
Analysis of Authorizations in SAP R/3⋆

Manuel Lamotte-Schubert and Christoph Weidenbach

Max Planck Institute for Informatics, Campus E1 4,
D-66123 Saarbrücken

{lamotte,weidenbach}@mpi-inf.mpg.de

Abstract. Today many companies use an ERP (Enterprise Resource
Planning) system such as SAP R/3 to run their daily business rang-
ing from financial issues down to the actual control of a production line.
Already due to their sheer size, these systems are very complex. In partic-
ular, developing and maintaining the authorization setup is a challenge.

The goal of our effort is to automatically analyze the authorization setup
of an SAP R/3 system against business policies. To this end we formalize
the processes, authorization setup as well as the business policies in first-
order logic. Then, properties can be (dis)proven fully automatically with
our theorem prover Spass. We exemplify our approach on the purchase
process, a typical constituent of any SAP R/3 installation.

1 Introduction

Enterprise Resource Planning (ERP) systems are built to integrate all facets of
the business across a company including areas like finance, planning, manufac-
turing, sales, or marketing. The broader the functionality of such a system, the
larger the number of users, the greater the dynamics of a company, the more
complex is the administration of the authorizations. In particular, this applies
to the SAP R/3 system offered by SAP [1]. In this paper we investigate the
authorization setup of SAP R/3. Although SAP R/3 is not the newest release,
the most recent release SAP ERP 6.0 actually shares the same authorization
subsystem.

Our approach is depicted in Fig. 1. When a company decides to use an ERP
system like SAP R/3, it first formulates its business as processes. For example,
a typical purchase process starts with the creation of a purchase requisition out
of a purchase request, followed by the release of such a requisition, and finally
the transformation of the released requisition into the purchase that is eventu-
ally sent to a supplier. The processes directly induce an authorization concept.
Very often each step of a process corresponds to a particular role of a company
employee. For our example, the transformation of the released requisition into a
purchase is a typical buyer activity. The development of processes and the au-
thorization concept is guided by business policies. For our example, a business

⋆ SAP, SAP R/3 and SAP ERP 6.0 are registered trademarks of SAP AG in Germany
and in several other countries.

Processes

Authorization
Concept

Process
Setup

Business Policies

Authorization
Setup

SAP R/3 Instance

Business

Process
Formalization

Business Policy
Formalization

Authorization
Formalization

First-Order Formal Model

Properties

Company

Fig. 1. Analysis of authorizations in SAP R/3

policy might require that the activity of creating a requisition and creating a
purchase must always be separated, performed by different persons, and there-
fore must not be contained in one authorization role. This is a typical rule out
of the Segregation/Separation of Duties (SoD) approach. Once the processes
and authorization concept are defined, the configuration is implemented into an
SAP R/3 instance leading to a corresponding process and authorization setup.
Due to the sheer size of an SAP project, the number of processes, different em-
ployee roles and the highly dynamic development of such a system over time,
it is practically impossible to guarantee the compliance of the business policies
with the process and authorization setup. Furthermore, it is non-trivial to set
up new authorization roles for employees following organizational changes in the
business without destroying the overall compliance between the authorization
setup and the business policies.

We suggest to solve this problem by first-order logic theorem proving. We
model the process and authorization setup in first-order logic and automatically
analyze it with respect to a first-order formulation of the business policies. Spass

always terminates for provable (it ends with a proof) and non-provable cases (it
ends with a saturated set of clauses). The termination of Spass enables the use of
an abduction principle deriving missing facts. Then, defining new authorization
roles can be solved by saturating abductive queries (Sect. 5). Formulating the
processes and business policies has to be done by hand (Sect. 4). However, the au-
thorization setup can be formulated automatically and we suggest a tool pipeline
(Sect. 4.3). In practice, the changes to the authorization setup, e.g., caused by
organizational changes in a company, cause the most headache to SAP autho-

91

rization administrators. Business policies and processes are less likely to change
and if they change this is not done on a daily basis but by additional smaller
SAP change/introduction projects. Therefore, our approach offers a reasonable
amount of automatization. As an example SAP R/3 instance for studying the
SAP internal process and authorization setup we used the SAP R/3 system run
by the Max Planck society.

There have been other efforts to address the verification of the authorization
setup in SAP R/3. SAP itself offers a tool collection for Governance, Risk and
Compliance. The main difference to our approach is that these tools are only
able to check compliance with respect to the transactions performed during
concrete runs of the system and are not able to prove the overall compliance
of the authorization setup with the business policies. Furthermore, there is no
tool support for the business policy compliant generation of new authorization
roles available up to now. Other efforts include the general verification of role-
based access control principle together with constraints like SoD [2] but they
are neither connected to the SAP R/3 system nor they do incorporate business
processes. To the best of our knowledge, there has been no attempt so far to
analyze the authorizations in SAP R/3 together with the business processes and
business policies.

The paper is organized as follows. After explaining the basic first-order no-
tation (Sect. 2) the SAP R/3 internal mechanisms are studied with respect to
processes and authorizations in Sect. 3, followed by the formalization in first-
order logic (Sect. 4). Due to space limitations we only explain important aspects
of the developed first-order theory, hiding details that are not needed to under-
stand the main ideas. Nevertheless, the overall formalization can be obtained
from the Spass homepage (spass-prover.org) in the “prototype and exper-
iments” section. Our results on experiments are contained in Sect. 5 and the
paper ends with a small conclusion and ideas for future work (Sect. 6).

2 Background

The formalization of the process, authorization setup and business policies is
accomplished using first-order logic without equality. The following syntax defi-
nition as well as the semantics of the used language is taken from [3].

A first-order language is constructed over a signature Σ = (F ,R), where F

and R are non-empty, disjoint, in general infinite sets of function and predicate
symbols, respectively. Every function or predicate symbol has some fixed arity.
In addition to these sets that are specific for a first-order language, we assume
a further, infinite set X of variable symbols disjoint from the symbols in Σ.
Then the set of all terms T (F ,X) is defined as usual. A term not containing
a variable is a ground term. If t1, . . . , tn are terms and R ∈ R is a predicate
symbol with arity n, then R(t1, . . . , tn) is an atom. An atom or the negation of
an atom is called literal. Disjunctions of literals are clauses where all variables
are implicitly universally quantified. Formulae are recursively constructed over
atoms and the operators ⊃ (implication), ≡ (equivalence), ∧ (conjunction), ∨

92

(disjunction), ¬ (negation) and the quantifiers ∀ (universal), ∃ (existential) as
usual. For convenience, we often write ∀x1, . . . , xn . φ instead of ∀x1 ∀xn . φ

and analogously for the existential quantifier and assume the descending binding
precedence ¬, ∧, ∨, ⊃, ∀, ∃.

The formal model uses predicate symbols whose first letter is always upper-
case and the predicate itself is italic, e.g. the predicate Access is used to represent
the authorization access relation for a user, the atom Access(MUELLER, ME51N) ex-
presses that user MUELLER holds all rights to perform the transaction ME51N, the
creation of a purchase requisition. Constants originating from SAP R/3 are al-
ways written in typewriter font, e.g. MUELLER. In general, function names start
with a lowercase letter different from “x”, e.g. the function authObj is used to
represent an authorization (object). Variables are always prefixed with “x” and
written lowercase, for example, xu, xwrk.

Although we do not explicitly define sorts, our formulae are actually many-
sorted. For the explanation of our predicate and function usage we sometimes
refer to these “implicit” sorts by putting them in square brackets. For example,
the “declaration”

Access(<user>, authObj(<auth object name>, <auth field>, <value>))
explains that the first argument of an Access atom is a user term and the second
argument a term representing an authorization (object).

3 SAP R/3 Setup and Business Policies in Detail

We use the SAP terminology throughout our work in order to describe the
relevant aspects of the SAP R/3 system. The definition of terms adopted from
SAP are written in italics.

Authorization Setup. The SAP R/3 authorization architecture is a complex
structure and consists of several components interacting with each other. The
key data structure is an authorization, an instance of an authorization object,
that is eventually assigned via a profile to a user and typically grants the access
to one particular action inside SAP R/3. In order to align authorizations with
process steps, they are grouped in roles.

In detail, an authorization object is a named entity that holds one or more
named authorization fields, similar to a class structure of a programming lan-
guage. Together with appropriate field values, the authorization object consti-
tutes the authorization. An authorization is therefore an instance of an autho-
rization object, similar to the instance of a programming language class. The
relation is shown in Fig. 2.

There are single and composite roles for the grouping of authorizations avail-
able. A single role groups authorizations whereas composite roles serve as con-
tainers for single roles. Single roles have a name and a list of authorizations. For
example, Fig. 3 shows the structure of single role with name ZBANF WRK INF ED

by means of the concrete authorization S TCODE with a field TCD and the value
ME51N. The overall role ZBANF WRK INF ED contains all authorizations required
to create requisitions.

93

Auth. Object Name
Object

Authorization
Field

Authorization
Field

Authorization
Field
Authorization

Field
...
1-10

Value Value Value Value

Authorization

Authorization
Object

Fig. 2. Authorization object and authorization

S_TCODE

TCD

ME51N

ZBANF_WRK_INF_ED

Fig. 3. Single role including authorizations

Single and composite roles generate profiles in SAP R/3 that are then even-
tually assigned to the user.

In our first-order model authorization objects become terms starting with
function authObj and ground instances of those are authorizations. For the
formulation of roles and profiles we use the respective predicates SingleRole,
CompositeRole, and UserProfile. Mappings between objects are represented by
functions and concrete values become constants.

Process Setup. A process is a consecutive flow of transactions in SAP R/3.
Typically, the different actions are enabled by the creation or change of data
inside the system due to preceding transactions. There is a unique identification
code for any transaction, for example, ME51N stands for the transaction to create
a requisition. If a user executes a particular transaction in the system then the
effective authorizations from the users’ authorization profile are checked. These
checks are called authorization checks.

Each authorization check consists of two parts: (i) the presence of the required
authorization object in the authorization profile associated with the user (for this
purpose only the authorization object name is compared) is checked, and if this
check succeeds, (ii) the required value(s) for the transaction are compared with
the value(s) present in the value field(s) of the authorization assigned to the user.
In particular, the second check succeeds if all value fields with the corresponding
values of the object match to the required fields and values (AND-combination).
A match can mean simple equality, e.g. the right to change data, or comparisons

94

with respect to some ordering, e.g. the amount of money is below some threshold.
If one check fails, then the overall check of the authorization fails.

The first authorization check in every transaction is the check for the trans-
action code which is triggered by the SAP R/3 system before the actual trans-
action starts. The name of the corresponding authorization object for this check
is S TCODE. This object has only one authorization field TCD which serves as a
container for the required transaction code. All further authorization checks are
implemented in the transaction.

Example: Purchase Process and its Authorization Checks. The purchase process
introduced in Sect. 1 is a typical constituent of the SAP R/3 system and is used
in this paper as a running example. The creation of the requisition as well as the
creation of the order are mapped by exactly one transaction in SAP R/3 whereas
the release transaction implicitly additionally calls the transaction to view the
requisition. Furthermore, releases of requisitions require release strategy settings
done once at the initial configuration of an SAP R/3 system.

An SAP R/3 purchase requisition document is created to request the pur-
chase of goods or services by calling the transaction ME51N in the SAP R/3 sys-
tem. This transaction code is subject to the first authorization check and must
be present as an authorization in the users’ authorization profile.

The creation of a requisition needs to fill different fields, for example, the
plant field for which the item is destined for. Some of these fields are protected
by authorization objects, for example, the plant field is protected by the au-
thorization object M BANF WRK with the two authorization fields ACTVT (activity)
and WERKS (plant). The field activity requires the concrete value 01 (for “create”)
and the value for the plant field depends on the data entered in the requisition.
If the data for the plant has been entered, the users’ authorization to perform
the action “create” for the entered plant is checked. The other protected fields
document type and purchase group are protected in a similar way.

Release procedures for requisitions are used in SAP R/3 to approve requi-
sitions which exceed a certain budget limit before they can be converted to an
order. The SAP R/3 system uses so-called release strategies to achieve such
approvals. A release strategy is an object that contains conditions for its ap-
plication as well as a small process definition. This process defines the required
actions to eventually release the requisition.

The order is the request to the supplier or another plant of the company to
deliver the requisitioned material or service under terms and conditions agreed
before. A released requisition is the prerequisite to create an order that is con-
nected to the requisition. The authorization checks in the create order transac-
tion are performed analogously to the checks occurring during the create requi-
sition transaction.

Business Policies. Business policies are constraints on the business. A lot of busi-
ness constraints follow best-practice approaches, for example, Segregation/Sep-
aration of Duties (SoD). This approach is considered in our work and requires
that there is no single individual having the control over two or more phases of

95

a process, so that a deliberate fraud is more difficult to occur. In the purchase
process, this means that the requisitioner must be distinct from the releasing
person and the buyer.

On the SAP R/3 transactional level, it means that a single user is not al-
lowed to have the authorizations to perform the appropriate transactions to cre-
ate requisitions, release requisitions and orders for some plant, material group,
purchasing group and organization1.

4 SAP R/3 Formal Authorization Analysis

The SAP R/3 authorization system is formalized using first-order logic without
equality. The formalization represents the process (we use the purchase process
as example) and authorization setup as well as the formalized business policies.
The prerequisite for the construction of the formalization is a snapshot of an
SAP R/3 system, i.e. the formalization represents the state of the system at a
given time.

For the goal of proving compliance (abduce changes) of the authorization
setup with the business policies, we perform a number of abstractions, easing the
size and depth of the formalization. We assume that we always have only one item
per purchase requisition/order. We do not deeply model numbers, for example,
amounts of money. Numbers are formalized as constants, intervals of numbers
are also described as constants, for example GREATER 1000 LESS 10000 EUR,
and the corresponding ordering relations between these constants are established.
Within the authorization check procedure and the release strategy appliance
checks, the SAP R/3 system uses a comprehensive pattern matching mechanism.
For simplification, we formalized only exact matching and the asterisk symbol
matching every required value. Composed values of an asterisk and a string are
currently not supported by our formalization.

We formalized most of the SAP R/3 system parts in form of monadic predi-
cates because Spass offers particular reduction support for these predicates via
soft typing [4]. The large set of authorization components like roles and profiles
is modeled by the monadic predicates, while the assignment of these components
to the users is represented by an implication. The set of process states in the
SAP R/3 system is modelled by a set of predicates; and the abstraction of its
dynamic behavior, which is relevant for authorization, is captured implications.
The premise of such an implication represents the conditions for the process
step while the conclusion stands for the effects after the execution of the cor-
responding transactions in this step. The form of business policies is individual
and therefore the formalization of the policies depends on the type of the policy.

4.1 Authorization and Process Setup

The authorization setup layer consists of several predicates representing the way
where authorizations are arranged and eventually assigned to a user. A single

1 These are the properties protected by authorization objects.

96

role is modeled by the unary predicate SingleRole. The function authObj with
arity 3 therein maps the authorization value to the authorization field of the
authorization object. The authorization object together with the value represents
the authorization that is then assigned to the single role by the binary function
singleRoleEntry. Each authorization that is contained in some SAP R/3 single
role results in a SingleRole atom in the formalization.

SingleRole(singleRoleEntry(< single role name >,

authObj(< auth object name >, < auth field >, < value >)))

A composite role is modeled by the unary predicate CompositeRole. The function
compositeRoleEntry therein associates the single role given by its name with the
composite role.

CompositeRole(compositeRoleEntry(< composite role name >,

< single role name >))

The effective authorizations associated with a user are stored in the authorization
profile. This profile is modeled by the unary predicate UserProfile. The function
userProfileEntry maps the authorizations given by the function authObj to the
user; any authorization check looks for the required authorization only in the
users authorization profile.

UserProfile(userProfileEntry(< user >,

authObj(< auth object name >, < auth field >, < value >)))

The following formula exactly models the mechanism of the SAP R/3 user au-
thorization profile creation. The assignment of a role to a user implies the as-
signment of the appropriate generated authorization profile. Whenever a single
role or composite role is going to be assigned to a user via the predicate Holds,
the authorization part is extracted and the corresponding authorization profile
entry (representing the effective authorization) for the user is created:

∀ xu, xpn, xsrn, xcrn, xaon, xaof, xav .

(SingleRole(singleRoleEntry(xsrn, authObj(xaon, xaof, xav))) ∧

Holds(xu, xsrn)) ∨

(CompositeRole(compositeRoleEntry(xcrn, xsrn)) ∧

SingleRole(singleRoleEntry(xsrn, authObj(xaon, xaof, xav))) ∧

Holds(xu, xcrn))
⊃

UserProfile(userProfileEntry(xu, authObj(xaon, xaof, xav)))

The authorization check result – access or decline – is represented in our
first-order formalization by the binary predicate Access. If the atom Access is
valid, the access to the function or data protected by the authorization object
is granted. Otherwise, it is not. In other words, a valid instance of the follow-
ing Access atom expresses that the user <user> has successfully passed the

97

authorization check of the appropriate authorization which is denoted by the
authorization object with its field and value.

Access(< user >, authObj(< auth object name >, < auth field >, < value >))

In the authorization check procedure, the required authorization object in-
formation together with the appropriate authorization value are compared to the
authorization present in the users authorization profile. All properties, namely
the authorization object name, the field and the value must be equal in the check
in order to succeed. This is modeled by the following implication. If the required
authorization is present in the user authorization profile, then the access to this
authorization is granted.

∀ xu, xaon, xaof, xav .

UserProfile(userProfileEntry(xu, authObj(xaon, xaof, xav)))
⊃

Access(xu, authObj(xaon, xaof, xav))

Example: Purchase Process. The formalization of the transaction layer with
its authorization checks is done manually in our example. We have introduced
an additional layer by overloading the predicate symbol Access. The following
transition shows the abstraction for the transaction “create a requisition”. It
groups all authorization checks occurring during the execution of the transaction.

∀ xu, xwrk, xbsa, xekg .

Access(xu, authObj(S TCODE, TCD, ME51N)) ∧

Access(xu, authObj(M BANF WRK, ACTVT, 01)) ∧

Access(xu, authObj(M BANF WRK, WERKS, xwrk)) ∧

Access(xu, authObj(M BANF BSA, ACTVT, 01)) ∧

Access(xu, authObj(M BANF BSA, BSART, xbsa)) ∧

Access(xu, authObj(M BANF EKG, ACTVT, 01)) ∧

Access(xu, authObj(M BANF EKG, EKGRP, xekg))
⊃

Access(xu, ME51N)

The first check represents the check of the transaction code (ME51N) carried
out by the SAP R/3 system at the start of every transaction. The authorization
objects M BANF WRK, M BANF BSA, and M BANF EKG check the plant, document type
and purchase group, respectively. They have constants in the first field (ACTVT)
checking the type of action (01 stands for “create”, 02 stands for “change”, 03
stands for “view”) and variables in their second field standing for the values of
the corresponding fields: plant, document type and purchase group. If the atom
Access(xu, ME51N) holds, then the user is allowed to execute the transaction in at
least one instance, for example for one plant (variable xwrk), one document type
(variable xbsa) and one purchase group (variable xekg). Later in the context of
the requisition creation, when the exact values are known from the requisition,
the values of the variables have to be evaluated and checked again.

98

The previously mentioned additional transactional layer for authorization
checks makes it more comfortable to model the formalization of the purchase pro-
cess steps. The purchase process starts with the existence of a purchase request
whose data is then entered into the SAP R/3 system by the purchase requisi-
tioner. After the data has been entered, the request has become an SAP R/3 req-
uisition object that is represented by the atom RequisitionCreated. An instance
of this atom contains all needed details.

RequisitionCreated(<user>, <document type>, <position>,
<material>, <plant>, <purchasing group>,
<purchasing organization>, <material group>, <price>, <id>)

The following implication represents the creation of the corresponding SAP
R/3 requisition object. The predicate Requisition is an arbitrary purchase re-
quest for an item and the predicate RequisitionCreated is represents this item in
the SAP R/3 system, created by the user denoted by the variable xu. This user
xu needs access to the create transaction (ME51N). As mentioned, the values of
the variables xwrk, xbsa, xekg are again subject to authorization checks because
at this point the values of the variables are known (namely the values from the
requisition that is going to be created). This results in the following formula.

∀ xu, xbsa, xpos, xmat, xwrk, xekg, xekorg, xmatkl, xgswrt, xid .

Requisition(xbsa, xpos, xmat, xwrk, xekg, xekorg, xmatkl, xgswrt, xid) ∧

Access(xu, ME51N) ∧

Access(xu, authObj(M BANF WRK, WERKS, xwrk)) ∧

Access(xu, authObj(M BANF BSA, BSART, xbsa)) ∧

Access(xu, authObj(M BANF EKG, EKGRP, xekg))
⊃

RequisitionCreated(xu, xbsa, xpos, xmat, xwrk, xekg, xekorg, xmatkl,
xgswrt, xid)

A more complex and interesting step in the purchase process is the release of
a requisition where a release strategy has applied. The function property relates
a value to a property name and represents a condition property for the applica-
tion of some release strategy. The class construction is eventually used to group
several properties belonging to a release strategy.

ReleaseStrategy(< release strategy name >,

class(< characteristics class name >,

property(< property name >, < value >)))

Release strategies consist of one or more single release steps which are de-
clared by the atom ReleaseRequirement. This atom groups the strategy name
and the required code for each step.

ReleaseRequirement(< release strategy name >, < release code >)

Figure 4 shows the formalization of one release step for an existing requisition
object. The existence of the requisition is checked by the first atom Requisition-
Created in the premise. Subsequent atoms address the application checks of the

99

release strategy xfrgstrat for which the characteristics denoted by the variables
xekg (purchasing group), xwrk (plant), and xgswrt (total amount of money of
the requisition) are used. The predicate ReleaseRequirement retrieves the release
code for the release step in the release strategy and is then subject to an autho-
rization check. In order to proceed with the release step, the user, denoted by the
variable xu2, needs authorizations for the release (with the code xfrgco) as well
as for the transaction (ME54N) in order to perform the release step. Please note
that the user performing the release step (xu2) is different from the user who
has created the requisition (xu1) which is enforced by the business policies (see
Sect. 4.2). The conclusion expresses the fact that the user xu2 has performed
the release step with the code xfrgco in the overall release of the requisition.

∀ xu1, xu2, xbsa, xpos, xmat, xwrk, xekg, xekorg, xmatkl, xgswrt,
xfrgstrat, xfrgco, xcl, xid .

RequisitionCreated(xu1, xbsa, xpos, xmat, xwrk, xekg, xekorg, xmatkl,
xgswrt, xid) ∧

ReleaseStrategy(xfrgstrat, class(xcl, property(FRG CEBAN EKGRP, xekg))) ∧

ReleaseStrategy(xfrgstrat, class(xcl, property(FRG CEBAN WERKS, xwrk))) ∧

ReleaseStrategy(xfrgstrat, class(xcl, property(FRG CEBAN GSWRT, xgswrt))) ∧

ReleaseRequirement(xfrgstrat, xfrgco) ∧

Access(xu2, authObj(M EINK FRG, FRGCO, xfrgco)) ∧

Access(xu2, ME54N) ∧

Access(xu2, authObj(M BANF WRK, WERKS, xwrk)) ∧

Access(xu2, authObj(M BANF BSA, BSART, xbsa)) ∧

Access(xu2, authObj(M BANF EKG, EKGRP, xekg))
⊃

RequisitionReleasedStep(xu2, xfrggr, xfrgstrat, xfrgco, xbsa, xpos, xmat,
xwrk, xekg, xekorg, xmatkl, xgswrt, xid)

Fig. 4. Single release step in the SAP R/3 purchase process

Concerning the overall release of a requisition, there are further formulae
which define the required single release steps for a complete release of the req-
uisition.

The released requisition is eventually the precondition to create an order ob-
ject in SAP R/3 that is connected to the requisition. The formalization of this
step is analogous to the creation of a requisition.

100

4.2 Business Policies

The SoD business policy for the purchase process expresses that there should be
no user having the control over two or more phases of a process. Very often in
smaller companies, this is relaxed into a less strict requirement stating that there
should be no user who is allowed to perform the complete purchase process in
one instance. The relaxed version of SoD is formalized by the following formula.
Starting from the purchase request, there are no values for which the user xu
can perform the three steps of the purchase process.

¬∃ xu, xbsa, xwrk, xekg, xekorg, xmatkl, xgswrt, xpos, xmat, xid .

RequisitionCreated(xu, xbsa, xpos, xmat, xwrk, xekg, xekorg, xmatkl,
xgswrt, xid) ∧

RequisitionReleased(xu, xbsa, xpos, xmat, xwrk, xekg, xekorg, xmatkl,
xgswrt, xid) ∧

OrderCreated(xu, xbsa, xpos, xmat, xwrk, xekg, xekorg, xmatkl, xgswrt,
xid)

4.3 Automatic Authorization Extraction

The authorization checks occurring in the SAP R/3 system can be extracted by
looking directly into the source code and by exploring the connection between
the transaction and the associated program code. The authorization check at the
beginning of a transaction can be read from an internal data dictionary. This is
done by the transaction SE93 which is used to manage the association between
the transaction code, the program code and the authorization check. All further
checks are implemented into the program code using the AUTHORITY-CHECK
statement. For convenience, we used the SAP R/3 System Trace tool which
monitors, among other things, the authorization checks taking place during the
execution of a transaction.

The extraction of the SAP R/3 system users and its authorizations is achieved
using the User Information System2. It is able to report information about users,
their roles and profiles as well as information about authorizations, authorization
objects or transactions. The result of a query to this information system can be
easily stored in text-format (see Fig. 5) and lists, for example, all authorizations
present in a profile.

5 Results

We used the theorem prover Spass, Version 3.0 [5] for our experiments. The
theory containing the SAP R/3 general authorization structure and its instan-
tiation to the purchase process consists of 156 formulae with a size of 41 KByte
resulting in 177 clauses. The experiments ran on a Dell PowerEdge 1950 server

2 Transaction SUIM

101

Profile

|

--- Z:EK1_INFO <PRO>

|

|-- M_BEST_WRK <OBJ> Plant in Purchase Order

| |

| --- M_BEST_WRKAL <AUT> Plant in Purchase Order

| |

| |-- ACTVT <FLD> Activity

| | |

| | ------*

| |

| --- WERKS <FLD> Plant

| |

| ------INFO

...

Fig. 5. Export of authorizations from SAP R/3

running at 3.14 GHz equipped with 16 GB RAM, 64-bit Debian Linux, Kernel
2.6.24.2.1.amd64-smp.

One of the key results is that the overall formalization can be finitely satu-
rated. This is mainly due to the fact that there is no recursion over the business
processes, and consequently, ordering mechanisms are sufficient for saturation.
Our experiments also include the user authorization data. Spass always termi-
nated within the experiments, ending with either a saturated set of clauses or a
proof. A finite saturation means that the given conjecture could not be proven
and therefore doesn’t hold. If no conjecture was given, it states there is no con-
tradiction in the input formulae and consequently the authorization setup and
the business policies are compatible. The fact that Spass always terminates is
also an important prerequisite for the actual development of the theory as it
enables inspection of models and detection of accidental inconsistencies.

Every experiment run took less than 20 seconds. The saturation of the input
theory, including the user data and business policy, took 13 seconds with Spass

run with default settings. It can be tweaked by predefining a particular selection
strategy to less than 1 second.

The ability to run a variety of different queries in addition to the general
inspection of the setup was also one of the original motivations to do this work.
Having Spass terminating on queries further enables the use of an abduction
principle [6, 7]. We give Spass the query to be proven and then the saturated
clauses out of the query represent a set of abductive answers. This is complete
for the propositional case as stated in [6]. Completeness is open for the full first-
order case. For example, it is interesting whether a particular user, e.g., MUELLER

102

in our running example, is able to perform the step to create a requisition, maybe
for the given plant INF. Such a conjecture is formalized and fed to Spass as the
conjecture:

∃ xbsa, xekg, xekorg, xmatkl, xgswrt, xpos, xmat, xid .

Requisition(xbsa, xpos, xmat, INF, xekg, xekorg, xmatkl, xgswrt, xid)
⊃

RequisitionCreated(MUELLER, xbsa, xpos, xmat, INF, xekg, xekorg,
xmatkl, xgswrt, xid)

In our example setup the conjecture holds and can be proved in less than 1 sec-
ond.

Removing MUELLER’s access rights to the corresponding transaction ME51N

from the theory and rerunning the above conjecture results in a saturation with-
out proof in 8 seconds. Now the purely negative clauses resulting from the query
can be interpreted as abductive answers to the query. For example, the generated
clause

¬Access(MUELLER, ME51N)

expresses that the right to execute transaction ME51N is missing in order to
successfully create a requisition.

6 Conclusion and Future Work

This paper has presented an effort to the automatic analysis of an SAP R/3
process and authorization set up with respect to given business policies using
the purchase process as a case study.

To accomplish automatic verification, the SAP R/3 process setup, the autho-
rization setup and the business policies have been formalized in first-order logic.
The formalization decisions were taken from a detailed analysis of the SAP R/3
system instance run by the Max Planck society. We could show that the devel-
oped formalization can be automatically analyzed by Spass. Any proof attempt
with Spass we have done in this context terminated. We can automatically check
compliance of business policies, properties with respect to specific user autho-
rization configurations as well as automatically abduce compliant changes to the
authorization set up.

There are a number of open questions left for future work. Our model of
numbers by first-order constants could be overcome by using Spass(LA) [8], our
currently experimental prover for the hierarchic extension of linear arithmetic by
first-order logic. For the first-order formula class presented in this paper as well as
for such an extended first-order formula class over linear arithmetic decidability
is open.

Eventually, it is an open question how our model scales with respect to a more
integrated formalization of an SAP R/3 instance. In our example, we analyzed
only the purchase process and up to ten users while a typical instance has about
50–200 processes and up to several thousand users. We are optimistic that this

103

is not out of range to first-order theorem proving because processes as well as
users can be analyzed almost independently.

The concrete formalization of authorizations differs for individual (non-SAP)
software systems. However, theoretic aspects of our approach like termination,
scalability or completeness in verification tasks remain similarly and can be
transferred to other systems.

References

1. SAP Press Release: SAP Holds Top Rankings in Worldwide Market Share (July
2008)
http://www.sap.com/about/newsroom/news-releases/press.epx?pressid=9913.

2. Yuan, C., He, Y., He, J., Zhou, Z.: A verifiable formal specification for rbac model
with constraints of separation of duty. In: Information Security and Cryptology.
Volume 4318 of LNCS., Springer (2006) 196–210

3. Nonnengart, A., Weidenbach, C.: 6. In: Computing small clause normal forms.
Volume 1. Elsevier, Amsterdam, the Netherlands (January 2001) 335–367

4. Ganzinger, H., Meyer, C., Weidenbach, C.: Soft typing for ordered resolution.
In McCune, W., ed.: Proceedings of the 14th International Conference on Auto-
mated Deduction (CADE-14). Volume 1249 of Lecture Notes in Computer Science.,
Townsville, Australia, Springer (1997) 321–335

5. Weidenbach, C., Schmidt, R., Hillenbrand, T., Rusev, R., Topic, D.: System de-
scription: Spass version 3.0. In Pfenning, F., ed.: CADE-21 : 21st International
Conference on Automated Deduction. Volume 4603 of LNCS., Springer (2007) 514–
520

6. Dimova, D.: Propositional abduction. Bachelor’s thesis, Universität des Saarlandes
(September 2007)

7. Eiter, T., Makino, K.: On computing all abductive explanations. In: Eighteenth
national conference on Artificial intelligence, Menlo Park, CA, USA, American As-
sociation for Artificial Intelligence (2002) 62–67

8. Althaus, E., Kruglov, E., Weidenbach, C.: Superposition modulo linear arithmetic:
SUP(LA). In Ghilardi, S., Sebastiani, R., eds.: Frontiers of Combining Systems.
7th International Symposium FroCos 2009, Proceedings. LNCS, Springer (2009)
Accepted for publication.

104

