e
} t = s—>next; @
[path [path formular |
o1:lop —l1=s = p; s =pA
t = s->next; t’ = nex(s’) A
p =p A e =eAnext =nextA datd = data
02111 — 11 = (t 1= NULL) t ZNULLL A
(e->data >= t->data)|data(e) > data(t) A
s = t; s =tA
t = s->next; t’ = nex(s’) A
p' =pAe =eAnext =nextA datd = data
dnext:L — L .
o3 : 1l — la = (t != NULL) t # NULLL A
(e->data < t->data) data(e) < data(t) A
e->next = t; nexi(e) =t A (Vz:L . z = e V next(z) = nex(z)) A
s->next = e; next(s) = e A (Vz:L . z = s V next(z) = next (z)) A
p=pAe =ens =sAt =tAdatd = data
dnext:L — L .
o4 : 11 — la = (t == NULL) t = NULLL A
e->next = t; nexy(e) =t A (Va:L . z = e V next (z) = nex{(z)) A
s->next = e; next(s) = e A (Va:L . z = s V next(z) = next (z)) A
p=pAe =ens =sAt =tAdatd = data
[loc] formula ¢ of shape invarian{P, ¢) — see Sectiof 31 for LP |
lo [SNE=0 A S(p) A E(e) A nex{(e) = NULL;, A data(p) < data(e) 1S —SAE —E
l1|S=SSAE=EgAp=poAe=eo A IS'fS/\E’*E
SNE=0 A S(p) A E(e) Anex(e) = NULLL, A data(p) < data(e) A e =
S(s) A data(s) < data(e) A nex(s) = ¢ A (t = NULL, V S(t)) %15 = 25;
1S =

2 |S=SSWEsAp=poAe=¢eg

Fig. 4.Insert an element into a non-empty list sorted in ascendidgroC code, control
flow graph, paths through the CFG, shape invariants, ancestfégrts.

State sighatureAssociated with a C function isstate signature, the signature of the
X-algebras serving as logical models of program state, set@8&_.1. In the following,
X always refers to a fixed state signature.

In the example of Figure 4, declares the value soR and the pointer soik, the
constant, e, s, t,NULLy, : L, the functiondata: L — D andnext: L — L and the
order relation< C D x D.

Path formulas. A path o through the CFG is a sequence consisting of variable
assignments = e; array updates[i] = e; heap updates->f = e; and conditions
(c) wheree is an expression (an R-value in C terminology) and a conditional

82

expressio. The translation of such paths to first-order logic is weltwm and will
not be detailed here; the reader is referred to Fiflire 4 famgtes. Thepath formula
7 resulting from translation of a path is a (X' X’)-formula, where the signatures
and X’ belong to the state at the start and end locations, oéspectively. Two things
to note. First, part of each path formula is an explicit “feoondition” stating which
variables and pointer fields do not change; note the use ofsearder equalities like
next = nextas short-hands for more complex first-order expressionsr#k path
formulae, like the ones for patlag ando,, may start with a string of second-order
guantifiers to project away intermediate state; these dfiexaiwill always be eliminable
by Skolemisation.

Shape invariantsA A-shape invariants a pair(P, ¢), whereP is a(¥, A)-LP and¢g
is a(X'A)-formula. Its purpose is to constrain the program state byréating shape
types, which are defined by the 7P, with each other or with program variables.
Shape invariants are associated with cut locations in the. Gfgurd % presents the
shape invariants for thénsert function. These shape invariants involve two shape
types S and E defined by the LPP = PsisD, L; next data p, NULL,, <;S] U
Prist|L;nexte, NULLy, <; EJU{Vxz:L . = S(x) V = E(x)}. l.e.,S is the shape type of
NULL-terminated sorted lists pointed to pyE of NULL-terminated lists pointed to kxy
and both shape types are disjoint. Note that thé™LiB common to all three invariants.
The shape invariant &, for instance, stipulates that the lisfsand F are disjoint and
non-empty (because they contain their head@sde), E is of lengthl (because the
next-pointer of its heaa is NULL), and the data at is less than or equal to the data
ate. Note the use of set-relational expressions bke E = () as short-hand for more
complex first-order expressions. The shape invariahtstipulates that the list is the
sum of the start lists, and Efl and that the program variablgsnde retain their start
valuespy andey, respectively. This, together with sortednessSofvhich is enforced
by the LP definings, is a statement of functional correctnessngert.

Verification condition.Given a pathr from ¢ to &, letw be the path formulafar, (P, ¢)
the A-shape invariant &, and(Q, v) the A-shape invariant at. To prove correctness
of o, we must show that every execution establisheptigtshape invariantQ, v) at
the end, provided that th@re shape invariantP, ¢) held at the start. This translates to
the following verification condition.

V(YX')-algebraA : Im(P,A) Em A ¢ = Im(Q',A) E o' (VC)

Note that the antecedent @f{V/C) tacitly depends on the@xigt of In{?, A), and the
succedent tacitly states that the existence ¢@mA) follows from the antecedent.

5 To keep the presentation simple, we ignore dynamic memdogation and function calls.
Both could be handled: memory allocation through trackimg set of allocated heap cells,
function calls through extra cut locations before and aftdrsites.

8 The use of subscriph indicates values of program variables or shape types atrikiali
location[y. Strictly speaking, a shape invariant is not just consingithe program state at
location/, but the relation between the initial state and the statecation/.

83

The trouble with [VT) is that it requires reasoning in leastdals, i. e., inductive
reasoning. The next section presents our methodology to@sp the inductive condi-
tion (V) in first-order logic.

3.2 Approximating Inductive Reasoning

The obvious problem with using first-order provers for rersg about shape types is
their ignorance of least models. For instance, a VC on a pattay be invalid in first-
order logic because there is a counter model which picksehst linterpretation for
shape type at the start ob but the greatest interpretation fSrat the end.

To deal with this problem, we weaken the VC by speculativalyuming ashape
effectrelating shape types at the start and end.oDften, the weakened VC becomes
provable in first-order logic. However, we still have to jiisthe assumed shape effect.
We do so by proving two further first-order VCs, which togetimeply that the shape
effect is an inductive consequence of the LPs defining thpeshaes.

Shape effectsGiven a pathr from ¢ to k, let = be the path formula fos, (P, ¢) the
A-shape invariant at, and(Q, v) the A-shape invariant dt. A shape effector ¢ is a
(X AX’ A")-formulae which isback-and-forth totalthat is,

- V(XAX')-algebraA: A =P U {r} = (X AX’'A")-extensioB: B |= ¢, and
- V(XX'A)-algebraC: C = Q' U {r} = I(XAX'A')-extensioD: D = ¢.

The purpose of a shape effeds to relate the shape types at the start of paithith those

at the end. A convenient way to specify simple shape effacts write set-relational
expressions lik&’ = S w E (cf. Figurd3) as short-hands for more complex quantified
expressions. This style also makes it easy to check théyotduirement. For example,
back-and-forth totality of the shape effet= S W F for o3 holds because (1) every
(X AX")-algebra which interpretS and E disjointly (which is enforced by the LP)

has a(X' AX’ A’)-extension which interpretS’ as the sum of and E, and (2) every
(XX’ A")-algebra (which interpretS’) has a(X AX’ A’)-extension which interpretS
and E disjointly such that their sum i§’. Note that in this particular case, totality is
independent of the path formuta

Notation. Given aX'-algebraA, one may need to compare cAemodel of the(X, A)-
LP P to another one. Logically, this can be done by fusing the twarlebs, which
requires duplicating all symbols that are not shared, alerelations inA.

We define the signaturd as a copy ofA where all relations? are replaced by
cappedrelationsR. Given aA-shape invariantP, ¢), we write (P, ¢) for the A-shape
invariant that arises froiP, ¢) by replacing all relation® in A with R.Givena shape
effecte (as defined above) for a path we write ¢ for the (X A%’ A’)-formulac that
arises frome by replacing all relations? in AA with R’; note thaté is also a shape
effect foro.

84

Verification conditions.Given a pathr from £ to k, let = be the path formula fos,
(P, ¢) the A-shape invariant at, (Q, 1)) the A-shape invariant at, ande the shape
effect foro. To prove the inductive conditiofi{MC) it suffices to prove tollowing
three first-order conditions.

PUQ U {me, ¢} v/ (vC1)
PU{me ¢} FQ (VC2)
Q/UQ/U{/A\SQAR SlgksilaVSeAR S/#AS/,’]T,E,é} ': (VC3)
PUPU{Agenr S S5 Vsenr, S# S}

@(/CT)) and [VC2) together state preservation of shape iamgsi subject to the (yet
unjustified) assumption of a shape effed’C2) can be read as a model transformation:
Given any model ofP that satisfies the path formula and the pre shape invariant,
the shape effect will produce models of'. Finally, (VC3) implies that preserves
minimal models. It can be seen as a reverse model transfiomvathich preserves order:
Given any two models of)’ such that both satisfy the path formula and one is strictly
contained in the other, the shape effectsdé will produce two models oP such that
one is strictly contained in the other.

SoundnessThe following theorem proves that the conditions (W C1j =8y@gether
imply that a shape effect is an inductive consequence @ngailed in the least model)
of the LPs defining the shape types. Soundness of the first-gedification conditions
w. r. t. to the inductive conditiod{MC) is an easy corollary.

Theorem 2. Let o be a path fron¥ to k. Let « be the path formula for, (P, ¢) the
A-shape invariant at, (Q, 1) the A-shape invariant ak, ande the shape effect far.
Assume thafVC2) and (VC3) hold. For all (X' X")-algebrasA, if Im(P, A) exists and
ImM(P,A) =7 A¢thenlmPU Q' A) existsand IfiPU Q' A) = e.

Proof. Towards a contradiction assume there {2&")-algebraA such that InfP, A)
and ImP U @', A) exist and IfP,A) = 7 A ¢, butIm(P U Q' A) |~ e. Asc is
total, the(X'AX’)-model IMP, A) of = extends to §X’AX’ A’)-modelB of e. Thus,
B | P U{nr,¢, ¢}, which by [VC2) impliesB = Q’. Note thatB is not an extension
of the (XX’ A")-model ImQ’, A), for if it were thenB = Im(P U Q’, A) and hence
Im(P U Q’, A) = ¢, which would contradict our assumption. ThB$s 5 4+ iS @ non-
least, hence non-minimaA-model of @', which implies thafB has a(2AX' A’ A')-
extensionC such thatC = Q' U Q' U {Agcu,. 5" €S Vgen, S # S'}. As the
shape effect is total, the(2 X' A’)-model C| ., ;, of = extends to g ZAX' A')-
modelD of £. Hence, thé Y AA X’ A’ A’)-algebraE, which extends botk andD, is a
model 0fQ' U Q' U{Agca, 5" € 5", Ven, S # S, m,e,é}. By (ZCJ), this implies
EEPUPU {Asean Scs, Vsear S # S},i.e., Eis an extension of a non-mini-
mal A-model of P, contradictory tdE| s ax = C|lsas: = Blgasy =Im(P,A). O

Corollary 3. If (¥CT) — (VC3J) hold then(¥C) holds.

85

3.3 Experiments

We have used our methodology to successfully verify a nundbesimple heap-

manipulating algorithms, including the sorted list inderiction from Figurd®. Other
examples include functions for inserting and deleting eets into binary trees, and
functions for moving elements between ring buffers orgeshia an array. All functions
were manually annotated with shape invariants and effBets.to lack of space, we do
not report on these experiments in detail.

We have run our experiments on the theorem provers SPASSieasl Both provers
succeeded to prove all verification conditions. The typicattime per VC was below
10 seconds for SPASS, below 1 second for Yices. More expeatsrage necessary to
determine whether our methodology scales to more complds.co

We remark on the somewhat surprising fact that Yices sueazked all VCs, despite
its incomplete heuristics for quantifier instantiation {@hwe did not assist using the
trigger mechanism). We suspect that a key reason for thisiicloice of defining
shape types by logic programs, which to a first-order thegneawver are just universally
quantified clauses; avoiding existential quantifiers seerssit Yices well. However, we
did observe cases where Yices’ instantiation heuristic sessitive to the formulation
of particular clauses (especially the no-sharing clausekihary trees).

4 Related Work

Efficient theorem provers make first-order logic attractix@mework for studying
reachability in mutable linked data structures. Howevansitive closure, essential for
properties of pointer structures presents a challengaigedast-order theorem provers
cannot handle transitive closure.

Various approaches for program analysis that use firstréodé&c have been inves-
tigated. We next discuss the most prominent.

The logic of interpreted sets and bounded quantificatiosésldor specifying prop-
erties of heap manipulating programsi[18]. The logic uses-firder logic and is in-
terpreted over a finite partially-ordered set of sorts. tvides a ternary reachability
predicate and allows bounded universal quantification twerdifferent kinds of (po-
tentially unbounded) sets. Following this approach firsteo SMT solvers, augmented
with theories, are used for precise verification of heapimadating programs. An al-
ternative framework uses ground logic enriched with termpaedicate([2P].

The use of a decidable fragment of first-order logic augmewigh arithmetic on
scalar field to specify properties of data structures isistlioh [20]. In contrast to ours,
this approach does not use theories for recursive preditkéereachability, and relies
on user provided ghost variables to express propertiestafsfiaictures.

In [19] a first-order formula, in which transitive closurecoes is simulated by
a first-order formula, where transitive closure is encodgdatiding a new relation
symbol for each binary predicate. This together with inthety defined first-order
axioms assures that transitive closure is interpreteectyr A set of axioms defines the
properties of transitive closure inductively. The axiomns aot complete over infinite
models. If the axioms are such that every finite, acyclic rhedésfying them must

86

interpret the encoding of transitive closure as the refeexivansitive closure of its
interpretation of the transitive binary relation, then #ix@m schema is complet€ [3]. Its
incompleteness notwithstanding, the induction schemadhdllows for automatically
proving properties of simple programs using SPASS [29].

Alternative approach for symbolic shape analysi$ [30] tise$ramework of (exten-
sions of) decidable fragments of first-order logic e. g.,rded fixpoint logic[[10]. The
logic expresses reachability along paths and from a speufitt, but not reachability
between a pair of program variabl@si[12].

Syntactically defined logics for shape analysis, such ad Etape logicCS L [26]
and role logicl[15], are closely related to first-order logdur approach is applicable to
their translation in first-order logic. The logitS L [26] is strictly less expressive than
the two variable fragment of first order logic with countiftple logic [15] is variable
free logic, which is equally expressive as first-order logith transitive closure and
consequently undecidable. A decidable fragment of roléclagas expressive as the
two variable fragment of first-order logic with counting.|Rdogic is closely related to
description logic which we have investigated for symbotiapge analysis[9].

Approaches based on three valued logic, which use oveweappation, have been
studied in[[13[-32]. The semantics of statements and theyqiénterest are expressed
in three valued logic. Only restricted fragments of the ¢ogyie decidable [12].

Prominent verification approaches for analysis of dataciires use parameterised
abstract domains; these analyses include parametric sinapesisi[2] as well as predi-
cate abstraction[L,11] and generalisations of predidasgraction[[15, 17]. Similarly to
our approach, reasoning about reachability in progranyarsadnd verification follow-
ing parametric shape analysis or generalisations of pa&elabstraction, are dependent
on the invariants that the program maintains for the speddia structure that it ma-
nipulates. An algorithm for inferring loop invariants ofggrams that manipulate heap-
allocated data structures, parameterised by the propéotige verified is implemented
in Bohne [31]. Bohne infers universally quantified invat@asing symbolic shape anal-
ysis based on Boolean heapsl[24]. Abstraction predicatebe@oolean-valued state
predicates (which are either true or false in a given statpyedicates denoting sets of
heap objects in a given state (which are true of a given objexgiven state).

An algebraic approach towards analysis of pointer prograntise framework of
first-order logic is presented in_[21]. The underlying pemstructures and properties
such as reachability and sharing are modelled by binarfioalaand the properties are
calculated by a set of rewrite rules.

Separation logicl[23] is distinguished by the use of a spétian of conjunction
(P * @), which allows the spatial orientation of a data structurbé@aptured without
having to use auxiliary predicates. Least and greatestifixppperators can be added
to separation logic, so that pre- and post-condition seicefior a while-language
can be wholly expressed within the loglc[27]. Formalisataf recursively defined
properties on inductively (and co-inductively) definedadstructures is then achievable
in the language. The addition of the recursion operatorgpaation logic leads to
alterations to the standard definition of syntactic sultih and the classic substitution;
the reasons are related both to the semantics of stack starebheap storage as well
as to the inclusion of the recursion operatars [27]. Indecthape analysis based on

87

separation logic using programmer supplied invariant kbecand numerical domain
constraints is proposed inl[4]. This approach is applicdablenore complex data
structures defined by counting, namely red-black trees.

In [25] pointer-based data structure of singly-linkeddisind a theory of linked
lists is defined as a class of structures of many-sorteddidd+ logic. The theory is
expressive and allows for reasoning about cells, indexdidatimns of cells, and the
reachability of a certain cell from another. The theory igedeped for linked lists only.

Alternative languages for modelling and reasoning incloumlal -calculus [14,
28], expressive description logics [5], the propositiatyaiamic logic[8] and temporal
logics [{], and rewriting approaches based on first-ordgicl{1].

5 Conclusion

In this paper we study imperative programs with destruatipdate of pointer fields.
We model shape types, such as linked lists, cyclic lists amaky trees as least models
of logic programs. We approximate the inductive reasonbapéleast models by first-
order reasoning. We demonstrate that the method is efésicinsimple programs.

AcknowledgementsThis work was funded in part by the Sixth Framework progranohe
the European Community under tMOBIUS project FP6-015905. This paper reflects only the
authors’ views and the European Community is not liable for ase that may be made of the
information contained therein.

References

[1] T.Ball, R. Majumdar, T. D. Millstein, and S. K. Rajamaiutomatic predicate abstraction
of C programs. IrPLDI'01, pages 203-213. ACM, 2001.

[2] M. Benedikt, T. W. Reps, and S. Sagiv. A decidable logic @iescribing linked data
structures. IEESOP’99 LNCS 1576, pages 2—19. Springer, 1999.

[3] D. Calvanese. Finite model reasoning in descriptiondsg In KR'96, pages 292-303.
Morgan Kaufman, 1996.

[4] B.-Y. E. Chang and X. Rival. Relational inductive shapwlgsis. InPOPL'08 pages
247-260. ACM, 2008.

[5] G.De Giacomo and M. Lenzerini. Concept language with bentestrictions and fixpoints,
and its relationship with mu-calculus. ECAI'94, pages 411-415. John Wiley and Sons,
1994.

[6] B. Dutertre and L. De Moura. The YICES SMT solver, 2006. olTpaper available at
http:/lyices.csl.sri.com/tool-paper.pdf.

[7] E. A. Emerson. Temporal and modal logic. fandbook of Theoretical Computer Science,
Volume B pages 995-1072. Elsevier and MIT, 1990.

[8] M. J. Fischerand R. E. Ladner. Propositional dynamiédagregular programsl. Comput.
Syst. S¢j.18(2):194-211, 1979.

[9] L. Georgieva and P. Maier. Description logics for shapalgsis. InSEFM’'05 pages
321-331. IEEE, 2005.

[10] E. Gradel and I. Walukiewicz. Guarded fixed point lagic LICS’99, pages 45-54. IEEE,
1999.

88

[11] T. A.Henzinger, R. Jhala, R. Majumdar, and G. Sutre ylatzstraction. IPOPL'02, pages
58-70. ACM, 2002.

[12] N. Immerman, A. M. Rabinovich, T. W. Reps, S. Sagiv, andYGrsh. The boundary be-
tween decidability and undecidability for transitive-slwe logics. ITCSL'04 LNCS 3210,
pages 160-174. Springer, 2004.

[13] N. Immerman, A. M. Rabinovich, T. W. Reps, S. Sagiv, andY@rsh. Verification via
structure simulation. ICAV'04, LNCS 3114, pages 281-294. Springer, 2004.

[14] D. Kozen. Results on the propositionaicalculus. InNICALP’82, LNCS 140, pages 348—
359. Springer, 1982.

[15] V. Kuncak and M. C. Rinard. On role logic. Technical Rep@25, MIT CSAIL, 2003.
Available at http://arxiv.org/abs/cs.PL/0408018.

[16] S. K. Lahiri and R. E. Bryant. Indexed predicate disegvéor unbounded system
verification. INCAV'04, LNCS 3114, pages 135-147. Springer, 2004.

[17] S. K. Lahiriand S. Qadeer. Verifying properties of widlinded linked lists. IiPOPL'06,
pages 115-126. ACM, 2006.

[18] S.K.Lahiriand S. Qadeer. Back to the future: Revigjiimecise program verification using
SMT solvers. INPOPL'08 pages 171-182. ACM, 2008.

[19] T. Lev-Ami, N. Immerman, T. W. Reps, S. Sagiv, S. Srieast and G. Yorsh. Simulating
reachability using first-order logic with applications terification of linked data structures.
In CADE’05 LNCS 3632, pages 99-115. Springer, 2005.

[20] S. McPeak and G. C. Necula. Data structure specificatidam local equality axioms. In
CAV'05 LNCS 3576, pages 476—490. Springer, 2005.

[21] B. Mdller. Linked lists calculated. Technical Repdi®97-07, Department of Computer
Science, University of Augsburg, 1997.

[22] G. Nelson. Verifying reachability invariants of linftestructures. IiPOPL’'83 pages 38—47.
ACM, 1983.

[23] P.W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasgabout programs that alter data
structures. IrCSL'01, LNCS 2142, pages 1-19. Springer, 2001.

[24] A.Podelski and T. Wies. Boolean heapsSAS’'05LNCS 3672, pages 268-283. Springer,
2005.

[25] S. Ranise and C. G. Zarba. A theory of singly-linkedslisind its extensible decision
procedure. I'SEFM’0G pages 206-215. IEEE, 2006.

[26] A. Rensink. Canonical graph shapes.HBOP’'04 LNCS 2986, pages 401-415. Springer,
2004.

[27] E.-J. Sims. Extending separation logic with fixpoints andtponed substitutionTheor.
Comput. Scj.351(2):258-275, 2006.

[28] R. S. Streett and E. A. Emerson. An automata theoretisi® procedure for the
propositional mu-calculudnf. Comput, 81(3):249—-264, 1989.

[29] C. Weidenbach, U. Brahm, T. Hillenbrand, E. Keen, C. ditedd, and D. Topic. SPASS
version 2.0. ICADE’'02 LNCS 2392, pages 275-279. Springer, 2002.

[30] T.Wies. Symbolic shape analysis. Master’s thesisfl8ad University, Saarbriicken, 2004.

[31] T.Wies, V.Kuncak, K. Zee, A. Podelski, and M. C. Rina@h verifying complex properties
using symbolic shape analysis. Technical Report MPI-162R4L, Max-Planck Institute for
Computer Science, 2006. Available at http://arxiv.org/eb.PL/0609104.

[32] G. Yorsh, T. W. Reps, and S. Sagiv. Symbolically computimost-precise abstract
operations for shape analysis. TACAS'04 LNCS 2988, pages 530-545. Springer, 2004.

89

