
Tracking Evolution in Model-based Product Lines

Wolfgang Heider Rick Rabiser Deepak Dhungana Paul Grünbacher
Christian Doppler Laboratory for Automated Software Engineering

Johannes Kepler University
Linz, Austria

{heider | rabiser | dhungana | gruenbacher}@ase.jku.at

Abstract— Software product lines are complex and need to be
maintained and evolved over many years. New customer
requirements, new products derived, technology changes, and
internal enhancements lead to continuous changes of the artifacts
and models constituting a product line. Managing such changes
therefore becomes a key issue during a product line’s evolution.
We propose an approach that supports multi-level monitoring of
product line artifacts and models and continuous tracking of
changes. We present tool support for evolution tracking in
Eclipse workspaces and illustrate our approach with examples
from DOPLER, an existing Eclipse-based product line
environment.

Keywords-product line engineering; evolution; change tracking

I. INTRODUCTION

Product lines are typically used for many years and are
inevitably subject to continuous evolution. Managing the
evolution is success-critical for any product line approach as
engineers need to deal with changes and extensions to the
product line’s assets and the derived products [1]. Feature
models [2], decision models [3], extended UML [4], or aspect
oriented approaches [5] are typically applied to define product
lines. Managing the evolution of models therefore becomes a
major concern.

In particular, our research interest is on (i) monitoring and
tracking changes to models and product line artifacts, and
(ii) establishing traceability between diverse product line
artifacts such as product-specific requirements, change
requests, or bug reports. Numerous research prototypes and
commercial tools are available to support the creation and
utilization of product line models, e.g., [6, 7]. However, they
provide only limited support for dealing with product line
evolution.

A generic approach for tracking the evolution of
heterogeneous artifacts and models is still not available. For
instance, existing approaches and tools lack support for
managing the evolution of product line models at multiple
levels of granularity and for managing interdependencies
between different product line artifacts. This becomes
particularly critical in a multi-team environment if several
application engineering projects are conducted in parallel. This

can mean that multiple products are derived concurrently from
different releases of a product line.

In this paper we propose an approach for evolution tracking
which is based on a generic meta-model. The approach is
supported by our tool EvoKing. We demonstrate the
capabilities of EvoKing using an example of its integration
with the DOPLER product line approach and tools [8].

II. A META-MODEL FOR TRACKING PRODUCT LINE

EVOLUTION

Many software tools support change tracking at the file or
code level. For instance, version control systems and file
system journaling mechanisms allow keeping track of changes
to artifacts at the file level. Development environments make
use of these tools to support change-tracking at the code level.
However, tracking changes at this level is tedious. Supporting
evolution requires change-tracking at a higher level of
granularity and abstraction. It is also important to understand
the dependencies between changes. Furthermore, change-
tracking needs to cover various types of artifacts such as
models, model elements, or structured documents.

From a bird’s eye view, tracking evolution is about
understanding the changes that are made to different artifacts of
interest and establishing traceability between these artifacts
based on dependencies between changes. The events and
conditions that lead to a certain change are usually as
interesting as the change itself. We have devised a generic
meta-model for tracking evolution, which comprises artifacts,
events, and relations (cf. Fig. 1).

An artifact is an element which needs to be monitored to
track and manage its evolution. Examples of product line
artifacts are meta-models, models, model elements, solution
space elements (e.g., reusable code assets), or change requests
(e.g., requirements captured during application
engineering [9]). In a product line environment, these artifacts
are typically managed in files or parts of files. The nature of the
artifacts is domain-specific and cannot be generalized. Our
evolution meta-model (the top layer in Fig. 1) thus does not
specify concrete artifacts such as feature models, configuration
files, or component descriptions. Instead we use a layered
approach: the generic meta-model defines the basic elements
that are then refined to specific domains and technologies using

custom artifacts. Fig. 1 (middle and bottom layer) shows
examples of artifacts at multiple levels of abstraction, i.e., in
Eclipse-based tools and in product line engineering. Events and
relations are created and resolved by implementing the defined
custom artifacts (cf. Section 3).

Figure 1. Evolution meta-model for tracking evolution and examples of
custom artifacts for product line engineering artifacts in Eclipse.

An event causes one or more changes to artifacts. The
generic evolution meta-model allows defining arbitrary events
for the specified artifacts. Events relevant in product line
engineering can typically be derived from existing product line
process models and workflows. For example, the addition of a
new variation point to a variability model constitutes an event
that creates a new version of this model. Events can however
also be defined at a much higher level of abstraction: e.g., if a
user decides to derive a product using an existing variability
model, a new application engineering project will be created,
that is e.g., stored in a new model that needs to be tracked.

A relation between artifacts is established by an event
tracked for specific artifacts. It describes how these artifacts are
related with each other. Such links can be structural or
temporal in nature. Structural relations between artifacts
describe how the artifacts are organized, e.g., a model might be
part of another model or a component might be described by a
certain document. Temporal relationships are created at certain
times during the artifact life-cycle to track their evolution
history, e.g., a derivation model is created before a product is
derived based on a variability model.

When refining our evolution meta-model to a particular
product line development environment, users define different
types of trace links as relations. Examples of relations (not
shown in Fig. 1) between product line elements are:

• Project to model: A specific model (stored for example
in a file) becomes part of a project and is marked for
change tracking after its creation.

• Model to model: A model is related to another model.
For instance, a variability model is based on a certain

product line meta-model. Since multiple variability
models and meta-models can be stored in a workspace
it is necessary to establish traceability to ease product
line evolution.

• Model to model element: A model consists of an
arbitrary number of modeling elements.

• Model element to model: A model element can be
related to different other models. For example, if a
requirement is captured in a derivation model [10] or a
requirements document during application engineering,
it is useful to also establish a trace link from the
requirement to the variability model that must be
evolved to address the new requirement.

• Model element to model element: Model elements are
typically related to other model elements. For instance,
a newly captured requirement can directly refer to
existing model elements like features, decisions, or
assets in a product line model.

III. EVOK ING: TOOL-SUPPORT FOR TRACKING EVOLUTION

IN ECLIPSE WORKSPACES

Our approach for tracking and managing evolution of
product lines is supported by our Eclipse-based tool EvoKing.
We intentionally did not use Eclipse libraries to implement the
evolution meta-model to keep the core of our approach
independent from Eclipse. We describe the refinement of our
generic evolution meta-model and the extensions we developed
to support tracking of artifact changes in Eclipse.

A. Refining the Meta-model for Eclipse

The artifacts tracked by EvoKing are Eclipse workspace
entities like IFile, IProject or IWorkbench. They are
defined in a refined evolution meta-model as shown in Fig. 1.
Users configure EvoKing for an Eclipse-based modeling
environment by specifying the artifacts of interest at a higher
level of abstraction (the lower level implementation details like
IProject or IFile are transparent to the user). For example,
users specify the types of Eclipse projects they want to be
tracked (e.g., “Java Project” or “Product Line Project”) or the
file types (e.g., “Java source files” or “XY Models”).

Low-level events fired by the Eclipse framework (e.g., file
change notifications) are automatically captured by EvoKing.
EvoKing complements the existing notification mechanisms of
Eclipse by adding an explicit meaning to events. For example,
users can define in the evolution meta-model that whenever a
new file of type “feature configuration” is added to the
workspace, this shall be interpreted as the start of product
derivation and a relation to a feature model should be created
(see Section 4). This way a relation from a derivation project
(i.e., stored in a feature configuration file) to a variability
model (i.e., stored in a feature model file) is established.

B. Tool Architecture

EvoKing works as a consumer and recipient of event
notifications coming from Eclipse or other custom event
providers (cf. Fig. 3). Based on the incoming events and the

Figure 2. EvoKing Evolution View showing the change history of a DOPLER derivation model (.gen file) and a related requirement, variability model (.var

file) and meta-model (.meta file).

defined artifacts, new events with more detailed information
regarding context and semantics can be generated. Such
evolution events are then stored for each artifact and can be
browsed using the EvoKing evolution view (cf. Fig. 2). Other
tools implementing a specific interface can also be registered as
an observer to retrieve evolution events if they wish to be
informed about changes and their meaning.

EvoKing supports the user in further refining the evolution
meta-model. This includes support for the modeler to add code
for resolving relations, to interpret events from Eclipse for
specific models, and to enrich change events with context-
specific, semantic information. Product line engineers can
thereby customize EvoKing to support evolution in arbitrary
Eclipse-based product line environments.

Figure 3. EvoKing’s event architecture.

EvoKing recognizes change events based on information
from two sources:

Eclipse resource change events such as file added or
file changed and their sources are analyzed. EvoKing for
example parses files representing models so that internal
changes to models can be recognized using existing model
APIs. Such changes are then mapped to artifacts and events
defined in a refined evolution meta-model (see Section 4).

Custom event providers for models can send specific
events to EvoKing. For example, if listeners have been
implemented for a certain model type, they can be extended to
explicitly fire change notifications. EvoKing is then registered
as a listener for these models and can track changes being made
to a model internally (e.g., model elements being added,
deleted, or changed). Notifications are automatically
transformed to evolution events according to the artifact
and event definitions found in the evolution meta-model
refined for a particular environment (cf. Section 4).

The EvoKing evolution view depicted in Fig. 2 shows all
tracked artifacts of a project currently opened in Eclipse. The
hierarchically organized representation of dependencies to
other artifacts and all corresponding events allows users to
quickly get an overview of the changes that have been
occurring. Users can display details of a specific artifact at any
time by expanding the tree, browsing through event details and
related artifacts, and open editors for the elements the artifacts
represent.

IV. EXAMPLE APPLICATION OF EVOK ING:
EVOLUTION MANAGEMENT IN DOPLER

Our testbed for EvoKing is the DOPLER product line
engineering approach and tool suite [8]. We have been
developing DOPLER in ongoing research collaboration with
industry. The model-based, decision-oriented approach
supports variability modeling and product derivation and
provides tool support for creating, using, and managing diverse
types of product line artifacts and models.

The product line artifacts (cf. Fig. 4) in DOPLER are
product line meta-models, variability models, derivation
models, and diverse model elements (e.g., assets, decisions, and
product-specific requirements). The relevant dependencies
between these artifacts are as follows: A variability model
(.var file in Eclipse) uses a particular meta-model (.meta file);
a derivation model (.gen file) is based on a specific variability

model; a requirement comes from a particular derivation
model.

Evolution in DOPLER is for instance triggered by product-
specific requirements captured during application requirements
engineering. Requirements are captured in the derivation model
representing a particular product derivation project.
Implementing a requirement typically causes a change of the
variability model (and thereby its elements like, i.e., assets and
decisions).

Fig. 4 shows a simplified overview of how we customized
EvoKing for DOPLER. Operations on files defined as model
containers (.meta, .var, and .gen files) are captured and
processed in the corresponding artifact implementations. For
instance, for the creation of a .meta file (1) the artifact for the
contained product line meta-model (2) is created. This leads to
an evolution event indicating the start of domain
engineering (3). This procedure works similar for other files
and models. Starting variability modeling or starting a new
derivation project additionally creates trace links between (4)
the product line meta-model or variability model respectively.
Independent of file changes, DOPLER-specific notifications
are processed by the EvoKing artifacts. For instance, the
DOPLER tool suite notifies EvoKing about model changes
(5) like new model elements (i.e., assets, decisions,
requirements) being added. EvoKing stores events containing
this information (6) or, according to the refined evolution meta-
model, new artifacts, (7) e.g., representing requirements, are

held with their own evolution history (8) and relations to their
origin (9).

EvoKing allows users to track the evolution of DOPLER
product line meta-models, variability models, derivation
models, and of the elements these models comprise. The
customization of EvoKing to a different (Eclipse-based)
product line environment would be pretty straightforward as
most Eclipse-based product line environments store models in
files in Eclipse projects and different model elements such as
features or requirements are contained in the models.

V. CONCLUSIONS AND FUTURE WORK

We presented a tool-supported approach for multi-level
monitoring and tracking of changes to facilitate evolution in
model-based product line engineering. Based on a generic
meta-model for tracking evolution our tool EvoKing supports
evolution management in Eclipse-based product line
environments. We illustrated the applicability of our approach
by customizing EvoKing for the DOPLER product line tool
suite.

EvoKing automatically maintains a development history
showing what and when was done by whom during
development. There are, however, more advanced usage
scenarios for the tool which we plan to explore in the future.
For instance, we will use of the refined evolution meta-model
and evolution information tracked by EvoKing to assist users
with their workflow of modeling and creating product line

Figure 4. EvoKing customized for DOPLER. The left side shows elements and notifications we see within the workspace and editors. The right side shows
artifacts, relations and events that represent the left side enriched with information taken from the refined evolution meta-model for DOPLER.

artifacts. We will also use the relations captured by EvoKing as
trace links for the purpose of consistency checking in and
between product line models and artifacts. This will help to
point out potential update leaks or inconsistencies after changes
to specified artifacts. We plan to improve support for further
development of artifacts and relations. This way, for example,
changes to configuration files, custom service configurations,
and component interface definition files can be tracked to ease
maintenance tasks. Finally, the information collected by
EvoKing allows deriving product and process metrics to
facilitate benchmarking, to monitor development processes,
and to track variability shifts in product lines.

ACKNOWLEDGMENT

This work has been conducted in cooperation with Siemens
VAI Metals Technologies and has been supported by the
Christian Doppler Forschungsgesellschaft, Austria.

REFERENCES

[1] D. Dhungana, T. Neumayer, P. Grünbacher, and R. Rabiser, "Supporting

Evolution in Model-based Product Line Engineering, "Proc. of the 12th
International Software Product Line Conference (SPLC 2008),
Limerick, Ireland, IEEE Computer Society, 2008, pp. 319-328.

[2] K. Czarnecki and C. H. P. Kim, "Cardinality-Based Feature Modeling
and Constraints: A Progress Report, "Proc. of the International
Workshop on Software Factories at OOPSLA'05, San Diego, USA,
ACM Press, 2005, pp. 1-9.

[3] K. Schmid and I. John, "A Customizable Approach to Full-Life Cycle
Variability Management," Journal of the Science of Computer
Programming, Special Issue on Variability Management, vol. 53(3), pp.
259-284, 2004.

[4] H. Gomaa, Designing Software Product Lines with UML: Addison-
Wesley, 2005.

[5] M. Voelter and I. Groher, "Product Line Implementation using Aspect-
Oriented and Model-Driven Software Development, "Proc. of the 11th
International Software Product Line Conference (SPLC 2007), Kyoto,
Japan, IEEE CS, 2007, pp. 233-242.

[6] A. Pasetti and O. Rohlik, "Technical Note on a Concept for the xFeature
Tool," P&P Software GmbH / ETH Zurich, PP-TN-XFT-0001 2005.

[7] C. Krueger, "BigLever software gears and the 3-tiered SPL
methodology, "Proc. of the Conference on Object Oriented
Programming Systems Languages and Applications (OOPSLA'07),
Montreal, Quebec, Canada, ACM, 2007, pp. 844-845.

[8] D. Dhungana, R. Rabiser, P. Grünbacher, and T. Neumayer, "Integrated
tool support for software product line engineering, "Proc. of the 22nd
IEEE/ACM International Conference on Automated Software
Engineering (ASE'07), Atlanta, Georgia, USA, ACM, 2007, pp. 533-
534.

[9] R. Rabiser and D. Dhungana, "Integrated Support for Product
Configuration and Requirements Engineering in Product Derivation,
"Proc. of the 33rd EUROMICRO Conference on Software Engineering
and Advanced Applications (EUROMICRO-SEAA’07), Lübeck,
Germany, IEEE Computer Society, 2007, pp. 219-228.

[10] R. Rabiser, P. Grünbacher, and D. Dhungana, "Supporting Product
Derivation by Adapting and Augmenting Variability Models, "Proc. of
the 11th International Software Product Line Conference (SPLC 2007),
Kyoto, Japan, IEEE Computer Society, 2007, pp. 141-150.

