Enabling End-users Participation
in an MDD-SPL Approach

Francisca Pérez, Pedro Valderas, Joan Fons
Research Centre on Software Production Methods
Technical University of Valencia
Valencia, Spain
{mperez, pvalderas, jfons}@pros.upv.es

Abstract—Developing smart home systems that properly fit
end-user needs is not always an easy task due to the lack of
understanding that may exist between end-users and system
developers. In the context of Software Product Lines, several
approaches have been presented to improve the development
of smart home system functionality. However, little support is
provided to improve the interaction with end-users. In this work,
we extend a Software Product Line based on Model-Driven
Development with an interactive design tool that allows end-users
to actively participate in the SPL. This tool allows end-users to
configure the decision model that drives the production process
of the software product line by themselves. In order to develop
this tool we have been inspired by well-known and tested end-
user techniques and interaction patterns that improve the user
interface usability.

I. INTRODUCTION

Smart home systems are in charge of providing different
services to support the daily activities of the inhabitants of a
home. In order to do this, smart home systems automatically
perform actions such as turning the lights on [1], controllling a
thermostat, closing the blinds, etc. However, all these actions
must be performed according to the user’s preferences and
needs.

Adapting smart home systems to end-users needs is not
always an easy task due to the lack of understanding that may
exist between end-users and system developers. End-users are
the owners of the domain of knowledge, the ones with more in-
depth knowledge about both the services that must be provided
by the system and the environment in which the system is
going to be deployed. However, many times they do not have
the ability of transmitting this information properly. We think
that this can be improved by providing mechanisms that allow
end-users to actively participate in the development process.

In the area of Software Product Lines (SPL), many efforts
have already been made to improve the development of smart
home systems [2], [3]. However, these approaches focus
mainly on providing developers with techniques and tools to
develop the system functionality, and they pay little attention
to the interaction with end-users. In this work, we face the
problem of allowing end-users to actively participate in the
development of a smart home within an SPL.

To do this, we have extended a Software Product Line to
develop smart home systems [4], which is based on Model
Driven Development (MDD). The proposed extension consists

of an interactive design tool that allows end-users to create
tailored solutions that directly reflect their needs and expec-
tations. To do this, we have been inspired by well-known
and tested end-user techniques and interaction patterns that
improve the user interface usability [5], [6], [7].

Considering the schema of the MDD-SPL (see Fig. 1),
where a product operation transforms input assets into an
output system according to the configuration specified in a
decision model, the contribution of this work is an end-user
tool that enables end-users to configure the decision model
that drives the production process by themselves.

()

Approach overview

End-user
tool
Decision
Model

Line Concepts

Productlon
Operation

Assets

Software Product

P

Fig. 1.

The rest of this paper is structured in the following way:
Section II presents the related work in the field of the end-user
development techniques for smart homes. Section III presents
the MDD-SPL for developing smart home systems. Section IV
introduces the end-user tool and the interaction patterns that
have been applied to improve the interface usability. Section
V presents some aspects of the technology used to implement
this tool. Finally, section VI concludes the paper.

II. RELATED WORK

There are several works that show how to combine MDD
and SPLs [8], [2]. Voelter and Groher [2] describe an
approach where development is combined with model-driven
development. They define aspects at the modelling level, the
transformation level, and the implementation level. They apply
their approach to the Smart Home domain. Anastasopoulos
et al. [8] apply a combination of both MDD and SPL to
the Ambient Assisted Living (AAL) domain. They express
variations in smart home functionality as features, and syn-
thesize AAL specifications by composing features. Compared



to our work, the above approaches do not involve end-user
expectations in the MDD-SPL, which is essential for the
successful development of Smart Homes [9]. Other works
such as [10] presents a tool to support end-users in working
with large-scale product line variability models in product
derivation. This tool is based on derivation models and it
provides end-users with a textual visualization which allows
end-users to set values on decisions by answering questions.
However, the use of a visual language seems to be the best
option since visual languages have demonstrated to be more
intuitive and easier to be used by users than other options like
textual languages [11], [12].

Many research initiatives seek to allow end-users to pro-
gram or customize their systems using end-user techniques
as Pervasive Interactive Programming (PiP) [13], or CAP-
pella [14]. Furthermore, other research initiatives allow end-
users to interact with their system using metaphors as jigsaw
puzzle pieces [15], or magnetic refrigerator poetry [16]. Some
of these well-accepted end-user techniques are:

o Natural Programming [17]: it is an application of the
standard user-centered design process to the specific do-
main of programming languages and environments. The
premise of this approach is that programmers will have
an easier job if their programming tasks are made more
natural. For example, HANDS [18] is a programming
system for children. HANDS is an event-based system
featuring a concrete model for computation based on
concepts that are familiar with non-programmers. The
computation is represented as an agent named Handy,
sitting at a table handling a set of cards.

o Programming By Example [19]: also called Program-
ming by demonstration (PBD) because the user shows
examples of the desired behaviour to the computer. For
example, Pervasive Interactive Programming (PiP) [13]
provides a platform that uses the physical user space as
the programming environment providing the user with a
natural and more familiar mechanism to “program” the
functionality they require to suit their particular needs.

o Visual Programming [20]: it is the use of visual
expressions in the programming process. For example,
Alice [21] is an innovative 3D programming environment
that allows students to learn fundamental programming
concepts in the context of creating animated movies and
simple video games.

o Jigsaw metaphor [15]: it is based on the familiarity
evoked by the notion and the intuitive suggestion of
assembly by connecting pieces together. Essentially, it
allows end-users to make variability decisions through a
series of left-to-right couplings of pieces. For example,
ACCORD has developed the Tangible Toolbox [22],
based on a shared Data Space, that enables people to
easily administer and re-configure services based on
embedded devices around the home. This toolkit also
enables devices to integrate with each other through
several different editors. One of these editors uses the

jigsaw metaphor to create new services.

Although these techniques encourage end-users to partici-
pate in the creation of software systems, they do not address
a process where end-users can specify the requirements of the
system. Our approach applies end-user techniques within an
MDD-SPL in order to allow end-users to actively participate
in the configuration of the desired software (in this particular
case, a smart home system).

III. MDD-SPL FOR SMART HOMES

In this section, we illustrate the SPL for smart home sys-
tems. Fig. 2 illustrates the models used in the SPL. The input
assets consist of a collection of models describing all smart
homes that can be produced. These models are created by
using the PervML language. A smart home is uniquely defined
by the selections made on the feature model, which plays
the role of decision model. The selected features determine
which elements of the PervML models are used for the initial
configuration of the smart home by means of a Realization
Model. Finally, the output system is obtained through a model
transformation.

3

(o))

s — .
< 2|| PervML | \Realization M2TD > Pervasive
29 Model Model System
o 'T‘

@ £
s Feature
s Model
Fig. 2. MDD-SPL for Smart Homes

The following subsections provide details about the models
involved in the SPL.

A. The PervML model

Pervasive Modeling Language (PevML) [23] is a DSL
for describing pervasive systems using high-level abstraction
concepts. This language focuses on specifying heterogeneous
services in specific physical environments such as the services
of a smart home. These services can be combined to offer
more complex functionality by means of interactions. These
services can also start the interaction as a reaction to changes
in the environment. The main concepts of PervML are: (1)
a Service coordinates the interaction between suppliers to
accomplish specific tasks (these suppliers can be hardware o
software systems); (2) a Binding provider (BP) is a supplier
adapter that embeds the issues of dealing with heterogeneous
technologies; (3) an Interaction is a description of a set of
ordered invocations between Services; and (4) a Trigger is
an ECA rule (Event Condition Action) that describes how
a Service reacts to changes in its environment. This DSL
has been applied to develop solutions in the smart home
domain [24].

This model (see the bottom of Figure 3) describes the
building blocks for the assembly of a pervasive system [23].



The grey blocks implement the functionality of the selected
features. The white blocks enable an alternative functionality
of the system. The (1), (0), (m) and (p) blocks provide adapters
for the new resources available.

B. The feature model

Feature models are widely used to describe the set of prod-
ucts in a software product line in terms of features. In these
models, features are hierarchically linked in a tree-like struc-
ture and are optionally connected by cross-tree constraints.
There are many proposals for the type of the relationships
and the graphical representation of feature models [25]. We
have chosen the Feature Model [26] as the modeling language
because it is feature reasoning oriented and has a good tool
support [27].

This model (see the top of Fig. 3) determines the initial and
the potential features of the smart home. The grey features are
selected to specify a member of the smart home family. The
white features represent potential variants. Initially, the smart
home provides Automated illumination, Presence simulation
and a Security system. This security system relies on In home
detection (inside the home) and a siren alarm. The system
can potentially be upgraded with volumetric presence detection
and more alarms to enhance home security.

The feature model also determines how the features relate
to each other by cross-tree constraints. As the feature model
of Fig. 3 shows, these relationships are: Optional represented
with a small white circle on top of the feature, Mandatory
represented with a small black circle on top of the feature,
Multiple choice represented with a black triangle, Single
choice represented with a white triangle, Requires which it
is represented with a dashed arrow and Excludes represented
with a dashed double-headed arrow.

C. Realization model

The realization model is an extension that we have incor-
porated to Atlas Model Weaving (AMW) [28] in order to
relate the SPL features to the PervML elements. AMW is
a model for establishing relationships between models. Our
extension augments the AMW relationship with the default
and alternative tags. This augmented relationship is applied
between features and PervML elements (BPs and Services).
In the context of a BP, the default relationship means that
the BP is selected for the initial configuration of the system.
The alternative relationship means that the BP is considered
a quiescent element that should be incorporated to the SPL
product, but does not participate in the initial configuration.
Quiescent BPs provide an alternative BP to replace the default
BP in case of fault. The more quiescent BPs identified, the
more flexible the adaptation will be.

This model (see the middle of Figure 3) establishes the
relationships between the features and the PervML elements.
For instance, the visual alarm feature is related to a BP (p) for
visual alarms, but, alternatively, it can be replaced with a BP
(m) that emulates the visual alarm by using the blink lighting.

Feature Model

(1) Smart Home

Optionall

Multiple
choice

Single

16) Gradual| |(17) Infrared| |(18)Volumetric|
wotam| "

(13) Infrared (14) Volumetric
Detector Detector
Realization Model
Security
(2) <<Default>3 (i)
Alarm
—_|
In Home Detection (5) <<Default>3 (c)
(6) =<befaults (h) (10)<<Default>3 (0)
(6) <<Default>3 (b) (11) <<Default>3 (
| <<Default>>(q)
(14) <<Default>3> (k) (12) <<Default>>(p)
13) <<Defau|t>;> Q) (12) <<Alternative>>(m)
—_— >

Automated Illumination |
(4) <<Default>> (d)

Light by presence —|Illumination
(9) <<Default>3 (h) (8) <<Default>3 (e)
(9) <<Default>3 (a)
(18)<<Default>> (k)
(17)<<Default>>(n)
Presence Simulation |
(3) <<Default>3 (f) Light by presence
(3) <<Default>3 (f)
(3) <<Default>3 (g)
(8) <<Default>3 (e)

PervML Model Abstraction

<<Service>>| [<<Service>>| [<< Service>>| |<<Service>>| |<< Service>>
(a)Lightby [| (b)In Home (c) Alarm | |(d) Automated (e)Lamp [
presence Detection Lighting Mediator

N

<<Trigger>>

i << Trigger>>
<< Service>>1 | (g) Random 2 << Interaction>>
(@) Plissirez Simulation U)FCEED (i) Securi
Simulation Detected ty

Starter

<< BP>>
(j) Automated
Lighting

<< BP>>
(k) Volumetric
Detector

<< BP>>
(1) Perimeter
Detector

Lighting

<< BP>>
(n) Infrared
Detector

<< BP>>
(o) Silent
Alarm

<< BP>>
(p) Visual Alarm

<< BP>>
(q) Buzzer

Fig. 3. Models for the SPL



D. Model To Text (M2T)

Once the pervasive system is modelled, the transformation
engine can be applied to generate the code. For this task, we
have used the MOFScript language which provides capabilities
navigating models, creating files, etc. MOFScript takes as
input one model and applies over one selected metaelement
a contextual rule. The applied rule can access the element
properties, navigate over the related model elements and
invoke other rules.

At ! there is more information about the transformation rules
and the tools to support the code generation.

IV. INTRODUCING END-USERS IN THE MDD-SPL

In the presented MDD-SPL, variability engineers set the
smart home configuration by means of the feature model.
Variability engineers make assumptions about the desirable
functionality of end-users. Conversely, end-users are the ones
who best know their activities and their functionality expecta-
tions. End-users and professional developers actually possess
distinct types of knowledge. End-users are the “owners” of the
problem and developers are the “owners” of the technology
to solve the problem. End-users do not understand software
developers’ jargon and developers often do not understand
end-users’ jargon [29]. Although, end-users are not profes-
sional developers they have deep knowledge of their specific
environment and they should be able to develop their own
smart home system according to their needs. Hence, we
involve end-users in the Smart Home configuration in order to
minimize the mismatch between user expectations and system
behaviour.

In order to tackle this, end-users must be supplied with
visual development tools that allow them to describe their
needs [30]. In this work, we have developed a tool that allows
end-users to configure their smart home system using the
MDD-SPL for smart homes described in the previous section.
Fig. 4 shows an overview of the MDD-SPL with end-users.
The end-user tool allows end-users to indicate which services
and devices must be available in each location and configuring
the feature model accordingly. Thus, when end-users have
finished describing their needs, we obtain the decision model
that determines the output system to be obtained by applying
the model transformation.

To design the end-user front-end, we have based on well-
accepted techniques and metaphors in the field of end-user
development such as: Natural Programming, Programming By
Example, Visual Programming and metaphors (see Section II).
We have also applied interaction patterns and design principles
to end-user interface design according to studies [5], [6],
[7] which show how these patterns and principles help end-
users (who may not have any background about computer
applications). According to these studies, the main design
interface decisions that we have applied are:

o Using a wizard: in our process the end-user needs to

achieve a single goal (the description of their needed

' www.pros.upv.es/labs/projects/pervml

Techniques and _
metaphors in the field of End-user
end-user development front-end
l .
A. Catalog of available I | B. Saving the
configurations A 2 configuration
Feature
Model
2
PervML [ “\Realization M2TD > Pervasive
Model Model System

Fig. 4. Approach overview

system) but several decisions need to be made before
the goal can be fully achieved (several steps), which may
not be known to the user. Thus, the use of a wizard is
recommended in [5] since the user wants to reach the
overall goal but may not be familiar with or interested in
the steps that need to be performed.

« Offering navigation buttons: we use navigation buttons
to suggest end-users that they are navigating a path with
steps. This is recommended in [5] because the learning
and memorization of the task of each step are improved.
In addition, when users are forced to follow the order of
tasks, they are less likely to miss important things and
therefore will make fewer errors.

« Displaying the elements using a grid layout: this is
recommended in [5] to any circumstance where several
information objects are presented and arranged spatially
within a limited area. This improves the presentation and
it minimizes the time to scan, read and view objects on
screen.

o Offering options: an interesting conclusion is reached
in [6]: what people see is what they select from!. The
study states that people tend to select from the entire
list of options what they are first presented with. Rarely
is an effort made to find additional options through
scrolling. If eleven items are presented, the choice is from
these eleven. When options must be compared among
themselves, controls presenting all the options together
will yield the best results.

o Selection rather than introduce text: the studies pre-
sented in [7] show the advantages and disadvantages
of using either entry fields or selection fields for data
collection. Since information became less familiar or
subject to spelling or typing errors they recommend
choosing a selection technique.

Thus, we have developed a user interface based on the
interface decisions presented above which allows end-users to
specify the services and devices that they need. Fig. 5 shows
a snapshot of this interface as end-users configure devices and
services in their home. Each interface is divided into four
areas: (1) Title and navigation buttons, (2) Catalog of available
configurations, (3) End-user environment and (4) Information


www.pros.upv.es/labs/projects/pervml

Device configuration

System configuration

800

Service configuration

System configuration

800

<< Specification of Services

@ Policy: Parents. Specification of Devices
T
L1\ Siren Alarm
@ :

Visual Alarm

‘E Silent Alarm

Lamp

Description of new services >> |

iy

“%" Gradual Lamp

- o

Infarred Detector

€& " Volumetric Detector
&

Switch

B -vutimedia

Policy: Parents. Specification of Services << Environment Characterization||  Specification of Devices >>

Hlumination
Automated llumination
Light By Presence
Presence Simulation

=
@
-
@

[

Fig. 5.

where our tool can advise to end-users or assist them. In
particular, we show at the left side of the figure how the end-
user has selected some devices for different locations of their
smart home (i.e. a siren alarm and a Volumetric detector for the
corridor). At the right of the figure we show how the end-user
has selected some services for different locations (i.e. Alarm
service for the corridor).

As Fig. 5 shows, we have applied the interaction patterns
described above. The grid layout pattern is applied to divide
the interface into the four areas presented above. The wizard
pattern is used to guide end-users along the process of creating
a pervasive description by progressively asking them for the
required information (services, devices, etc.). In addition,
navigation buttons are also used in the area (1) to allow
end-users to navigate between the different windows that ask
for the required information. The offer options and selection
rather than introduce text patterns are applied in the area (2)
offering the devices/services available as options and allowing
end-users to select these devices/services into the end-user
environment represented in the area (3).

The next two subsections describe how the tool uses the
Feature Model. Subsection A. describes how the end-user
front-end uses the feature model to show the catalog of
available configurations (see Fig. 4) and Subsection B. de-
scribes how the tool saves the configuration in the feature
model activating/inactivating features according to the end-
user’s configurations.

A. Catalog of available configurations

As we described in subsection III-B, we use the feature
model to describe the system configuration and its variants
in terms of features. In the smart home domain, the system
configuration that end-users have to select is made up of
the services and devices required for each location in the
environment.

Snapshot of the end-user front-end

At the top of Fig. 3 is shown the feature model which
determines the initial and potential features of the smart home.
These features represent services and families of devices.
The families of devices are the leaves of the feature model
and the services are the nodes which are not leaves. We
specify families of devices in the feature model rather than
devices because there is a large diversity of devices which are
continuously changing. For each family of devices we offer
a catalog of compatible devices. For example, the Volumetric
Detection device family has a catalog of compatible devices
which contains a Volumetric 360 degree detector as well as
a 160 degree one. Thus, when a new device is supported all
we have to do is update the catalog of that family of devices
rather than the feature model.

Our tool shows end-users the options from the available
configurations according to the feature model. Fig. 6 shows an
example of service and device options according to the feature
model. Note that these device options match the node leaves
of the feature model presented in the figure (Siren Alarm,
Visual Alarm, Siren Alarm, Infrared Detector and Volumetric
Detector) and the service options match the nodes which are
not leaves of the feature model (Security, Alarm and In Home
Detection).

The available options are displayed in a tree. Studies
described in [5] recommend using a tree when the number
of groups is high. They also recommend that each option
be explained so that users know of the consequences. Thus,
we show in our tool a representative image for each service
or device and a brief description. Fig. 5 shows the list of
available devices and services that is shown to end-users from
the feature model presented at the top of Fig. 3.

B. Saving the configuration in the feature model

Once the catalog of configurations has been shown, end-
users can select services or devices for each location in



Feature Model Services
- D Security

[
D In Home Detection

Devices

Siren Alarm

@ Visual Alarm
1

Security

In Home Detection

Silent
Alarm

Visual
Alarm

Volumetric
Detector

Infrared
Detector

silent Alarm

\‘g Volumetric Detector

Fig. 6.  The catalog of available configurations

the end-user’s tool. When this happens, the end-user tool
sets activated/inactivated features to the feature model. Thus,
when end-users finish setting their system the feature model
will have activated the features according to the end-user
configuration.

To set a configuration end-users have to select the desired
services and devices from the catalog of configurations and put
them into the proper location. Then, a representative image
of the service/device is displayed in the environment. The
service/device can be displayed in two different colours: (1)
red with a dotted frame if the service configuration has not
fulfilled their constraints (services/devices that the service
need) or (2) green if the service configuration has fulfilled
their constraints. Fig.5 shows the specification of devices (see
at the left side of the figure) and services (see at the right side
of the figure).

In order to define these end-user interfaces we have based on
the following end-user principles and interaction patterns [7],

[5]:

« Using autocompletion: The study showed in [7] states
that aided entry, also known as autocompletion, is pre-
ferred over unaided entry methods, and it is also the
fastest method. Autocompletion reduces errors in com-
parison to unaided entry. In addition, it also minimizes
the user’s effort by reducing input time and keystrokes.

o Using a warning: this is recommended in situations
where the user performs an action that may unintention-
ally lead to a problem [5] and the system cannot or
should not automatically resolve this situation so the user
needs to be consulted. The warning might also include a
more detailed description of the situation to help the user
make the appropriate decision by means of two options
at least.

o Offering all options: this is recommended when the
number of options is not large and they can be displayed
without scrolling [7]. Rarely was an effort made to find
additional options through scrolling.

o Offering some options: this is recommended when the
number of options is high and it needs a scroll to be
displayed. Thus, it is recommended to show some options

of the available list [7]. This improves the speed of
performance and satisfaction

According to the interaction patterns presented above, we
have defined a set of mappings between the feature model
and our end-user front-end and how the interaction patterns
are used depending on the information that is available at the
feature model. Next we present the interaction patterns used
for each relationship of the feature model:

o If there is a Mandatory feature, we use Autocomple-
tion. When a feature A is related to another feature B
with a mandatory relationship, if A is selected B has
to be selected too. In the end-user front-end, features
are represented by services/devices. Thus, when the end-
user selects a service that represents a feature A with
a mandatory relationship to a feature B, the service
representing feature B is automatically added to the same
location of service A. For instance (see Fig. 7) when the
end-user selects the Presence Simulation service for the
living room (1) the TV-Multimedia device is automatically
added to the same location (2) because there is mandatory
relationship between the Presence Simulation feature and
the TV-Multimedia feature. In addition, the feature model
is updated by activating both features (3).

sence
‘Simulation) lllumination

Presence Simulation
V-
Multimedia

Fig. 7.

[]

Applying patterns in a mandatory relationship

o If there is a Requires or Excludes feature, we use
Warning. When a feature A has a requires relationship
with B, if A is selected feature B has to be selected
too. Similarly, if feature A has an excludes relationship
with B, when feature A is selected feature B does not
have to be selected. In the end-user front-end, when the
end-user selects a service that represents a feature with
a requires or excludes relationship, the end-user front-
end warns end-users by showing a warning. Fig. 8 shows
when the end-user selects the Presence Simulation service
for the living room (1). As the feature that represents this
service has a requires relationship with the Illumination
feature, the end-user front-end shows a Warning (2).
Then the end-user adds this required service to the same
location (3) and the feature model is updated activating
the features Illumination and Presence Simulation (4).

o If there is an Optional or single choice feature, we
use Show all options and Autocompletion. When a
feature A has an optional o single choice relationship
with other features, one of them has to be selected. In the
end-user front-end, when the end-user selects a service



Fig. 9.

service ) (Do not add this service

Hlumination [

Presence
Simulation

@)
Presence Simulation|- |
'

i
| Requires

Ilumination

Applying patterns in a requires relationship

Fig. 8.

that represents a feature with an optional or single choice
relationship, the end-user front-end shows a dialog with
all the services/devices that represent the related features.
Thus, the end-user can select one of them and the end-
user front-end adds the related service/device to the
same location as the selected service/device. Finally, the
feature model is updated. Fig 9 shows, as a representative
example, how the end-user selects the Alarm service (1).
This service represents a feature that has a Single Choice
relationship. Then, a dialog is shown with all the devices
that represent the related features (2). Then the end-user
selects the Siren device and the feature model is updated
activating the features Alarm and Siren (3).
ugm By Presence

: [:] Presence 5\mu\allnl’\ i{ J‘
, 800

| D Se(Mmmy service in the Bedroom requires to set a device:

o e
[ ot e
1 O

‘ Siren Alarm. It will emit sounds.
)

Configure )

Visual Alarm. It will set lights on a blinking state.

Feature Model

Silent Alarm. It will send you a text message.

(Do not configure this service ) ( Help )

Applying patterns in an optional or single choice relationship

o If there is a Multiple choice, we use Show some options

and autocompletion. When a feature A has a multiple
relationship with other features, one or more of them
has to be selected. In the end-user front-end, when the
end-user selects that represents a feature with a multiple
relationship, the end-user front-end shows a dialog with
services/devices that represents the related features. Then,
the end-user can select one of more of them and the
end-user front-end adds them to same location where
the previously selected service is located. In addition, the
feature model is updated according to this selection. Fig
10 shows, as representative example, how the end-user
selects the Security service (1). The feature that represents
this service has a Multiple Choice relationship. Then, a
dialog is shown with the devices that represent the related
features (2). Afterwards, the end-user selects the Alarm

Service and the In Home Detection services. Finally, the
Feature Model is updated activating the features Security,
Alarm, and In Home Detection (3).

i [:] Presence Simulation / \
[ | securty
[ Jseary
| ano A
“ (Y 2 The Security service in the Corrdor requires to set other services:
1 D In Home Detect|

™ o Alarm service. It will alert inhabitants if the Security service is triggered.

Feature Model
. @ T n Home Detection service. It willdetect presence insie the home.

(2) Security

In Home Detection

("Configure ) (Do not configure this service ) ( Help )

Fig. 10.

Applying patterns in a multiple choice relationship

V. SUPPORTING TECHNOLOGIES FOR THE END-USER
ORIENTED MDD-SPL

As we described in the previous section, our end-user tool
uses the Feature Model to offer the catalog of available
services/devices. This model is also used to save the end-
user’s configurations by activating/inactivating features. The
feature model is specified using the MOSKkitt Feature Modeller
editor [31], which uses the technology provided by the Eclipse
Modelling Platform [32].

Thus, in order to connect the end-user front-end with the
feature model we have used the EMF Model Query frame-
work [33]. EMF Query provides an API to construct and
execute query statements. These query statements can be used
for discovering and modifying model elements. Queries are
first constructed with their query clauses and then they are
ready to be executed.

There are two query statements available: SELECT and
UPDATE. The SELECT statement provides querying without
modification while the UPDATE statement provides query-
ing with modification. The SELECT statement requires two
clauses, a "FROM" and a "WHERE." The FROM clause
describes the source of model elements where SELECT can
iterate in order to derive results. The WHERE clause describes
the criteria for a model element that matches. The condition
provided to the WHERE clause falls under a specialized con-
dition called an EObjectCondition which is specially designed
to evaluate model elements.

We have implemented the interaction patterns described in
the Subsection IV-B by using EMF Model Query. For instance,
when the end-user selects the Alarm service, the tool checks
the feature model for the selected feature. It also checks the
relations with other features. In this case, the Alarm service
is related with a single choice relation with three features
(Silent Alarm, Siren and Visual Alarm). Thus, as the feature
model relation is Single choice, the interaction patterns that
are applied are (see previous section): (1) Show all options
and (2) Autocompletion. Then, we need both to obtain the
features related with the selected one in order to show all of
them, and to update the selected feature and also the selected
related feature.



Next, we show the query that we have implemented to
obtain the child features of the single choice relationship by
using EMF Model Query:

SELECT statement =
new SELECT(

new FROM(currentFeature.getContents ()),

new WHERE(new EObjectReferenceValueCondition (

new EObjectTypeRelationCondition (

FeatureModelPackagePackage .eINSTANCE
.getFeatureRelationship ()),
FeatureModelPackagePackage .eINSTANCE.
getFeatureRelationship_From (),
new EObjectlnstanceCondition(SingleChoice))
)
)

Given a feature (currentFeature) the select statement
gets all the features related with the currentFeature
with a single choice relationship (EObjectlnstanceCondi-
tion(SingleChoice)). Then, these features are shown as service
options on the dialog of Fig. 9.

Once the end-user chooses one of the presented options, the
state of the selected feature and its related one is updated in
the feature model from inactivated to activated. By contrast, if
the end-user drops this kind of device into the trash, its state
is updated to inactive.

VI. CONCLUSIONS AND FUTURE WORK

Taking the advantage of current MDD techniques and an
integrated SPL architecture, we have provided an interactive
design tool that allows end-users (rather than engineers) to
create tailored solutions that directly reflect their needs and
expectations. In order to tackle this, we have presented an
MDD-SPL approach based on Model Driven Development
to develop smart home systems which is complemented with
our end-user tool. We have also presented how the end-user
tool gets and sets information of the feature model according
to the end-user configurations. Furthermore, we have applied
interaction patterns to the end-user tool which improve the user
interface usability. Finally, we have presented the technology
implementation for handling the feature model.

As future work, we plan to validate the end-user config-
urations in the end-user tool and assist end-users during the
configuration process. To do this, we plan to use the feature
model Analyser Framework [27]. Furthermore, we plan to
involve end-users in the domain engineering phase. Our goal is
the participation of end-users in the definition of new service
configurations.

ACKNOWLEDGMENT

This work has been developed with the support of MEC
under the project SESAMO TIN2007-62894 and cofinanced
by FEDER, in the grants program FPI.

REFERENCES

[11 M. K. Lee, S. Davidoff, J. Zimmerman, and A. K. Dey. Smart homes,
families and control. In Proceedings of Design & Emotion 2006, 2006.

[2] Markus Voelter and Iris Groher. Product line implementation using
aspect-oriented and model-driven software development. SPLC 2007,
pages 233-242, Sept. 2007.

[3]
[4]
[5]
[6]

[7]

[8]

[9]

[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]
[23]
[24]

[25]

[26]
[27]

(28]

[29]

[30]

(31]
[32]
[33]

Javier Muiloz and Vicente Pelechano. Building a software factory for
pervasive systems development. In CAiSE, pages 342-356, 2005.

C. Cetina, J. Fons, and V. Pelechano. Applying software product lines
to build autonomic pervasive systems. pages 117-126, Sept. 2008.
Martijn van Welie and Hallvard Tretteberg. Interaction patterns in user
interfaces. In PLoP 2000, pages 13-16, 2000.

Mick P. Couper, Roger Tourangeau, Frederick G. Conrad, and Scott D.
Crawford. What they see is what we get: response options for web
surveys. Soc. Sci. Comput. Rev., 22(1):111-127, 2004.

Wilbert O. Galitz. The Essential Guide to User Interface Design: An
Introduction to GUI Design Principles and Techniques. John Wiley &
Sons, Inc., New York, NY, USA, 2002.

M. Anastasopoulos, T. Patzke, and M. Becker. Software product
line technology for ambient intelligence applications. In In Proc.
Net.ObjectDays, page 1790195, 2005.

Jon O’Brien, Tom Rodden, Mark Rouncefield, and John Hughes. At
home with the technology: an ethnographic study of a set-top-box trial.
ACM Trans. Comput.-Hum. Interact., 6(3):282-308, 1999.

Rick Rabiser. Flexible and user-centered visualization support for
product derivation. In SPLC (2), pages 323-328, 2008.

John Steinmetz. Computers and Squeak as Environments for Learning.
2000.

David Canfield Smith, Allen Cypher, and Jim Spohrer. Kidsim: pro-
gramming agents without a programming language. Commun. ACM,
37(7):54-67, 1994.

Chin, Callaghan, and Clarke. An end-user programming paradigm
for pervasive computing applications. International Conference on
Pervasive Services, 0:325-328, 2006.

Anind K. Dey, Raffay Hamid, Chris Beckmann, Ian Li, and Daniel
Hsu. A cappella: programming by demonstration of context-aware
applications. In CHI '04, pages 33—40, New York, USA, 2004.

Jan Humble et al. Playing with the bits: User-configuration of ubiquitous
domestic environments. In UbiComp 2003, 2003.

Khai N. Truong, Elaine M. Huang, and Gregory D. Abowd. Camp:
A magnetic poetry interface for end-user programming of capture
applications for the home. In Ubicomp 2004, pages 143—160, 2004.
Brad A. Myers, John F. Pane, and Andy Ko. Natural programming
languages and environments. Commun. ACM, 47(9):47-52, September
2004.

John Francis Pane. A programming system for children that is designed
for usability. PhD thesis, Pittsburgh, PA, USA, 2002. Co-Chair-Myers,,
Brad A. and Co-Chair-Garlan,, David.

Henry Lieberman. Programming by example (introduction). Commun.
ACM, 43(3):72-74, 2000.

Andrew J. Ko and Brad A. Myers. Designing the whyline: a debugging
interface for asking questions about program behavior. In CHI '04,
pages 151-158, 2004.

Carnegie Mellon University. Alice. http://www.alice.org/index.php, 1
2009.

The accord toolkit. http://www.sics.se/accord/toolkit.html, 1 2009.
Javier Muiioz and Vicente Pelechano. Applying software factories to
pervasive systems: A platform specific framework. In ICEIS (3), pages
337-342, 2006.

Javier Muiloz, Vicente Pelechano, and Carlos Cetina. Implementing a
pervasive meeting room: A model driven approach. In IWUC, pages
13-20, 2006.

Pierre-Yves Schobbens, Patrick Heymans, Jean-Christophe Trigaux, and
Yves Bontemps. Generic semantics of feature diagrams. Comput.
Networks, 51(2):456-479, 2007.

D. Benavides, Ruiz A. Cortés, and P. Trinidad. Automated reasoning
on feature models. CAISE 2005, 3520:491-503, 2005.

P. Trinidad, D. Benavides, A. Ruiz-Cortés, S. Segura, and A.Jimenez.
Fama framework. In SPLC, 2008.

Marcos Didonet Del Fabro, Jean Bézivin, and Patrick Valduriez. Weav-
ing models with the eclipse amw plugin. In Eclipse Modeling Sympo-
sium, Eclipse Summit Europe 2006, Esslingen, Germany, 2006.

Maria Francesca Costabile, Piero Mussio, Loredana Parasiliti Provenza,
and Antonio Piccinno. End users as unwitting software developers. In
WEUSE ’08, pages 6—10, New York, USA, 2008.

Henry Lieberman, Fabio Paterno, and Volker Wulf. End User Develop-
ment. Springer, 2006.

Moskitt feature modeller. www.pros.upv.es/labs/projects/mfm.

Eclipse modelling framework. http://www.eclipse.org/modeling/.

Emf model query. http://www.eclipse.org/modeling/emf/?project=query.



	Introduction
	Related work
	MDD-SPL for Smart Homes
	The PervML model
	The feature model
	Realization model
	Model To Text (M2T)

	Introducing end-users in the MDD-SPL
	Catalog of available configurations
	Saving the configuration in the feature model

	Supporting technologies for the end-user oriented MDD-SPL
	Conclusions and future work
	References

