
A Model-Based Framework for Automated Product Derivation∗

Ina Schaefer, Alexander Worret, Arnd Poetzsch-Heffter
Software Technology Group

TU Kaiserslautern
Kaiserslautern, Germany

{inschaef | worret | poetzsch}@cs.uni-kl.de

Abstract—Software product line engineering aims at devel-
oping a set of systems with well-defined commonalities and
variabilities by managed reuse. This requires high up-front
investment for creating reusable artifacts, which should be
balanced by cost reductions for building individual products.
We present a model-based framework for automated product
derivation to facilitate the automatic generation of products.
In this framework, a model-based design layer bridges the
gap between feature models and implementation artifacts.
The design layer captures product line variability by a core
design and ∆-designs specifying modifications to the core for
representing product features. This structure is mapped to
the implementation layer guiding the development of code
artifacts capable of automatic product derivation. We evaluate
the framework for a CoBox-based product line implementation
using extended UML class diagrams for the design and frame
technology for the implementation layer.

Keywords-Software Product Lines; Automated Product
Derivation; Model-based Development; Frame Technology

I. INTRODUCTION

A software product line is a set of software systems with
well-defined commonalities and variabilities [1]. Software
product line engineering aims at developing these systems
by managed reuse in order to reduce time to market and to
increase product quality. The creation of reusable artifacts
requires a high up-front investment which should be bal-
anced by cost reductions for building individual products.
Currently, derivation of single products requires manual
intervention during application engineering, especially for
product implementation, which can be tedious and error-
prone [2]. Hence, it cannot be guaranteed that the overall
development costs are reduced by product line engineering
when compared to other reuse approaches.

Automated product derivation (or software mass cus-
tomization [3]) is an approach to create single products by
removing the need for manual intervention during appli-
cation engineering. Besides, automated product derivation
allows centralized product line maintenance and product
line evolution, because modifications of the artifacts can
automatically be propagated to the products. In order to be
able to create products automatically, product line variability

∗This work has been partially supported by the Rheinland-Pfalz Research
Center for Mathematical and Computational Modelling (CM)2 and by the
European project HATS, funded in the Seventh Framework Program.

is restricted to configurative variability [4]. The different
product configurations are captured in a feature model where
features are designated product characteristics. Automated
product derivation means that a product implementation for
a particular feature configuration is automatically generated
from the reusable product line artifacts. Software product
line engineering processes, such as PuLSE [5] or KobrA [6],
focus on managing product line variability in all software
development phases, but leave product derivation as a man-
ual activity. In [7], only organizational and technical re-
quirements for automated product derivation are considered.
Some approaches [8], [9] aim at automatically deriving
design documents. However, no approach provides guidance
for the design and implementation of product line artifacts
capable of automated product derivation.

To overcome this problem, we propose a model-based
framework for automated product derivation. A design layer
bridges the gap between feature models and product imple-
mentations. During domain engineering, it guides the de-
velopment of implementation artifacts capable of automated
product derivation. On the design layer, a product line is
described by a core design and a set of ∆-designs. The
core design represents a product with a basic set of features.
The ∆-designs define modifications to the core design that
are necessary to incorporate specific product characteristics.
∆-designs can cover combinations of features. This makes
the presented approach very flexible because modifications
caused by several features can be designed differently from
modifications caused by one of these features. In order to
obtain a design for a product with a particular feature con-
figuration during application engineering, the modifications
specified by the respective ∆-designs are applied to the
core. A design can be validated and verified before code
artifacts are developed. Furthermore, designs can be refined
based on the principles of model-driven development [10].
Refinements are orthogonal to product line variability be-
cause they can be performed in both core and ∆-designs
equally. Therefore, the proposed approach serves as a basis
for model-driven development of software product lines with
automated product derivation.

In order to develop reusable code artifacts capable of
automated product derivation, the structure of the design
layer is mapped to the implementation layer. A product

line implementation consists of a core implementation of
the product described by the core design and a set of
∆-implementations corresponding to the ∆-designs which
specify the modifications to the core implementation to re-
alize the designated product characteristics. The core design
and core implementation refer to a complete product and can
be developed by single application engineering techniques.
The implementation of a product for a particular feature
configuration is obtained automatically during application
engineering by applying the modifications of the respective
∆-implementations to the core implementation. The design
layer is independent of a specific implementation technique.
The only requirement for a concrete implementation tech-
nique is that the modifications of the core can be represented
appropriately and applied automatically. The separation
of design and implementation artifacts into core and ∆-
designs/implementations allows a stepwise development of
the software product line. The approach can easily deal with
evolving software product lines by capturing new features
in additional ∆-designs/implementations.

We have evaluated the proposed model-based framework
at the development of a shopping system product line. In
order to consider variable deployments, the implementation
layer is based on the CoBox component model [11]. We de-
veloped a notation for CoBox-based core and ∆-designs. For
implementing the product line variability, we applied frame
technology [12]. The core implementation is captured by
core frames and the ∆-implementations by sets of ∆-frames
specifying the modifications to the core implementation.

The main advantages of the model-based framework for
automated product derivation are:
• The separation of core and ∆-designs/implementations

allows an evolutionary development of product lines.
• Product variability can be handled very flexibly because

∆-designs/implementations allow representing modifi-
cations caused by combinations of features.

• The design layer facilitates model-based validation and
verification before implementation.

• The framework can be used with different implemen-
tation techniques to exploit their strengths in particular
application domains.

• The framework serves a basis for model-driven de-
velopment of software product lines with automated
product derivation because refinements are orthogonal
to product line variability.

This paper is organized as follows: In Section II, we
review related work. In Section III, we present our model-
based framework for automated product derivation that is
realized in Section IV and evaluated in Section V. Section
VI concludes the paper with an outlook to future work.

II. RELATED WORK

Model-driven development [10] is increasingly used in
software product line engineering. Many approaches focus

on modeling product line variability. In KobrA [6], UML
diagrams are annotated with variant stereotypes to describe
variation points in models. In [13], a UML profile for
representing product line variability is introduced. However,
resolving the modeled variabilities requires additional doc-
uments and manual intervention.

In [14], [15], the general idea to use model-driven de-
velopment for product derivation is advocated. Models in
the problem domain, which correspond to feature models
of product lines, are stepwise transformed to models in a
solution domain, i.e. models of products or product im-
plementations. However, these approaches rely on manual
intervention for configuring and performing model trans-
formations. [4] proposes the integration of model-driven
development and aspect-oriented concepts. The introduced
notion of positive variability refers to a core model to
which selectively certain parts are added. The difference of
this notion to ∆-designs/implementations is that the latter
can also contain modifications and removals of design and
implementation artifacts. Model transformations in [4] are
realized by aspect-oriented composition of artifacts which
also extends to the implementation by means of aspect-
oriented programming concepts. However, the manual im-
plementation of certain product parts is explicitly included
in the approach which is not considered in our framework
for automated product derivation.

Most approaches for automated product derivation con-
sider only the design layer or the implementation layer. For
automated derivation of product designs, [8] proposes an
approach to automatically generate UML class and activity
diagrams via annotations from variability models of the
complete product line. In [9], product architectures are
automatically derived from a common domain architecture
model by means of model transformations. [16] considers an
automated derivation of UML class diagrams by resolving
explicitly specified feature-class dependencies.

There are different technologies for automated code gen-
eration applied in the context of software product lines,
such as conditional compilation, frame technology [12],
[17], generative programming [18] or code annotations [19].
Also, compositional approaches, such as aspect-oriented
programming [20], feature-oriented programming [21] or
mixins [22], are used to automatically generate product
implementations from reusable artifacts. However, in order
to generate products, it is assumed that the necessary code
artifacts already exist. A systematic process how to design
these artifacts is not provided.

The model-based framework for automated product
derivation presented in [23] is structurally similar to the
framework proposed in this paper. It contains a modeling
layer describing the relation between product features and
implementation artifacts. Because the implementation is
based on aspect-oriented programming, the models define
how classes and aspects are composed for feature con-

figurations. Product derivation is fully automated, but in
contrast to the work presented in this paper, the approach is
conceptually restricted to aspect-oriented techniques. This
limits the means for dealing with product variability to
the expressiveness of aspect-oriented concepts that can, for
instance, not deal appropriately with features removing code.

III. MODEL-BASED AUTOMATED PRODUCT DERIVATION

In order to provide a standardized technique how to
design and implement product line artifacts suitable for
automated product derivation, we propose a model-based
framework. This approach is based on a model-based
design layer that links product line variability declared
in a feature model with the underlying implementation layer.

Overview. The proposed approach is structured into
three layers (see Figure 1). During domain engineering,
the variability of the software product line is captured
by a feature model on the feature layer. Based on the
feature model, reusable design and code artifacts are
developed representing the product line variability on the
underlying design and implementation layers. The design
and the implementation artifacts are separated into a core
design/implementation and ∆-designs/implementations,
respectively, that can be configured automatically for a
specific feature configuration during application engineering.
The design concepts can be chosen such that relevant
system aspects in each design stage can be adequately
expressed. The design layer is independent of a concrete
implementation technique, but provides the structure of the
implementation artifacts. Designs can be refined based on
the principles of model-driven development [10], until they
are detailed enough for implementation. A product line
design can be validated and verified before the development
of code artifacts such that errors can be corrected less costly.

Feature Layer. The products of a software product line
are described by a feature model. Features can represent
functional behavior of products, but can also refer to non-
functional aspects, such as deployment issues. A feature
model declares the configurative variability of the product
line, i.e., the commonalities of all products are captured
by mandatory features, possible variabilities are modeled
by optional features, and constraints between features are
defined. The set of possible products of a product line is
described by the set of valid feature configurations.

Design Layer. The design of a product line is split into
a core design and a set of ∆-designs that are developed
during domain engineering. The core design corresponds to
a product of the product line with a basic set of features.
This core can be developed according to well-established
single application design principles. The variability of the
product line is handled by ∆-designs. The ∆-designs declare

Figure 1. Model-based Automated Product Derivation

modifications to the core design in order to represent specific
product characteristics. The step from the feature model to
the design artifacts is a creative process because product line
variability can be represented in different ways in a design.

In order to find a core design for a product line, a suitable
basic feature configuration has to be identified. Mandatory
features are always contained in the basic configuration,
as they have to be present in all valid configurations. For
optional features, the guideline adopted is that ∆-designs
should add rather than remove functionality. If an optional
feature only adds entities to the design, the feature should not
be a part of the basic configuration. However, if an optional
feature is included in many products, adding it to the core
configuration can be beneficial because it can be tested
thoroughly without considering product line variability. If
selecting an optional feature causes that functionality is
excluded from products, this feature should be contained
in the core configuration to keep the core as small as
possible. Alternative features represent options where at
least one or exactly one feature has to be included in a
valid configuration. Since the core configuration has to be
valid, a choice between these options is necessary. If a
feature selection requires to pick at least one feature, for
the core exactly one feature should be chosen. The decision
which option to include in the core can be based on an
estimation which feature is most likely contained in many
configurations.

∆-designs define modifications of the core design to
incorporate specific product characteristics. The modifica-
tions caused by ∆-designs comprise additions of design
entities, removals of design entities and modifications of the
existing design entities. The ∆-designs contain application
conditions determining under which feature configurations
the specified modifications have to be carried out. These
application conditions are Boolean constraints over the fea-
tures contained in the feature model and build the connection

between features in the feature model and the design level.
A ∆-design does not necessarily refer to exactly one feature,
but potentially to a combination of features. For example,
if the feature model contains two features A and B, the
constraint (A ∧ ¬B) attached to a ∆-design denotes that the
modifications are only carried out for a feature configuration
if feature A is selected and feature B is not selected.

The general application constraints allow very flexible
∆-designs as combinations of features can be handled
individually. The number of ∆-designs that are created for
a feature model depends on the desired granularity of the
application conditions. The application conditions of all
∆-designs can be checked if all features are addressed in at
least one design. In order to obtain a design for a particular
product during application engineering, all ∆-designs
whose constraints are valid under the respective feature
configuration are applied to the core. This can involve
different ∆-designs that are applicable for the same feature
in isolation as well as in combinations with other features.
To avoid conflicts between modifications targeting the same
design entities, first all additions, then all modifications and
finally all removals are performed.

Implementation Layer. In order facilitate automated
product derivation, the structure of the design is mapped
to the structure of the implementation artifacts that are
developed during domain engineering. The implementation
artifacts are separated into a core implementation and ∆-
implementations. The core design is implemented by the
core implementation. As the core design is a complete prod-
uct, single application engineering methods can be applied
for implementing the core. This implementation can also be
validated and verified thoroughly by well-established prin-
ciples. ∆-designs are implemented by ∆-implementations
which have the same structure as the ∆-designs. The addi-
tions, modifications and removals of code specified in ∆-
implementations capture the corresponding additions, mod-
ifications, removals declared in the ∆-designs. The applica-
tion condition attached to a ∆-implementation determines
under which feature configurations the code modifications
are to be carried out. The conditions directly refer to the
application condition of the implemented ∆-designs. The
process to obtain a product implementation for a specific
feature configuration during application engineering is the
same as for the design. The modifications specified by all
∆-implementations with a valid application conditions under
a specific feature configuration are applied to the core.
Again, first all additions, then all modifications and finally
all removals of code are carried out. This analogous priority
rule ensures that a product implementation generated for a
specific feature configuration is an implementation of the
corresponding product design.

The close correspondence between design layer and im-
plementation layer provides a general approach to create

reusable artifacts during domain engineering that suitable for
automated product derivation during application engineer-
ing. The design layer provides the structure for the corre-
sponding code artifacts. Because core design and core imple-
mentation are complete products, they can be developed by
well-established principles from single application engineer-
ing. The independence of ∆-designs and ∆-implementations
from core designs and core implementations, respectively,
yields the potential of incremental, evolutionary product
line development. Refinement of designs along the lines of
model-driven development can easily be incorporated into
the proposed framework, because refinement is orthogonal to
the concepts for capturing product line variability. Since the
design layer is independent of the implementation layer, the
proposed model-based framework can be used with different
concrete implementation techniques, as long as the concrete
implementation technique allows expressing the desired
modifications and supports automatic code generation.

IV. A FRAMEWORK FOR MODEL-BASED AUTOMATED
PRODUCT DERIVATION

In order to evaluate the proposed approach, we realized
the model-based framework for automated product deriva-
tion for developing an information system product line.
As application domain for the product line, we use the
Common Component Modeling Example (CoCoME) [24]
that describes a software system for cash desks dealing with
payment transactions in supermarkets. Information systems
involving clients-server communications are generally dis-
tributed and highly concurrent. To deal with this inherent
complexity, we implement our system in the object-oriented,
data-centric CoBox component and concurrency model [11].
A CoBox is a runtime component consisting of a (non-
empty) set of runtime objects, i.e., other CoBoxes or in-
stances of ordinary classes. Each CoBox at runtime executes
a set of tasks, of which at most one can be active at any
time. A task is active as long as it has not finished or
willingly suspends its execution. Thus, inside a CoBox all
code is executed sequentially. A CoBox communicates with
other CoBoxes outside of its own CoBox via asynchronous
messages. CoBoxes allow flexible deployment because the
location where a CoBox is instantiated does not influence its
functional behavior. This allows considering also variability
of deployment besides variability of functionality in the
product line to be developed

A. Feature Layer

For representing product line variability on the feature
layer, we use feature diagrams [25]. In a feature diagram,
the set of possible product configurations is determined by
a hierarchical feature structure. A feature can either be
mandatory, if it is connected to its parent feature with a
filled circle, or optional, if it is connected with an empty
circle. Additionally, a set of features can form an alternative

Figure 2. Feature Model for the CoCoME Software Product Line

selection in which at least one (filled triangle) or exactly
one (empty triangle) feature has to be included in a valid
configuration. Furthermore, constraints between features can
be represented by explicit links.

To use CoCoME [24] as an example for a product line,
we extended the application scenario with functional and
deployment variabilities keeping the original system as one
possible configuration. The feature model for the CoCoME
software product line is shown in Figure 2. A CoCoME
system has different payment options. First, it is possible
to pay by cash or by one of the non-cash payment options,
i.e., credit card, prepaid card or electronic cash. At least one
payment option has to be chosen for a valid configuration.
Product information can be input using a keyboard or a
scanner where at least one option has to be selected. Further-
more, the system has optional support to weigh goods, either
at the cash desks themselves or at separate facilities. With
respect to deployment, there is the alternative option to have
a single-desk system with only one cashier or a multi-desk
system with a set of cashiers. The multi-desk system can
optionally comprise an express mode which requires cash
payment or a self-service mode requiring non-cash payment.

B. Design Layer

Since we aim at a CoBox-based design and implemen-
tation of the product line, the design layer has to capture
all relevant aspects for specifying CoBoxes. This includes
the CoBoxes that classes belong to as well as deployment
information for the CoBoxes. We introduce an extension to
UML class diagrams [26] to express the additional informa-
tion. Usually, UML diagrams are extended by stereotype
annotations. This, however, would drastically impair the
readability of the diagrams. With the extended notation, a
CoBox design consists of a set of CoBoxes and ordinary
classes. Graphically, CoBoxes are represented by a rounded
box named the same as the owning CoBox class. Ordinary
classes are denoted as usual UML classes. Both, CoBox
classes and ordinary classes have member variables and
methods. CoBoxes can contain other CoBoxes and other
ordinary classes. UML relations describe relations between
CoBoxes and classes. In addition, deployment information

Figure 3. Core Design for the CoCoME Software Product Line

is provided by determining on which deployment targets
CoBoxes should be instantiated. This is expressed by a
doubled-headed arrow from a deployment target to a CoBox.

The design layer handles the variability of the feature
model by a core design and a set of ∆-designs. The core
design of a CoBox-based product line is denoted by a CoBox
design. ∆-designs require additional notation to specify the
modifications to the core design. In a ∆-design, it is defined
which CoBoxes or classes are added or removed and which
member variables or methods in existing CoBoxes or classes
are added, removed or modified. The + symbol marks
additions, − marks removals and ∗ denotes modifications.
As UML class diagrams already use the + and − symbols
for public and private members, we attach the alteration
symbols to the right top corner of an altered CoBox, of
an altered class or of an rectangle surrounding the altered
class members. Additionally, each ∆-design contains its ap-
plication condition, a Boolean constraint over the features in
the feature model, to determine for which configurations the
∆-design is applied to the core. The application condition
is displayed in an angular box at the top of the design.

The core configuration of the CoCoME software product
line includes cash payment, keyboard input, and is a multi-
desk system because cash payment and keyboard input are
features of almost any cash desk system and most shops
comprise more than one cashier. Other optional features
are not incorporated into the core in order to keep it as

Figure 4. ∆-Design for Credit Card Payment

small as possible. The resulting CoBox core design is
shown in Figure 3. The design specifies the CashDesk
and StoreServer CoBoxes for realizing the core func-
tionality. Instances of the CashDesk and StoreServer
CoBoxes are created on the deployment targets Cash Desk
Client and Store Server, respectively, that have to be
physically connected. The logical connection is established
via an additional ConnectionAgent CoBox created on
each deployment target.

Figure 4 depicts the ∆-design containing the modifi-
cations for credit card payment, that is not included in
the core configuration. To provide credit card functionality,
a CoBox Bank has to be added to the system. Further,
the CoBox CashDesk has to be extended by a CoBox
CardReader and further class members to take care of
the credit card payment. Also, the ConnectionAgent
gets further member variables and methods to handle the
communication with the Bank. This is denoted by the +
symbol attached to the respective classes and members.
Additionally, two methods of the CashDesk CoBox are
modified, which is shown by the ∗ symbol. Deployment
information for the Bank CoBox is provided relative to the
overall system. The deployment target Bank Server on
which the Bank CoBox is to be instantiated has to establish
a physical connection to the deployment target on which
CashDesk CoBox is executed. This allows dealing with
deployment modifications caused by other ∆-designs. The
angular box in the top right corner of the ∆-design shows

<x−f rame name=” CashDesk .CORE”>
p u b l i c cobox c l a s s CashDesk {

. . .
p r i v a t e Keyboard keyboard ;
p r i v a t e Order c u r r e n t O r d e r ;

<b r e a k name=” C a s h D e s k A d d i t i o n a l A t t r i b u t e s ”/>
. . .
p u b l i c vo id s e l e c t C a s h P a y m e n t () {

keyboard ! s e t S t a t e C a s h P a y m e n t () ;
}
. . .

<b r e a k name=” CashDesk Add i t iona lMethods ”/>
}
</x−frame>

Listing 5. Core Frame for the CashDesk CoBox

the application condition. This condition determines that the
∆-design is applied in all feature configurations in with
the CreditCard feature is included. During application
engineering, we obtain a design for a multi-desk system
containing cash payment, credit card payment and keyboard
input by applying the modifications specified in the ∆-
design to the core design. This allows performing model-
based validation and verification of this product already on
the design level before the implementation is derived.

C. Implementation Layer

The implementation layer for the CoCoME software
product line is realized by frame technology [12]. Frames
structure source code into parts with pre-defined break
points. The break points can be adapted by inserting code
from other frames or by removing code from break points.
In our model-based framework, the structure of the CoBox-
based design is directly mapped to the frame structure on
the implementation layer. The core design of a product line
is realized by a set of core frames. Each CoBox in the core
design is implemented by a core frame. The code in this
core frame also contains break points that are necessary
for modifications caused by ∆-frames. For each ∆-design
in which the CoBox is altered, a ∆-frame is constructed
that contains the respective modifications to this CoBox.
Additionally, for each CoBox newly created by a ∆-design,
a ∆-frame is generated that contains its implementation. The
application conditions of the ∆-frames are the same as the
ones of the implemented ∆-designs. Special build frames
capture in which feature configurations the modifications of
a ∆-frame are applied to the core frames.

XVCL [17] is a programming language-independent im-
plementation of frame technology using an XML-dialect
for defining frames, break points and break point adapta-
tions. We use XVCL to realize the implementation layer
of the CoCoME product line. The XVCL core frame for
the CashDesk CoBox is depicted in Listing 5. This
frame implements the design specified in Figure 3. The
frame contains XVCL break tags for including addi-
tional attributes and methods that are specified by feature
frames targeting this core frame. The ∆-frame in List-

. . .
<i n s e r t−a f t e r b r e a k =” CashDesk Add i t iona lMethods ”>
. . .
p u b l i c vo id c r e d i t C a r d P i n E n t e r e d (i n t p i n) {

c a r d R e a d e r ! d i s a b l e () . a w a i t () ;
B a n k I n t e r f a c e bank = connec tWi thBank () ;
i f (bank == n u l l) {

System . o u t . p r i n t l n (” CashDesk : Bank n o t a v a i l a b l e . ”) ;
c a r d R e a d e r ! e n a b l e () ;

r e t u r n ;
}
i f (bank ! v a l i d a t e P a y m e n t D a t a (c u r r e n t C r e d i t C a r d N u m b e r ,

pin , c u r r e n t O r d e r . p r i c e) . a w a i t ()) {
rece iveMoney (c u r r e n t O r d e r . p r i c e) ;

} e l s e {
System . o u t . p r i n t l n (” CashDesk : Unable t o v e r i f y p i n . ”) ;

c a r d R e a d e r ! e n a b l e () ;
}

}
</ i n s e r t−a f t e r >

Listing 6. ∆-Frame for the CashDesk CoBox for the Credit Card Feature

ing 6 is an XVCL frame corresponding to the modifi-
cations applied to the CashDesk CoBox for the Credit
Card feature that is specified in the ∆-design in Figure
4. Among other modifications, this ∆-frame defines that
the CashDesk_AdditionalMethods break point in the
CashDesk core frame has to be adapted by inserting
the creditCardPinEntered method if the Credit Card
feature is part of the configuration to be implemented.

The code for a product implementing a particular feature
configuration can be automatically derived from the core
frames and ∆-frames of the product line implementation
during application engineering by the two-step derivation
process depicted in Figure 7. Adapting core frames as it is
necessary for automated product derivation is not possible
in a single XVCL run. XVCL frames are defined in a tree-
structured frame hierarchy. This structure is traversed (in-
order) during processing, such that adaptations in superordi-
nate frames overwrite adaptations in subordinate frames, if
both frames target the same break point. This is useful for
flexible specialized frame adaptations, but in our application,
frames adapting the same break point should not modify
each other. Therefore, in the two-step derivation process,
first, the modifications specified in the ∆-frames with
valid application condition are accumulated into a single
temporary modification frame by one run of the XVCL
processor. The selection of the ∆-frames contributing to
the accumulated modifications is controlled by special build
frames capturing the application conditions of the ∆-frames.
In the second processing step, the accumulated modifications
in the temporary modification frames are applied to adapt
the corresponding core frames by a second run of the XVCL
processor. This ensures a flat frame hierarchy for the second
process, so that a set of modifications targeting the same
break point are accumulated instead of being overwritten.
The result of this process is a product implementation for
the desired feature configuration.

Figure 7. Automated Product Derivation using XVCL

V. EVALUATION

We realized the CoCoME product line with the pro-
posed model-based framework for automated product deriva-
tion [27]. The CoBox-based implementation of the product
line is carried out in JCoBox1 that is compiled to standard
Java. As XVCL is programming language-independent, it is
straight-forward to use it for the JCoBox implementation of
the CoCoME product line. In the current implementation,
168 different products of the CoCoME product line can be
derived automatically by the XVCL-based two-step deriva-
tion process. The implementation of the CoCoME software
product line consists of 12 core frames, 21 ∆-frames and 12
build frames. The derivation process requires 6 additional
meta frames not containing any source code to guide the
derivation. Non-variable system parts are implemented in 5
regular source code files.

The advantage of the presented approach is that it is not
limited to a particular implementation language or technique
and applicable in a variety of scenarios. The development
of the product line core allows using established single
application engineering principles. Manual product-specific
intervention is explicitly avoided such that modifications in
any of the product line artifacts can be fully automatically
propagated to existing products. There is no need for ad-
ditional customization of products after product derivation.
Modifications of the product line artifacts, however, affect
all three layers. This introduces the need for additional syn-
chronization mechanisms in case of parallel modifications.

VI. CONCLUSION

We have presented a model-based framework for auto-
mated product derivation relying on an independent model-
based design layer. The design bridges the gap between

1http://softech.informatik.uni-kl.de/Homepage/JCoBox

feature models and product implementations. Its structure
guides the development of implementation artifacts capable
of automated product derivation. We realized and evaluated
the proposed framework with an extended version of UML
for the design and frame technology for the implementation.

For future work, we will realize the introduced framework
with different implementation techniques to evaluate its
general applicability. A first candidate is the trait-based
language presented in [28]. Additionally, we will improve
the tool support following our prototypical implementation.
In order to analyze the effects of product line evolution
for automated product derivation, we will formalize our
approach to give a formal account how the design and
implementation layers are affected by newly added features.

REFERENCES

[1] P. Clements and L. Northrop, Software Product Lines: Prac-
tices and Patterns. Addison Wesley Longman, 2001.

[2] S. Deelstra, M. Sinnema, and J. Bosch, “Product Derivation
in Software Product Families: A Case Study,” Journal of
Systems and Software, vol. 74, no. 2, pp. 173–194, 2005.

[3] C. W. Krueger, “New Methods in Software Product Line
Development,” in SPLC, 2006, pp. 95–102.

[4] M. Völter and I. Groher, “Product Line Implementation using
Aspect-Oriented and Model-Driven Software Development,”
in SPLC, 2007, pp. 233–242.

[5] J. Bayer et al., “PuLSE: a Methodology to Develop Software
Product Lines,” in Symposium on Software Reusability (SSR),
1999, pp. 122–131.

[6] C. Atkinson et al., Component-based Product Line Engineer-
ing with UML. Addison-Wesley, 2002.

[7] J. D. McGregor, “Preparing for Automated Derivation of
Products in a Software Product Line,” Carnegie Mellon Soft-
ware Engineering Institute, Tech. Rep., 2005.

[8] K. Czarnecki and M. Antkiewicz, “Mapping Features to
Models: A Template Approach Based on Superimposed Vari-
ants,” in Generative Programming and Component Enginer-
ing (GPCE), 2005, pp. 422 – 437.

[9] G. Botterweck, L. O’Brien, and S. Thiel, “Model-driven
Derivation of Product Architectures,” in Automated Software
Engineering (ASE), 2007, pp. 469–472.

[10] B. Selic, “The Pragmatics of Model-driven Development,”
IEEE Software, Sept 2003.

[11] J. Schäfer and A. Poetzsch-Heffter, “CoBoxes: Unifying
Active Objects and Structured Heaps,” in Formal Methods for
Open Object-Based Distributed Systems (FMOODS 2008),
2008, pp. 201–219.

[12] P. G. Bassett, Framing Software Reuse: Lessons From the
Real World. Prentice Hall, 1996.

[13] T. Ziadi, L. Hélouët, and J.-M. Jézéquel, “Towards a UML
Profile for Software Product Lines,” in Workshop on Product
Familiy Engineering (PFE), 2003, pp. 129–139.

[14] S. Deelstra, M. Sinnema, J. van Gurp, and J. Bosch, “Model
Driven Architecture as Approach to Manage Variability in
Software Product Families,” in Workshop on Model Driven
Architecture: Foundations and Applications (MDAFA 2003),
2003, pp. 109–114.

[15] Ø. Haugen, B. Møller-Pedersen, J. Oldevik, and A. Solberg,
“An MDA-based framework for model-driven product deriva-
tion,” in Software Engineering and Applications (SEA), 2004,
pp. 709–714.

[16] H. Gomaa and M. E. Shin, “Automated Software Product
Line Engineering and Product Derivation,” in HICSS, 2007.

[17] H. Zhang and S. Jarzabek, “XVCL: A Mechanism for
Handling Variants in Software Product Lines,” Science of
Computer Programming, vol. 53, pp. 381–407, 2004.

[18] U. W. Eisenecker and K. Czarnecki, Generative Program-
ming. Addison-Wesley, 2000.

[19] C. Kästner, S. Apel, and M. Kuhlemann, “Granularity in
Software Product Lines,” in International Conference on
Software Engineering (ICSE), 2008, pp. 311–320.

[20] G. Kiczales et al., “Aspect-Oriented Programming,” in
European Conference on Object-Oriented Programming
(ECOOP). Springer-Verlag, 1997.

[21] D. Batory, J. N. Sarvela, and A. Rauschmayer, “Scaling Step-
Wise Refinement,” in International Conference on Software
Engineering (ICSE), 2003, pp. 187–197.

[22] Y. Smaragdakis and D. S. Batory, “Mixin Layers: An
Object-Oriented Implementation Technique for Refinements
and Collaboration-based Designs,” ACM Trans. Softw. Eng.
Methodol., vol. 11, no. 2, pp. 215–255, 2002.

[23] G. Botterweck, K. Lee, and S. Thiel, “Automating Product
Derivation in Software Product Line Engineering,” in Soft-
ware Engineering, 2009, pp. 177–182.

[24] S. Herold et al., “CoCoME - The Common Component Mod-
eling Example,” in Common Component Modeling Example,
A. Rausch et al., Eds. Springer-Verlag, 2008, pp. 16 – 53.

[25] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and
A. S. Peterson, “Feature-Oriented Domain Analysis (FODA)
Feasibility Study,” Carnegie Mellon Software Engineering
Institute, Tech. Rep., 1990.

[26] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Mod-
eling Language User Guide. Addison-Wesley, 1999.

[27] A. Worret, “Automated Product Derivation for the CoCoME
Software Product Line: From Feature Models to CoBoxes,”
Master’s thesis, University of Kaiserslautern, March 2009.

[28] L. Bettini, V. Bono, F. Damiani, and I. Schaefer, “Implement-
ing Software Product Lines using Traits,” Dipartimento di
Informatica, Università di Torino, Tech. Rep., 2009, available
at http://www.di.unito.it/˜damiani/papers/isplut.pdf.

