
Model-driven Support for Source Code Variability
in Automotive Software Engineering

Cem Mengi∗, Christian Fuß†, Ruben Zimmermann†, and Ismet Aktas‡

∗Computer Science 3 (Software Engineering)
RWTH Aachen University, Ahornstr. 55, 52074 Aachen, Germany

Email: mengi@i3.informatik.rwth-aachen.de

†Carmeq GmbH
Carnotstr. 4, 10587 Berlin, Germany

Email: {christian.fuss | ruben.zimmermann}@carmeq.com

‡Computer Science 4 (Distributed Systems)
RWTH Aachen University, Ahornstr. 55, 52074 Aachen, Germany

Email: ismet.aktas@cs.rwth-aachen.de

Abstract—Variability on source code level in automotive soft-
ware engineering is handled by C/C++ preprocessing directives.
It provides fine-grained definition of variation points, but brings
highly complex structures into the source code. The software
gets more difficult to understand, to maintain and to integrate
changes. Current approaches for modeling and managing vari-
ability on source code do not consider the specific requirements
of the automotive domain. To close this gap, we propose a model-
driven approach to support software engineers in handling source
code variability and configuration of software variants. For this
purpose, a variability model is developed that is linked with the
source code. Using this approach, a software engineer can shift
work steps to the variability model in order to model and manage
variation points and implement their variants in the source code.

Index Terms—automotive software engineering; programming;
model-driven engineering; variability modeling;

I. INTRODUCTION

Today the automotive industry provides customers a lot of
possibilities to individualize their products. They can select
from a huge set of optional fittings, e.g., parking assistant, rain
sensor, intelligent light system, and/or comfort access system.
The possibility to configure individual vehicles leads to the
situation that both OEMs (Original Equipment Manufacturers)
and suppliers have to capture explicitly potential variation
points in their artifacts [1]–[3].

Thereby, the existence of variation points range over the
whole electric/electronic (E/E) development process. They are
available in the requirements, system specification, architec-
ture design, source code, but also in the test and integration
phase. Beyond that, variation points arise also during pro-
duction, operation and maintenance phase. This means that
in the whole product life cycle for a vehicle which hold up
approx. 20-25 years, there evolve various types of variation
points [4], [5]. Therefore, artifacts of different phases in the
development process have to be investigated in order to explore

their specifics [3], [6].
This paper deals with variability on source code level. Here,

we focus on the programming languages C/C++, because they
are the most widely used languages in automotive software
engineering. With about 51% C has the most portion followed
by C++ with about 30%. Assembler comes with about 8% and
all other languages are applied less than 5% [7].

Variation points are implicitly modeled by implementing
C/C++ preprocessing directives. In this way, variable (condi-
tional) compilation results in specific software variants. This
approach allows fine-grained definition of variation points,
but brings highly complex structures into the source code.
The software gets more difficult to understand, to maintain
and to integrate changes. The main reason for this is that a
software engineer has no support on source code level beside
the programming language. Particularly, the user has to deal
simultaneously with problem space, configuration knowledge,
and solution space [8]. If a huge number of variation points
exists, knowledge about a valid configuration gets difficult.
Furthermore, a software developer has to find out the scattered
code and the dependencies of one variant manually which is
also very hard and time consuming.

There exists a wide range of techniques and mechanisms
for modeling and managing variability [2], [9]–[15]. Most of
them handle variability on a higher abstraction level. Elements
of reusability are primarily software components, or constructs
of object-oriented programming such as classes and methods
which are replaced for specific variants of software. A support
for fine-grained specifications of variation points on source
code level are provided by a few number of concepts and tools
[16]–[20], but they do not consider the specific requirements
for the automotive domain. Particularly, safety critical applica-
tions come under regular code reviews and therefore have high
demands on source code quality. Consequently, readability and
understandability of source code are of high importance, but

the above mentioned existing solutions do not consider this
sufficiently.

To close this gap, we propose a model-driven approach
to support software developers in handling versatile source
code and configuration of software variants. For this purpose,
we have developed a concept to separate problem space,
configuration knowledge, and solution space. The problem
space includes a common cardinality-based feature model to
capture and manage variability [10], [11]. Furthermore, it
supports the possibility to configure a software variant. The
configuration knowledge can subsequently be transformed to
the solution space. The solution space contains the source
code. Here, we use a view-based approach in order to display
the current configuration and hide everything that do not
belong to the configuration.

The paper is structured as follows: In Section II, we
analyze preprocessing directives that can express variation
points. Particularly, a detailed consideration will show where
problem space, configuration knowledge, and solution space is
integrated. Furthermore, the problems that we will treat will be
described in detail by using an example. In Section III, we will
describe our approach to solve the problems. Here, we explain
the separation of problem space, configuration knowledge, and
solution space and go into detail of the three parts. Section IV,
contains a short description of our implementation approach.
In Section V, we will check if we have solved the mentioned
problems. Finally, Section VI will summarize the paper.

II. ANALYZING SOURCE CODE VARIABILITY

In this section, we will investigate how variability can
be expressed using C/C++ preprocessing directives. We will
introduce an example in order to explain arising problems of
this approach in more detail.

A. Expressing Variability with C/C++ Preprocessing Direc-
tives

The current approach to express variation points and to
configure specific software variants is to apply C/C++ pre-
processing directives. For this purpose, statements for condi-
tional inclusions are used, e.g., #ifdef, #ifndef, #if,
#elif, #else (see Figure 1) [21]. In the following, we will
use preprocessing block or block as a synonym for complete
preprocessing directives.

The identifier for #ifdef and #ifndef directives
in Figure 1a and 1b is a point of variation, because depending
on its evaluation the contained source code is either included
for compilation or not.

In the same way, the constant-expression in #if
and #elif preprocessing directives shown in Figure 1c
and 1d is also a point of variation. If it is evaluated to nonzero,
the appropriate part of source code is included for compilation,
otherwise not. Note, that a constant-expression allows
more complex arithmetic and logical expressions. In the fol-
lowing, we will use block rule or simply rule as a synonym
for a constant expression.

#ifdef identifier
. . .

#endif
(a) #ifdef preprocessing directive.

#ifndef identifier
. . .

#endif
(b) #ifndef preprocessing directive.

#if constant-expression
. . .

#endif
(c) #if preprocessing directive.

#if constant-expression1
...

#elif constant-expression2
...

#elif constant-expressionN
. . .

#else
. . .

#endif
(d) #if, #elif, #else preprocessing directive.

Fig. 1. Preprocessing directives to handle variation points before compilation.

Fig. 2. Multilayer information in the solution space.

Analyzing preprocessing directives in detail, we have iden-
tified that different aspects of variability information is mixed
into the code. We have decided to divide the information
in analogy to Czarnecki’s generative domain model which
consists of a problem space, solution space and a configuration
knowledge mapping between them [8]. Figure 2 illustrates this
by an example.

The constant-expression Feature_A && Feature_B of
the #if preprocessing directive is used to control the in-
clusion of the contained source code. Thereby, an identifier
references a feature that is implemented in that code block,
e.g., Feature_A and Feature_B. This kind of information
is part of the problem space. The linking of an identifier
with arithmetic and/or logical operations reflect configuration
knowledge. Finally, the contained code reflect the implemen-

1 #if PRIO_USE_SORTED_OBJECTS == 1
2 #define PRIO_QUICKSORT 1
3 #define PRIO_INSERTIONSORT 0
4
5 ...
6
7 #if PRIO_QUICKSORT
8 ...
9 #endif

10
11 #if PRIO_INSERTIONSORT
12 ...
13 #endif
14
15 static void sortTracks(...) {
16 #if PRIO_QUICKSORT
17 quicksortTrack(...);
18 #elif PRIO_INSERTIONSORT
19 insertionsortTracks(...);
20 #else
21 #error missing ...
22 #endif
23
24 }
25 #endif

Fig. 3. An example for variability handling with preprocessing directives.

tation which is part of the solution space.

B. Problem Description by Example

In this section, we will explain the problems that currently
exists when dealing with C/C++ preprocessing directives to
handle variability information. For this purpose, we will in-
troduce an example.

Typically, sensors are adopted to collect data. In some
situations it is necessary to prioritize the captured data. If so,
different variants of sorting algorithms can be applied, e.g.,
quick-sort or insertion-sort.

The associated C source code is shown in Figure 3. The
code between line 1 to 25 is only included if prioritization is
selected. One of the sorting algorithms have to be configured
(set to 1) in order to integrate the appropriate source code into
the software variant. In our case, it is the quick-sort (see line
2). Particularly, the sortTracks(...) function (line 15)
includes only the part of the source code which belongs to the
quick-sort algorithm (line 17).

Although using preprocessing directives allows fine-grained
and flexible specification of variation points, the source code
gets more difficult to understand, to maintain, and to integrate
changes. Analyzing the source code, we have identified four
main problems, i.e.,

1) mixing problem space, configuration knowledge and
solution space,

2) viewing all variation points without the knowledge of a
valid configuration,

Fig. 4. Separation of problem space, configuration knowledge, and solution
space.

3) code-variants of one variation point are scattered and
have to be find manually, and

4) no explicit capturing of dependencies between variation
points.

As described in Section II-A we have detected information
in the source code that belongs to both problem space and
solution space. For example, line 1, 7, 11, 16 etc. in Figure 3
are variability information that are part of the problem space
and configuration knowledge. Even so, they are strongly
integrated into the solution space, i.e., the source code.

Furthermore, considering the source code example, a soft-
ware engineer always has to work with all variation points
simultaneously, even most of them are not part of a specific
variant. For example, the insertion-sort algorithm in Figure 3
does not belong to the variant if quick-sort is chosen (lines 3,
11-14, and 18-19). If more complex code sizes are regarded,
solving a valid configuration gets more difficult.

Moreover, code-variants of one variation point are typically
not implemented in a complete block but rather are scattered.
For example, the quick-sort variant in Figure 3 appears in
lines 2, 7-9, and 16-17. Particularly, this complicate including
changes into code-variants or their appropriate preprocessing
directives. If the code gets more complex, finding the code-
variants manually gets very hard and time consuming. If
changes into code or conditions have to be done, all relevant
source code have to be find out manually to hold them
consistent.

Finally, in many cases variation points are not isolated but
depend on each other. In the source code, there is no explicit
capturing of such information. For example, quick-sort and
insertion-sort in Figure 3 are only included if a prioritization
is necessary. If so, then they have an exclusive dependency on
each other, i.e., only one can be chosen.

III. MODEL-DRIVEN SUPPORT FOR SOURCE CODE
VARIABILITY

To deal with the identified problems mentioned in Sec-
tion II-B, we propose a model-driven approach to treat source
code variability and to support configuration of software
variants. Therefore, we have developed a concept to separate
problem space and configuration knowledge from solution
space. The problem space is supported by a variability model
that is based on Czarnecki’s cardinality-based feature model
[10], [11] (in the following we will use the term variability
model as a synonym). Here, variation points are captured and

«interface»
Concept

«interface»
Feature

«interface»
Group

«interface»
CardinalityBasedElement

+rootFeature 1

+children 0..*

1

1

+groups 0..*

+members

0..*

+groups 1..*

Fig. 5. Meta-model of the cardinality-based feature model.

managed. The configuration knowledge contains all informa-
tions to transform knowledge from problem space to solution
space. The variability model supports the configuration. The
solution space includes the source code. By integrating a
view-based approach, only the configured part of the source
code is displayed. This reflects the result from problem space
transformed to solution space.

Figure 4 gives an overview of the separation of our ap-
proach. The general idea is, that a software developer not only
work on the solution space, i.e., the source code, but also shift
work steps into the variability model that is able to capture
the problem space and configuration knowledge.

A. Source Code Variability Model

The focus on this paper does not lie on defining a new
variability model, but rather using existing solutions to support
variability on source code level. Analyzing existing approaches
we have decided to adapt a cardinality-based feature model.
Since it is a very common way to model variability, an
integration of other tools and models get more simple. Partic-
ularly, this integration would allow using variability modeling
techniques which are applied on a more abstract level, i.e.,
managing variability for classes, methods, objects etc. Our
approach can then be used for fine-grained modeling of
variability, i.e., on source code lines.

Figure 5 shows the meta-model for the cardinality-based
feature model. It allows to define a tree-based structure.
Thereby, a Concept node contains exactly one feature, i.e.,
the rootFeature. A Feature consists of an arbitrary number
of children features. Moreover, a Concept node references
an arbitrary number of Groups which define the number of
elements in a group that can be specified for a configuration.

B. Transformation of Configuration Knowledge

To profit from the separation, it is an essential part to shift
work steps to the central variability model. For this purpose,
a connection between variability model and source code is
necessary. To achieve this, we will use preprocessing directives
which were, as described in Section II, the primary concept
to express variation points. In this way, it will be possible to
automatically add or delete preprocessing directives.

A user configures a specific variant whereas every modifi-
cation of the source code, i.e., adding, deleting or modifying
code lines, is linked with that configuration. Later on, it will
be possible to display or hide code blocks depending on a
specified configuration.

The basic principle for every transformation is the con-
figuration knowledge from the variability model. If features
F 1, F 2, . . . , F n are selected, a transformation into a rule
of the form F_1 && F_2 && ...&& F_n is executed. In
the following examples, we always assume that this constant-
expression is used.

Depending on the modification of the source code, the
constant-expression is integrated into a preprocessing direc-
tive.

1) Modification of Source Code Outside Existing Prepro-
cessing Blocks: The most simple case is when a software
engineer modifies code outside existing preprocessing blocks.

a) Adding: If we have a rule of the form F_1 && F_2
&& ...&& F_n, then it is embedded to an #if preprocess-
ing block:

#if F_1 && F_2 && ...&& F_n
. . .

#endif

In this way, the code is only included for compilation, if the
appropriate configuration is selected.

b) Deleting: Deleting code lines during a given configu-
ration F 1, F 2, . . . , F n do not delete them from the source
file, but implies that the deleted lines should not appear in
that configuration. For this purpose, we use the following #if
preprocessing directive with the deleted code lines:

#if !(F_1 && F_2 && ...&& F_n)
. . . deleted code lines

#endif

2) Modification of Source Code Inside Existing Preprocess-
ing Blocks: A slightly different case arises, if modifications
inside existing preprocessing blocks are made.

a) Adding: If code is added inside a preprocessing block,
then it is split in two blocks with the constant-expression as
before and the added code lines are embraced with an #if
preprocessing directive and a rule F_1 && F_2 && ...&&
F_n that is transformed from the specified configuration.

#if constant-expression 1
line 1
line 2
line 3

#endif

⇒

#if constant-expression 1
line 1

#endif
#if constant-expression 2

line 2
#endif
#if constant-expression 1

line 3
#endif

4 Implementation

5 Related Work

6 Conclusion

References

[1] S. Apel, T. Leich, and G. Saake. Aspectual feature modules.
IEEE Trans. Softw. Eng., 34(2):162–180, 2008.

[2] T. Asikainen, T. Soininen, and T. Männistö. A Koala-Based
Approach for Modelling and Deploying Configurable Soft-
ware Product Families. In PFE 2003: Software Product-
Family Engineering, 5th International Workshop, volume
3014 of Lecture Notes in Computer Science, pages 225–249.
Springer, 2003.

[3] D. Beuche, H. Papajewski, and W. Schröder-Preikschat.
Variability management with feature models. Sci. Comput.
Program., 53(3):333–352, 2004.

[4] A. Bryant, A. Catton, K. De Volder, and G. C. Murphy. Ex-
plicit programming. In AOSD ’02: Proceedings of the 1st
international conference on Aspect-oriented software devel-
opment, pages 10–18, New York, NY, USA, 2002. ACM.

[5] P. Clements and L. Northrop. Software product lines: prac-
tices and patterns. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2001.

[6] K. Czarnecki and U. Eisenecker. Generative programming:
methods, tools, and applications. ACM Press/Addison-
Wesley Publishing Co. New York, NY, USA, 2000.

[7] K. Czarnecki, S. Helsen, and U. W. Eisenecker. Formal-
izing cardinality-based feature models and their specializa-
tion. Software Process: Improvement and Practice, 10(1):7–
29, 2005.

[8] K. Czarnecki and C. H. Kim. Cardinality-Based Feature
Modeling and Constraints: A Progress Report. In OOP-
SLA’05 International Workshop on Software Factories, Oc-
tober 2005.

[9] Embedded Systems Design. http://www.embedded.com/.
[10] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.

Peterson. Feature-Oriented Domain Analysis (FODA) Fea-
sibility Study. Technical report, Carnegie-Mellon University
Software Engineering Institute, November 1990.

[11] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in soft-
ware product lines. In ICSE ’08: Proceedings of the 30th in-
ternational conference on Software engineering, pages 311–
320, New York, NY, USA, 2008. ACM.

[12] B. W. Kernighan and D. M. Ritchie. C Programming Lan-
guage, 2nd Ed. Prentice Hall, January 1988.

[13] F. J. v. d. Linden, K. Schmid, and E. Rommes. Software
Product Lines in Action: The Best Industrial Practice in
Product Line Engineering. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2007.

[14] C. Lopes and G. Kiczales. Aspect-oriented programming.
Technology of Object-Oriented Languages, International
Conference on, 0:468, 2000.

[15] C. Mengi and I. Armaç. Functional Variant Modeling for
Adaptable Functional Networks. In VaMoS 2009: Third In-
ternational Workshop on Variability Modelling of Software-
Intensive Systems, volume 29 of ICB Research Report, pages
83–92. Universität Duisburg-Essen, 2009.

[16] S. J. Paul, P. Bassett, H. Zhang, and W. Zhang. Xvcl: Xml-
based variant configuration language. In ICSE ’03: Pro-
ceedings of the international conference on Software engi-
neering, pages 810–811, 2003.

[17] K. Pohl, G. Böckle, and F. J. van der Linden. Software Prod-
uct Line Engineering: Foundations, Principles and Tech-
niques. Springer, September 2005.

[18] Pure Systems website. http://www.pure-systems.com/.
[19] M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch. CO-

VAMOF: A Framework for Modeling Variability in Soft-
ware Product Families. In SPLC 2004: Software Product
Lines, Third International Conference, volume 3154 of Lec-
ture Notes in Computer Science, pages 197–213. Springer,
2004.

In the example above, the blue marked code line (line_2)
on the left side is added during a configuration F 1, F 2,
. . . , F n. In that case, line_1 and line_3 are embraced
with the preprocessing directive as before and line_2 is
embraced with an #if preprocessing directive and a constant-

expression F_1 && F_2 && ...&& F_n (in the figure
above, denoted as constant-expression_2).

This adaptation differs from the transformation for modifi-
cation of source code outside existing preprocessing directives.
If we would transform the added code lines in the same way
as in Section III-B1a then we would get a nested structure. But
this would bring an implication into the code that possibly is
not planned by a software developer. For example, if line_2
would be nested into the superior preprocessing block, then
the code lines would only exist in a variant that includes
a configuration of the superior block. By dividing them in
multiple blocks of preprocessing directives this side effect
is avoided and the described implication is still possible if
the software engineer uses the configuration of the variability
model.

b) Deleting: When deleting code lines, the mentioned
problems for adding code do not appear, because the reference
to the superior preprocessing block is mandatory and must be
kept, so that the constant-expression of the superior prepro-
cessing block and the constant-expression that is transformed
from the current configuration must be included.

#if constant-expression 1
line 1
line 2
line 3

#endif

⇒

#if constant-expression 1
line 1

#endif
#if constant-expression 1

&& !constant-expression 2
line 2

#endif
#if constant-expression 1

line 3
#endif

4 Implementation

5 Related Work

6 Conclusion

References

[1] S. Apel, T. Leich, and G. Saake. Aspectual feature modules.
IEEE Trans. Softw. Eng., 34(2):162–180, 2008.

[2] T. Asikainen, T. Soininen, and T. Männistö. A Koala-
Based Approach for Modelling and Deploying Config-
urable Software Product Families. In PFE 2003: Software
Product-Family Engineering, 5th International Workshop,
volume 3014 of Lecture Notes in Computer Science, pages
225–249. Springer, 2003.

[3] D. Beuche, H. Papajewski, and W. Schröder-Preikschat.
Variability management with feature models. Sci. Comput.
Program., 53(3):333–352, 2004.

[4] A. Bryant, A. Catton, K. De Volder, and G. C. Murphy.
Explicit programming. In AOSD ’02: Proceedings of the
1st international conference on Aspect-oriented software
development, pages 10–18, New York, NY, USA, 2002.
ACM.

[5] P. Clements and L. Northrop.
Software product lines: practices and patterns. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2001.

[6] K. Czarnecki and U. Eisenecker.
Generative programming: methods, tools, and applications.
ACM Press/Addison-Wesley Publishing Co. New York, NY,
USA, 2000.

[7] K. Czarnecki, S. Helsen, and U. W. Eisenecker. Formal-
izing cardinality-based feature models and their specializa-
tion. Software Process: Improvement and Practice, 10(1):7–
29, 2005.

[8] K. Czarnecki and C. H. Kim. Cardinality-Based Fea-
ture Modeling and Constraints: A Progress Report. In
OOPSLA’05 International Workshop on Software Factories,
October 2005.

[9] Embedded Systems Design. http://www.embedded.com/.
[10] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.

Peterson. Feature-Oriented Domain Analysis (FODA) Fea-
sibility Study. Technical report, Carnegie-Mellon University
Software Engineering Institute, November 1990.

[11] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in soft-
ware product lines. In ICSE ’08: Proceedings of the 30th
international conference on Software engineering, pages
311–320, New York, NY, USA, 2008. ACM.

[12] B. W. Kernighan and D. M. Ritchie. C Programming
Language, 2nd Ed. Prentice Hall, January 1988.

[13] F. J. v. d. Linden, K. Schmid, and E. Rommes.
Software Product Lines in Action: The Best Industrial Practice in Product Line Engineering.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.

[14] C. Lopes and G. Kiczales. Aspect-oriented programming.
Technology of Object-Oriented Languages, International
Conference on, 0:468, 2000.

[15] C. Mengi and I. Armaç. Functional Variant Modeling
for Adaptable Functional Networks. In VaMoS 2009:
Third International Workshop on Variability Modelling of
Software-Intensive Systems, volume 29 of ICB Research
Report, pages 83–92. Universität Duisburg-Essen, 2009.

[16] S. J. Paul, P. Bassett, H. Zhang, and W. Zhang. Xvcl:
Xml-based variant configuration language. In ICSE ’03:
Proceedings of the international conference on Software
engineering, pages 810–811, 2003.

[17] K. Pohl, G. Böckle, and F. J. van der Linden.
Software Product Line Engineering: Foundations, Principles and Techniques.
Springer, September 2005.

[18] Pure Systems website. http://www.pure-systems.com/.
[19] M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch. COV-

AMOF: A Framework for Modeling Variability in Software
Product Families. In SPLC 2004: Software Product Lines,
Third International Conference, volume 3154 of Lecture
Notes in Computer Science, pages 197–213. Springer, 2004.

In the example above, the red marked and struck out code line
(line_2) on the left side is deleted during a configuration
F 1, F 2, . . . , F n. In that case, line_1 and line_3
are embraced with the preprocessing block as before and
line_2 is included into an #if preprocessing block
with a constant-expression constant-expression_1
&& !constant-expression_2, where constant-
expression_2 is the result of the transformation of the
current configuration, i.e., F_1 && F_2 && ...&& F_n.
We have decided to split the preprocessing block but nesting
them would in this case also be possible.

If only #if !constant-expression_2 would be
included then the deleted code line would be appear in
each variant that do not contain the configuration F 1,
F 2, . . . , F n. Particularly, it would be independent from
constant-expression_1.

3) Modification of Source Code for Complete Preprocessing
Blocks: Beside of adding or deleting code lines, in some
situations it is also reasonable to add or delete complete
preprocessing blocks in a given configuration.

a) Adding: If it is necessary to add a preprocessing block
of one variant (or configuration) into another one, this could be
done by configuring the variant where the code block appears,
copying it, configuring the variant where it should appear,
and then pasting it. This method is a little bit uncomfortable.
Therefore, we support adding complete code blocks into a
configuration automatically without copy/paste actions. For

this purpose, we only have to extend the constant-expression
of the preprocessing block which include the code lines that
should appear in the current configuration.

#if constant-expression 1
line 1
...
line n

#endif

⇒

#if constant-expression 1
|| constant-expression 2

line 1
...
line n

#endif

4 Implementation

5 Related Work

6 Conclusion

References

[1] S. Apel, T. Leich, and G. Saake. Aspectual feature modules.
IEEE Trans. Softw. Eng., 34(2):162–180, 2008.

[2] T. Asikainen, T. Soininen, and T. Männistö. A Koala-
Based Approach for Modelling and Deploying Config-
urable Software Product Families. In PFE 2003: Software
Product-Family Engineering, 5th International Workshop,
volume 3014 of Lecture Notes in Computer Science, pages
225–249. Springer, 2003.

[3] D. Beuche, H. Papajewski, and W. Schröder-Preikschat.
Variability management with feature models. Sci. Comput.
Program., 53(3):333–352, 2004.

[4] A. Bryant, A. Catton, K. De Volder, and G. C. Murphy.
Explicit programming. In AOSD ’02: Proceedings of the
1st international conference on Aspect-oriented software
development, pages 10–18, New York, NY, USA, 2002.
ACM.

[5] P. Clements and L. Northrop.
Software product lines: practices and patterns. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2001.

[6] K. Czarnecki and U. Eisenecker.
Generative programming: methods, tools, and applications.
ACM Press/Addison-Wesley Publishing Co. New York, NY,
USA, 2000.

[7] K. Czarnecki, S. Helsen, and U. W. Eisenecker. Formal-
izing cardinality-based feature models and their specializa-
tion. Software Process: Improvement and Practice, 10(1):7–
29, 2005.

[8] K. Czarnecki and C. H. Kim. Cardinality-Based Fea-
ture Modeling and Constraints: A Progress Report. In
OOPSLA’05 International Workshop on Software Factories,
October 2005.

[9] Embedded Systems Design. http://www.embedded.com/.
[10] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.

Peterson. Feature-Oriented Domain Analysis (FODA) Fea-
sibility Study. Technical report, Carnegie-Mellon University
Software Engineering Institute, November 1990.

[11] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in soft-
ware product lines. In ICSE ’08: Proceedings of the 30th
international conference on Software engineering, pages
311–320, New York, NY, USA, 2008. ACM.

[12] B. W. Kernighan and D. M. Ritchie. C Programming
Language, 2nd Ed. Prentice Hall, January 1988.

[13] F. J. v. d. Linden, K. Schmid, and E. Rommes.
Software Product Lines in Action: The Best Industrial Practice in Product Line Engineering.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.

[14] C. Lopes and G. Kiczales. Aspect-oriented programming.
Technology of Object-Oriented Languages, International
Conference on, 0:468, 2000.

[15] C. Mengi and I. Armaç. Functional Variant Modeling
for Adaptable Functional Networks. In VaMoS 2009:
Third International Workshop on Variability Modelling of
Software-Intensive Systems, volume 29 of ICB Research
Report, pages 83–92. Universität Duisburg-Essen, 2009.

[16] S. J. Paul, P. Bassett, H. Zhang, and W. Zhang. Xvcl:
Xml-based variant configuration language. In ICSE ’03:
Proceedings of the international conference on Software
engineering, pages 810–811, 2003.

[17] K. Pohl, G. Böckle, and F. J. van der Linden.
Software Product Line Engineering: Foundations, Principles and Techniques.
Springer, September 2005.

[18] Pure Systems website. http://www.pure-systems.com/.
[19] M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch. COV-

AMOF: A Framework for Modeling Variability in Software
Product Families. In SPLC 2004: Software Product Lines,
Third International Conference, volume 3154 of Lecture
Notes in Computer Science, pages 197–213. Springer, 2004.

In the example above, the blue marked code lines
on the left side should included into a configuration
F 1, F 2, . . . , F n. The appropriate preprocessing
block after transformation is shown on the right side.
The code line now would appear in configuration
that is transformed to constant-expression_1
or constant-expression_2, where constant-
expression_2 is the current configuration F 1, F 2, . . . ,
F n.

b) Deleting: If a complete preprocessing block is
deleted, an adaptation of the constant-expression should be
made. Thereby, the transformation of a configuration is moti-
vated by the same principle as for deleting code lines inside
existing preprocessing blocks.

#if constant-expression 1
line 1
...
line n

#endif

⇒

#if constant-expression 1
&& !constant-expression 2

line 1
...
line n

#endif

Deleting

4 Implementation

5 Related Work

6 Conclusion

References

[1] S. Apel, T. Leich, and G. Saake. Aspectual feature modules.
IEEE Trans. Softw. Eng., 34(2):162–180, 2008.

[2] T. Asikainen, T. Soininen, and T. Männistö. A Koala-
Based Approach for Modelling and Deploying Config-
urable Software Product Families. In PFE 2003: Software
Product-Family Engineering, 5th International Workshop,
volume 3014 of Lecture Notes in Computer Science, pages
225–249. Springer, 2003.

[3] D. Beuche, H. Papajewski, and W. Schröder-Preikschat.
Variability management with feature models. Sci. Comput.
Program., 53(3):333–352, 2004.

[4] A. Bryant, A. Catton, K. De Volder, and G. C. Murphy.
Explicit programming. In AOSD ’02: Proceedings of the
1st international conference on Aspect-oriented software
development, pages 10–18, New York, NY, USA, 2002.
ACM.

[5] P. Clements and L. Northrop.
Software product lines: practices and patterns. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2001.

[6] K. Czarnecki and U. Eisenecker.
Generative programming: methods, tools, and applications.
ACM Press/Addison-Wesley Publishing Co. New York, NY,
USA, 2000.

[7] K. Czarnecki, S. Helsen, and U. W. Eisenecker. Formal-
izing cardinality-based feature models and their specializa-
tion. Software Process: Improvement and Practice, 10(1):7–
29, 2005.

[8] K. Czarnecki and C. H. Kim. Cardinality-Based Fea-
ture Modeling and Constraints: A Progress Report. In
OOPSLA’05 International Workshop on Software Factories,
October 2005.

[9] Embedded Systems Design. http://www.embedded.com/.
[10] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.

Peterson. Feature-Oriented Domain Analysis (FODA) Fea-
sibility Study. Technical report, Carnegie-Mellon University
Software Engineering Institute, November 1990.

[11] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in soft-
ware product lines. In ICSE ’08: Proceedings of the 30th
international conference on Software engineering, pages
311–320, New York, NY, USA, 2008. ACM.

[12] B. W. Kernighan and D. M. Ritchie. C Programming
Language, 2nd Ed. Prentice Hall, January 1988.

[13] F. J. v. d. Linden, K. Schmid, and E. Rommes.
Software Product Lines in Action: The Best Industrial Practice in Product Line Engineering.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.

[14] C. Lopes and G. Kiczales. Aspect-oriented programming.
Technology of Object-Oriented Languages, International
Conference on, 0:468, 2000.

[15] C. Mengi and I. Armaç. Functional Variant Modeling
for Adaptable Functional Networks. In VaMoS 2009:
Third International Workshop on Variability Modelling of
Software-Intensive Systems, volume 29 of ICB Research
Report, pages 83–92. Universität Duisburg-Essen, 2009.

[16] S. J. Paul, P. Bassett, H. Zhang, and W. Zhang. Xvcl:
Xml-based variant configuration language. In ICSE ’03:
Proceedings of the international conference on Software
engineering, pages 810–811, 2003.

[17] K. Pohl, G. Böckle, and F. J. van der Linden.
Software Product Line Engineering: Foundations, Principles and Techniques.
Springer, September 2005.

[18] Pure Systems website. http://www.pure-systems.com/.
[19] M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch. COV-

AMOF: A Framework for Modeling Variability in Software
Product Families. In SPLC 2004: Software Product Lines,
Third International Conference, volume 3154 of Lecture
Notes in Computer Science, pages 197–213. Springer, 2004.

In the example above, the red marked and struck out code
lines on the left side are deleted during a configuration F 1,
F 2, . . . , F n. The result of the transformation with the
given configuration is shown on the right side. Considering
the constant-expression on the right side, the appropriate
code lines only appear if constant-expression_1
but not constant-expression_2 holds, where
constant-expression_2 is equal to F_1 && F_2 &&
...&& F_n.

C. Views on Source Code

The solution space of our approach is the source code. In
order to take the advantages of the division the transformation
of configuration knowledge must be reflect in the source code.
For this purpose, we have adopt a view-based approach where
all source code is hidden that is not part of the configuration.

The configuration is made on the cardinality-based feature
model which was explained in Section III-A. Depending on
the configuration, all constant-expressions of preprocessing
directives are evaluated to decide whether the block should
be displayed or hidden. In principle, this emulates the prepro-
cessor with the advantage that targeted configurations can be
viewed.

IV. IMPLEMENTATION

The described concepts are implemented in a way that they
can be integrated into existing development processes and
projects as seamless as possible. Therefore, we had to follow
general requirements:

Solution Space

Problem Space

Configuration
Knowledge

Fig. 6. A screenshot of the developed Eclipse plugin.

1) At all time, valid C/C++ code must be available.
2) Editing and maintenance of source code must be possi-

ble without the need for specific tooling.
3) Additional work load for a software developer must be

as low as possible.
4) Dynamic changes must be feasible.

The implementation is fulfilled by developing a plugin for
the Eclipse Framework [22]. The cardinality-based feature
model is implemented with support of the Eclipse Modeling
Framework (EMF) [23]. An editor for the feature model was
also generated by using EMF which can be used in parallel
to the Eclipse C/C++ Development Tooling (CDT) [24]. A
screenshot is shown in Figure 6.

The left part contains the editor where C/C++ source code
can be written. The right part contains a view on a configurable
feature model. The software developer can use both parts in
parallel in order to configure a specific variant of interest so
that all other code lines that are not included into the variant
are hidden. In some situations, not all modifications on model
configuration should influence the view on the source code.
In the same way, not all modifications on source code should
influence the selected configuration. For this purpose, the user
gets the possibility to explicitly select a control element that
triggers the linking between code and model. If the linking
is stopped the transformation is subsequently executed. This
means, that all preprocessing directives are added into the
source code.

The editor to configure a variant has the ability to select or
deselect features and to solve implications. Furthermore, the
configuration of invalid variants are avoided. At the same time,

it supports a software developer to detect modeling errors.

V. PROBLEMS REVISTED

If we consider again the listed problems in Section II-B, we
observe that they are solved by the described concepts.

The core problem was that problem space, configuration
knowledge, and solution space were mixed. By dividing them
we have formed a basis to solve the other problems. Knowl-
edge about a valid configuration is given through support
of the configurable feature model. Code-variants must not
find out manually, but are solved by the configuration which
then is transformed to the source code. By adopting a view-
based approach only the relevant code lines are displayed.
Dependencies between variation points are also stored in the
feature model by expressing cardinalities.

Overall, complex work steps are now shifted to a model
where they can be handled more easier. The software engineer
can now concentrate on the main work, i.e., developing
software.

VI. CONCLUSION

In this paper we have described a model-driven approach
to handle source code variability. We have outlined existing
problems, analyzed them in detail in order to propose a
solution. The main problem is that problem space, configu-
ration knowledge, and solution space is mixed, i.e., a software
engineer works only on the source code without any support
to treat variability. This leads to the situation that source code
is overcrowded with variation points without knowing how
they depend on each other. In our approach we have suggest

a division of problem space, configuration knowledge, and
solution space. A cardinality-based feature model is adopted
and linked with the source code in order to shift work steps
into the model. By a configuration support modifications on
the source code are linked with the model. Furthermore,
transformation of configuration is supported by adopting a
view-based approach.

In future work, we want to integrate this approach with
earlier phases of an E/E development process. Software ar-
chitectures are one essential artifact that need support for
variability handling. If variability support is provided, an
integration with the source code level would be an essential
benefit.

REFERENCES

[1] P. Clements and L. Northrop, Software product lines: practices and
patterns. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 2001.

[2] K. Pohl, G. Böckle, and F. J. van der Linden, Software Product
Line Engineering: Foundations, Principles and Techniques. Springer,
September 2005.

[3] F. J. v. d. Linden, K. Schmid, and E. Rommes, Software Product Lines
in Action: The Best Industrial Practice in Product Line Engineering.
Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2007.

[4] M. Broy, “Challenges in automotive software engineering,” in ICSE
’06: Proceedings of the 28th international conference on Software
engineering. New York, NY, USA: ACM, 2006, pp. 33–42.

[5] A. Pretschner, M. Broy, I. H. Kruger, and T. Stauner, “Software engineer-
ing for automotive systems: A roadmap,” in FOSE ’07: 2007 Future of
Software Engineering. Washington, DC, USA: IEEE Computer Society,
2007, pp. 55–71.

[6] C. Mengi and I. Armaç, “Functional Variant Modeling for Adaptable
Functional Networks,” in VaMoS 2009: Third International Workshop on
Variability Modelling of Software-Intensive Systems, ser. ICB Research
Report, vol. 29. Universität Duisburg-Essen, 2009, pp. 83–92.

[7] Embedded Systems Design website, http://www.embedded.com/.
[8] K. Czarnecki and U. Eisenecker, Generative programming: methods,

tools, and applications. ACM Press/Addison-Wesley Publishing Co.
New York, NY, USA, 2000.

[9] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Pe-
terson, “Feature-Oriented Domain Analysis (FODA) Feasibility Study,”
Carnegie-Mellon University Software Engineering Institute, Tech. Rep.,
November 1990.

[10] K. Czarnecki, S. Helsen, and U. W. Eisenecker, “Formalizing
cardinality-based feature models and their specialization,” Software
Process: Improvement and Practice, vol. 10, no. 1, pp. 7–29, 2005.

[11] K. Czarnecki and C. H. Kim, “Cardinality-Based Feature Modeling and
Constraints: A Progress Report,” in OOPSLA’05 International Workshop
on Software Factories, October 2005.

[12] M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch, “COVAMOF: A
Framework for Modeling Variability in Software Product Families,” in
SPLC 2004: Software Product Lines, Third International Conference,
ser. Lecture Notes in Computer Science, vol. 3154. Springer, 2004, pp.
197–213.

[13] D. Beuche, H. Papajewski, and W. Schröder-Preikschat, “Variability
management with feature models,” Sci. Comput. Program., vol. 53, no. 3,
pp. 333–352, 2004.

[14] Pure Systems website, http://www.pure-systems.com/.
[15] T. Asikainen, T. Soininen, and T. Männistö, “A Koala-Based Approach

for Modelling and Deploying Configurable Software Product Families,”
in PFE 2003: Software Product-Family Engineering, 5th International
Workshop, ser. Lecture Notes in Computer Science, vol. 3014. Springer,
2003, pp. 225–249.

[16] C. Kästner, S. Apel, and M. Kuhlemann, “Granularity in software
product lines,” in ICSE ’08: Proceedings of the 30th international
conference on Software engineering. New York, NY, USA: ACM,
2008, pp. 311–320.

[17] S. Apel, T. Leich, and G. Saake, “Aspectual feature modules,” IEEE
Trans. Softw. Eng., vol. 34, no. 2, pp. 162–180, 2008.

[18] C. Lopes and G. Kiczales, “Aspect-oriented programming,” Technology
of Object-Oriented Languages, International Conference on, vol. 0, p.
468, 2000.

[19] A. Bryant, A. Catton, K. De Volder, and G. C. Murphy, “Explicit
programming,” in AOSD ’02: Proceedings of the 1st international
conference on Aspect-oriented software development. New York, NY,
USA: ACM, 2002, pp. 10–18.

[20] S. J. Paul, P. Bassett, H. Zhang, and W. Zhang, “Xvcl: Xml-based variant
configuration language,” in ICSE ’03: Proceedings of the international
conference on Software engineering, 2003, pp. 810–811.

[21] B. W. Kernighan and D. M. Ritchie, C Programming Language, 2nd
Ed. Prentice Hall, January 1988.

[22] The Eclipse Foundation website, http://www.eclipse.org/.
[23] F. Budinsky, S. A. Brodsky, and E. Merks, Eclipse Modeling Framework.

Pearson Education, 2003.
[24] Eclipse C/C++ Development Tooling Project,

http://www.eclipse.org/cdt/.

