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Abstract. The Open Biomedical Ontology (OBO) format emerged from the
Gene Ontology, and now supports many other important ontologies. If we
compare OBO to OWL, the ontology language of the Semantic Web, the latter
anticipates integral query languages, rule languages and distributed
infrastructure for information interchange. A convenient method for leveraging
these other features for OBO ontologies is by transforming OBO ontologies to
OWL. We have developed a methodology for translating OBO ontologies to
OWL using the organization of the Semantic Web layer cake to guide the work.
The approach reveals that the constructs of OBO can be grouped together to
form a similar layer cake. Thus we were able to identify the constructs of OBO
that have easy semantic equivalence to a construct in the OWL stack, and as
well as those constructs that entail the challenges to a transformation system. As
a result, we have developed a standard common mapping between OBO and
OWL for the OBO community. Our mapping produces OWL-DL - a
Description Logics based dialect of OWL with desirable computational
properties for efficiency and correctness. Our Java implementation of the
mapping is part of the official Gene Ontology project source. Our
transformation system provides a lossless roundtrip mapping for OBO
ontologies, i.e. an OBO ontology may be translated to OWL and back without
loss of knowledge.

Keywords: Knowledge engineering methodologies, Knowledge Representation
Formalisms and Methods, Ontology languages, Semantic Web.

1 Introduction

Two ontology based systems, the Open Biomedical Ontologies (OBO) and the Se-
mantic Web, each associated with a large community are being developed indepen-



dently. Ontologies in biomedicine are used for cataloging biological concepts and
representing relationships among them. Major results include the Gene Ontology
(GO)[[9]]and the Zebrafish Anatomy Ontology (ZFA)[[28]] OBO format, which origi-
nated with GO, continues to evolve in support of the needs of the biomedical commu-
nity. Over 100 OBO ontologies are available on the NCBO Bioportal[[17]] Thus OBO
is the backbone for ontology tools in this domain.

The Semantic Web is an evolving extension of the World Wide Web based on on-
tologies, intended to facilitate search and information integration. Built on the founda-
tions of artificial intelligence, the Semantic Web envisions the Web becoming a glob-
al knowledgebase through distributed development of ontologies using formally de-
fined semantics, global identifiers and expressive languages for defining rules and
queries on ontologies. The Semantic Web has been organized in the form of a layer
cake where each layer provides a representation language of increasing expressive
power (see. The Web Ontology Language (OWL), a component of the Seman-
tic Web, provides the capability of expressing ontologies in multiple dialects. OWL-
DL, a Description Logics based dialect, has become the language of choice due to the
availability of reasoning tools. In the biomedical domain, some important ontologies
such as NCI Thesaurus|[[19]]and BioPAX[[11]]have been modeled in OWL.

Given the volume and growth of OBO content, integrating the features promised
by Semantic Web technologies with OBO content would provide significant benefit to
the biomedical community. One way to provide those features is to create a system
that allows back and forth translation of OBO ontologies between the two systems.

This paper describes precisely such a round-trip and the methodology that was fol-
lowed in the course of its creation. The results in this paper represent a community
effort to create a standard transformation mapping, initiated by the OBO foundry. A
goal was to reconcile a number of independent efforts. In addition to this paper, an
early product of this collaboration is a Google spreadsheet mediated by Nigam
Shah that lists the transformation choices of the respective contributors and a me-
diated set of transforms, named the common mapping. Supplemental material on the
mapping is also available[[7]] The final results produce OWL-DL, as validated by
WonderWeb OWL Ontology Validator[[39]] A full implementation was done in Java,
and is a part of the Gene Ontology project source hosted at sourceforge.net. It
provides a lossless roundtrip mapping for OBO ontologies, i.e. ontologies that are
originally in OBO can be translated into OWL and back into OBO.

A basis for reconciling the efforts was an observation that the Semantic Web layer
cake itself could serve as a guideline for studying the representation of ontologies in
OBO and creating the transformation system. Compared to an approach that deals
with each construct individually, we found that this method gave a better organization
to our work and enabled us to identify matches and mismatches between the two lan-
guages more efficiently. We found that most of OBO can be decomposed into layers
with direct correspondence to the Semantic Web layer cake. Discussions became a
two step process where it was first determined if an OBO construct had a clear corres-
pondance to a Semantic Web layer, with respect to its intended expressive power, and
if so, to which level it belonged. It followed that constructs that fell into the same
equivalence class should be handled similarly. Deep discussion could be limited to
those OBO constructs that could not be easily situated in this structure. These include,
(1) local identifiers in OBO compared to global identifiers in OWL, (2) various kinds



of synonym elements in OBO, and (3) defining subsets of OBO ontology. Even these
constructs can be expressed in OWL-DL, albeit not by obvious construct substitution.
We conclude that OWL-DL is strictly more expressive than OBO.

An additional consequence of this work is that, in effect, it defines a subset of
OWL-DL that captures the expressive power of OBO and can be seen as a way of
introducing formal semantics to OBO. We include a discussion of how OWL tools
can be restricted to this subset so as to assure that ontologies developed with OWL
tools may be translated to OBO. Similarly and perhaps more importantly, how to
assure that OWL tools do not break OBO ontologies that have been translated to
OWL such that, after using OWL tools, an updated ontology may be returned to OBO
form. The exception handling in the Java based OWL to OBO translator was devel-
oped such that the translator itself serves double duty as a validator for this subset of
OWL. At least two biomedical ontology tools, OBO-Edit[[21]] and Morphster [[15]]
already exploit this translator.

Related Work: Each of the authors of this paper, as well as Mikel Egana, Erick An-
tezana, and LexBio group at Mayo Clinic, contributed some earlier independent effort
at creating a transformation system. The resuls of these efforts are documented in our
spreadsheet. No single effort survived in its entirety in the common mapping| 20

Another independent and important effort was that of Golbreich et al 31{(he-
reafter Golbreich). Note that this group did not participate in the community effort to
standardize the mapping. Golbreich developed a BNF grammar for OBO syntax, as
well as a mapping between OBO and OWL 1.1 (now known as OWL 2). The differ-
ences between the Golbreich work and the common mapping effort presented in this
paper comprise a difference of methodology and practical focus. Golbreich’s work
laid out valuable syntactic groundwork to formalize the semantics of a large subset of
OBO. Much like most of the other first efforts, a complete transformation system was
not specified. This particular effort deferred resolving OBO annotations, synonyms,
subsets, and deprecation tags. Golbreich’s work also did not address the mapping of
local identifiers in OBO into global identifiers. The transformations that are specified
by Golbreich are largely consistent with the common mappings. Given that OWL 2 is
not yet ratified by the W3C, and therefore not yet in common use, we see Golbreich
effort as corroborative rather than competitive.

2 Background

In knowledge-based systems, an ontology is a vocabulary of a set of concepts and the
describable relationships among them[[37]] Ontologies are extensively used in areas
like artificial intelligence[[13]][[25]] the Semantic Web[[6]]and biology[[1]][[9TI[[281]
as a form of knowledge representation. They generally describe individual objects (or
instances), classes of objects, attributes, relationship types, and relationships among
classes and objects within a domain. Such ontologies are also called domain ontolo-
gies (or domain-specific ontologies).

A number of formal languages for writing ontologies exist, each having a different
level of expressive power, inference capability, human readability, machine readabili-
ty, and acceptance within their target domains.




The presence of domain ontologies and different languages and formats of repre-
sentation makes the goal of having standardized large-scale and collaborative ontolo-
gies quite challenging. As a result, transformations between different languages of
variable capabilities become important for merging pre-existing ontologies together
and with newly created ones.

2.1 Open Biomedical Ontologies (OBO)

An ontology in OBO consists of two parts; the first part is the header that contains
tag-value pairs describing the ontology, and the other part contains the domain know-
ledge described using term and typedef (more commonly known as a relationship
type) stanzas A stanza generally defines a concept (term or typedef) and contains
a set of tag-value pairs to describe it. The terms and typedefs defined in OBO ontolo-
gy are assigned local IDs and namespaces. Relationships between different terms are
expressed using the ‘relationship’ tag.

The OBO flat file format is human friendly. Therefore, it is easy for domain ex-
perts to understand it and express their knowledge in this language. Useful GUI-based
tools like OBO-Edit are available for building ontologies in OBO[[21]]

As OBO continues to evolve as a language and hosted content, there is emphasis
on formalizing the syntax and semantics of OBO format. Also, given the ongoing
adoption of ontologies by the biomedical community and emerging new ontology
building projects, OBO foundry has developed standard ontologies such as the Rela-
tions Ontology which provide consistent and unambiguous formal definitions of
the relationship types (or typedefs) used in such ontologies. While this effort is de-
signed to assist developers and users in avoiding errors in ontology building, it also
promises to simplify the process of ontology alignment in the future for the OBO
community.

2.2 Semantic Web Technologies

The Semantic Web gives well-defined meaning to the content on the World Wide
Web and enables computer and people to work in cooperation. Some key technologies
that form the Semantic Web are:

1. Extensible Markup Language (XML) is a language that provides structure to
documents by allowing user-defined markup elements. XML does not say any-
thing about the meaning of the content.

2. Resource Description Framework (RDF) can express meaning of data using
triples. A triple is a binary predicate that defines a relationship between two
entities. RDF triples can be expressed using XML. The collection of XML
elements for describing RDF is known as RDF/XML.
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Fig. 1. A layer cake for OBO, with some examples and a comparison with the Semantic Web
layers; the mapping between the two layer cakes is generally quite straightforward, which
makes it easy to understand the constructs in OBO and their mappings in OWL.

3. The Semantic Web uses Universal Resource Identifiers (URIs). This means
that each entity gets a globally unique identifier that can be accessed by every-
one on the Web.

4. RDF Schema (RDF-S) and Web Ontology Language (OWL) are ontology lan-
guages. RDF Schema allows description of valid classes and relationship types
for an application, and some properties like subclasses, domains, ranges etc.
OWL further allows describing constraints on instances and provides both on-
tology level and concept level annotations, set combinations, equivalences,
cardinalities, deprecated content etc.

The Semantic Web is currently an active area in terms of research and development
of tool support. Languages like SPARQL[[31]]are available for querying RDF-based
knowledge sources. Other important technologies that are a part of Semantic Web
vision are rule languages, inference and proofs etc.

RDF Schema and OWL are built on top of RDF. RDF/XML is a common syntax
for these as well. In order to present mapping examples in this paper, we have chosen
RDF/XML. On occasion, we use OWL as an encompassing term for these languages.

3  System Description

3.1 OBO and Semantic Web Layers

The Semantic Web was envisioned as an expressive hierarchy that is often illustrated
as a layer cake[[36]](see[Fig. 1}). At the beginning of this research it was our conjec-
ture that the precise organization of the hierarchy transcends the Semantic Web and
could be used, retroactively, to formalize the structure of other data and concept mod-
eling systems. Thus, as a first step towards the creation of a transformation mechan-



Table 1: Layer cake assignments for OBO constructs

OBO Core: id, idspace, relationship

OBO Vocabulary: name, definition, comment, is _a, domain, range

OBO Ontology Extensions: format-version, version, date, saved-by, auto-
generated-by, namespace, default-namespace, subsetdef, alt_id, relationship, subset,
synonym, is obsolete, is_cyclic, is_transitive, is_symmetric, import,
synonymtypedef, intersection_of, union_of, disjoint from, replaced by, consider,
inverse of, transitive over

ism between OBO and OWL, we created a layer cake for OBO whose structure mir-
rored that of the Semantic Web layer cake. This allowed us to identify straightforward
mappings as well as the cases that do not match as well. We term this the ‘two layer
cakes’ methodology. This methodology has also been successfully applied towards
the transformation of SQL databases into OWL ontologies[[34]]

3.2  OBO Layer Cake

We methodically examined each of the constructs of OBO. We find that most of OBO
can be decomposed into layers with direct correspondence to the Semantic Web: OBO
Core, OBO Vocabulary, and OBO Ontology Extensions (see, b).

1. OBO Core: In OBO, a concept can either be a term (class) or a typedef (rela-
tionship type). OBO Core deals with assigning IDs and ID spaces to concepts,
and representing relationships as triples.

2. OBO Vocabulary: OBO Vocabulary allows annotating concepts with meta-
data like names and comments. It also supports describing sub-class and sub-
property relationship types, as well as the domains and ranges of typedefs.

3.  OBO Ontology Extensions: In addition to concept-level tags, OBO Ontology
Extensions (OBO-OE) layer defines tags for expressing metadata on the entire
ontology as well. It also allows defining synonyms, equivalences and depreca-
tion of OBO concepts. OBO-OE layer can also express specific properties of
OBO terms (e.g. set combinations, disjoints etc.), and typedefs (e.g. transitivi-
ty, uniqueness, symmetry, cardinalities).

provides assignments of OBO constructs to appropriate layers in the OBO
layer cake.

Since we mostly have an exact mapping of layers between the two languages (see

[Fig. 1), deciding which constructs to use for each kind of transformation is simplified.
OBO Core tags can be transformed using RDF. OBO Vocabulary tags require using
RDF Schema constructs. OBO Ontology Extensions tags require constructs defined in
OWL.

3.3 Incompatibilities between OBO and OWL

We classify incompatibilities between the two languages into one of the two catego-
ries. First, in certain cases, the semantic equivalent of a construct in one language is
missing from the other language. Second, sometimes the semantics of constructs in



OBO are not sufficiently well-defined to map to a formally defined OWL construct,
which forces us to define new vocabulary in OWL in order to allow the lossless trans-
formation.

1. Entities in OWL have globally unique identifiers (URIs). On the other hand,
OBO allows local identifiers. Transforming OBO into OWL requires trans-
forming the local identifiers in an OBO ontology into URIs. Also, in order to
make the roundtrip possible, it is necessary to extract the local identifier back
from the URL.

2. OBO language has the ‘subset’ construct, which does not have an equivalent
construct in OWL. An OBO subset is a collection of terms, and is defined as a
part of an ontology. An ontology can contain multiple subsets and each term
can be a part of multiple subsets. In order to make the transformation possible,
we need to define an OWL construct equivalent to OBO subset, and some re-
lationship concepts to represent terms being in a subset, and a subset being a
part of an ontology.

3. There are multiple kinds of synonym tags in OBO, e.g. related, narrow, broad,
exact etc. The differences between these constructs are not formally docu-
mented. This requires defining new concepts in OWL, which can perhaps be
mapped to new or already existing constructs in OWL.

Elements of OBO “missing” in Semantic Web are few, and can still be constructed
in OWL. Thus, OBO ontologies may be translated to Semantic Web. However, in
order to make the roundtrip possible, we find it important to store some ancillary in-
formation about the OBO ontology in the OWL file, e.g. a base URI etc., so it can be
translated back without any loss of knowledge. It is important to note that even chang-
ing a local identifier within the whole knowledgebase is counted as loss of knowledge
from the original source, even if the overall structure of the ontology remains intact.

The presence of such incompatibilities requires us to make some complex choices
regarding the transformation process. Our solutions to these problems are explained in
detail later.

3.4 OBO and Sublanguages of OWL

OWL has three increasingly expressive sublanguages; OWL Lite, OWL DL and OWL
Full. Each of these sublanguages extends its simpler predecessor with richer con-
structs that affect the computational completeness and decidability of the ontology.
Our investigation shows that a major portion of OBO Ontology Extensions maps to
OWL Lite and provides similar level of expressiveness. Overall, OBO features are a
strict subset of OWL DL.

In OBO, the definition of a term, or a typedef, is rigid and not as expressive as
OWL Full. OWL Full allows restrictions to be applied on the language elements
themselves In other words, an OWL Full Class can also be an OWL Full
Property and an Instance and vice versa. Such features are not supported in OBO.

Recall, the primary concern is the use of the Semantic Web technology and tools
for OBO ontologies. Thus, that OBO is less expressive than OWL is the convenient
direction of containment. It does mean that round trips cannot be supported unless the



Table 2: Some OBO elements and their mappings in OWL. OBO examples in this table have

been taken from ZFA.
OBO OWL

[Typedef] <owl:TransitiveProperty
id: part_of rdf:about=".. #part of">
name: part of <rdfs:label>part of</rdfs:label>
is_transitive: true </owl:TransitiveProperty>

Example A Simple transformations: name, transitivity

[Term] <owl:Class rdf:about=".. #ZFA_0000434">
id: ZFA:0000434 <rdfs:label>skeletal system</rdfs:label>
name: skeletal system <rdfs:subClassOf
is_a: ZFA:0001439 rdf:iresource="... #ZFA 0001439"/>

</owl:Class>

Example B Transformation of ‘is-a’

[Term] <owl:Class rdf:about= “.. #ZFA 0001439”>

id: ZFA:0001439 <rdfs:label>anatomical system</rdfs:label>

name: anatomical system <rdfs:subClassOf><owl:Restriction>

relationship: part of ZFA:0001094 <owl:onProperty rdf:iresource = “...#part_of”
/>

<owl:someValuesFrom rdf:resource =
“...#ZFA _0001094” />
</owl:Restriction></rdfs:subClassOf>
</owl:Class>

Example C Transformation of a relationship

[Term] <owl:Class

id: ZFA:0000437 rdf:about="&obolnOwl;ObsoleteClass"/>
name: stomach <owl:Class rdf:about="... #ZFA_0000437">
is_obsolete: true <rdfs:label>stomach</rdfs:label>

<rdfs:subClassOf
rdf:resource="&obolnOwl;ObsoleteClass"/>
</owl:Class>

Example D Transformation of obsolete term

editing of any OBO ontology while in OWL representation is restricted. We talk
about editing of transformed ontologies while in OWL language in a later section.
While transforming OBO ontologies into OWL, we must ensure producing a repre-
sentation that can be used by description logic based inference engines. One of the
intended goals of our transformation is to produce OWL DL, and not OWL Full.

4 Transformation Metadata and Rules

In this section, we present some of the rules for the transformation of OBO ontologies
into OWL. For more complex transformations we describe the transformations and
explain our approach.

In order to facilitate the transformation, we have defined a set of OWL meta-
classes that correspond to the vocabulary of OBO tags. Complete listing of mappings
between OBO and OWL are available in a Google Spreadsheet[[20]]



4.1 Simple Transformation Rules

Most of the transformations follow simple rules. For most header and term/typedef
tags, there is a one-to-one correspondence between OBO tags and OWL elements,
either pre-existing or newly defined. In this section, we list the elements with this kind
of simple transformation.|Table 2[Example A [provides some examples.

Header: The set of tag-value pairs at the start of an OBO file, before the definition
of the first term or typedef, is the header of the ontology.

When translated into OWL language, each of the OBO header tags gets translated
into the corresponding OWL markup element. The whole ontology header is con-
tained in the owl:Ontology element in the new OWL file, and can appear anywhere
within the file, as opposed to the start of file in OBO language.

Terms: A term in OBO is a class in OWL. So, a term declaration is translated into
an owl:Class element and the tags associated with a term are contained within this
element. Some tags that have straightforward transformations to OWL elements are:

1. The elements for ‘name’ and ‘comment’ about a term fall into the OBO Voca-

bulary layer, and are translated into rdfs:label and rdfs:comment respectively.
A ‘definition’ tag is translated into hasDefinition annotation property, and is
therefore placed in the OBO Ontology Extensions layer.

4. The ‘is_a’ tag in OBO specifies a subclass relationship, and is placed in the

OBO Vocabulary layer. It is translated into an rdfs:subClassOf element

2|Example B).

Typedefs: A typedef in OBO is an object property in OWL. A typedef stanza in an
OBO file is translated into an owl:ObjectProperty element in OWL. The other infor-
mation associated with the typedef is expressed as elements nested within this ele-
ment. Some simple transformations are:

1. OBO typedefs can have associated domains and ranges. These are expressed
by ‘domain’ and ‘range’ tags, and are in the OBO Vocabulary layer. These
tags are translated into RDF Schema defined elements rdfs:domain and
rdfs:range respectively.

2. Just like subclasses for terms, a property can be a sub-property to another
property. A sub-property relationship is expressed using the ‘is_a’ tag, from
OBO Vocabulary layer, in a typedef stanza. This tag is translated into an
rdfs:subPropertyOf element defined in RDF Schema.

3. Typedefs may be cyclic (‘is_cyclic’ tag), transitive (‘is_transitive’ tag) or
symmetric (‘is_symmetric’ tag). These tags fall into the OBO Ontology Exten-
sions layer. The corresponding elements in OWL are annotation property is-
Cyclic, and property types owl: TransitiveProperty and owl:SymmetricProperty
respectively. The isCyclic property specifies a Boolean value.

4.2 Identifiers and ID Spaces

OBO has a local identifier scheme. As OBO evolves, ID spaces have been introduced
to allow specifying global identifiers. OBO identifiers have no defined syntax, but
they are recommended to be of the form:

“<IDSPACE>:<LOCALID>"



However, OBO ontologies may contain flat identifiers, ones that do not mention
the ID space. OBO identifiers must be converted to URIs for use in OWL. The rules
for converting OBO identifiers to URIs in the current mapping are as follows:

If the OBO header declares an ID space of the form: “idspace: GO
http://www.go.org/owl#”, all OBO identifiers with the prefix GO: will be mapped to
the provided URI, e.g. “http.//www.go.org/owl#GO_0000001".

If an OBO ID space prefix does not have a declaration in the header, all identifiers
that mention that prefix will be transformed using a default base URI, for example an
identifier of the form “SO:0000001” will become “<default-base-uri>SO_0000001".
In case the OBO identifier is flat, e.g. foo, the transformation again uses the default
base URI to create “<default-base-uri>UNDEFINED foo”. Notice that the URI con-
tains “UNDEFINED_”, which clarifies that the URI should be translated into a flat
identifier when translating the OWL version back to OBO.

Recall that OBO Relations Ontology standardizes certain typedefs for use across
OBO ontologies. Such typedefs have OBO identifiers prefixed with ID space
OBO _REL. OBO ontology assumes the presence of this ID space with URI
“http.//www.obofoundry.org/ro/ro.owl” even if it is not explicitly stated. When trans-
lated into OWL, an XML namespace xmlns:oboRel with the same URI is added to the
ontology, and the newly created object property is assigned that namespace. As a re-
sult, we ensure that all Relations Ontology constructs are mapped to the same URIs
across ontologies.

4.3 Relationships

Relationships between OBO terms can be defined using the ‘relationship’ tag. A de-
fined relationship is like a binary predicate and consists of a subject (the term being
described in the stanza), a relationship type and an object.

There are multiple kinds of restrictions on relationships that can be expressed using
OWL. OBO specifications do not specify any formal semantics of the ‘relationship’
tag that match a specific relationship type restriction defined in OWL. Therefore, we
have selected the most general restriction to transform OBO relationships into OWL.

An example of relationship transformation is shown in[Table 2| Example C| The
owl:someValuesFrom element specifies the type of restriction that is applied to the
OWL relationship. This restriction is similar to the existential quantifier of predicate

logic[[8TJ[[16]]

4.4 Subsets

Terms in an OBO ontology can be organized into subsets. A term can belong to mul-
tiple subsets.

In order to declare a subset, a value for the tag ‘subsetdef’ is specified in the OBO
ontology header. This value consists of a subset ID (or subset name) and a quoted
description about the subset. A term can be assigned to a defined subset using the
‘subset’ tag. Multiple ‘subset’ tags are used to assign the term to multiple subsets of
the ontology.



Table 3: Results from the evaluation of our roundtrip transformation on some OBO on-

tologies.
Ontology* | Original OBO | OWL Translation** | Roundtrip OBO**

ZFA Terms: 2219 Classes: 2219 Terms: 2219
Typedefs: 4 Object Properties: 4 Typedefs: 4

MA Terms: 2882 Classes: 2882 Terms: 2882
Typedefs: 1 Object Properties: 1 Typedefs: 1

SPD Terms: 494 Classes: 494 Terms: 494
Typedefs: 1 Object Properties: 1 Typedefs: 1

GO Terms: 28667 Classes: 28667 Classes: 28667
Typedefs: 5 Object Properties: 5 Typedefs: 5

* ZFA = Zebrafish Anatomical Ontology, MA = Adult Mouse Gross Anatomy,
SPD = Spider Ontology, GO: Gene Ontology

** Class counts do not include obsolete classes, or ancillary information required for roundtrips

When the ontology is translated into OWL, the mapping of subsets is one of the
more complex processes. This is due to the fact that subsets do not have a semantic
equivalent in OWL. Therefore, we use some OWL features to construct elements that
serve as subsets. Subsets fall in the OBO Ontology Extensions in the OBO layer cake.
The local ID (or name) assigned to the subset, which is locally unique, becomes the
OWL ID of a subset resource. A subset resource is declared using an obol-
nOwl:Subset element. The inSubset annotation is used to assign terms to a subset, and
it is expressed within the owl: Class element.

4.5 Obsolete Content

OBO format supports obsolete content. A term or typedef can be marked as obsolete
using the ‘is_obsolete’ tag with a ‘true’ Boolean value. The ‘is_obsolete’ tag is in the
OBO Ontology Extensions.

Obsolete terms and typedefs are not allowed to have any relationships with other
terms or typedefs, including the subclass and sub-property relationships.

When translated into OWL, an obsolete term becomes a subclass of obol-
nOwl:ObsoleteClass (Table 2|Example D). Similarly, an obsolete typedef becomes a
subproperty of obolnOwl:ObsoleteProperty.

Notice that while OWL provides elements to handle deprecation, obsoletion in
OBO has different semantics, hence requires a different mapping.

5 Implementation and Evaluation

Based on the mapping rules, we have implemented a Java implementation of the
transformation. Our implementation is part of the official Gene Ontology project
source Gene Ontology project is an open source project on Sourceforge.net, and
is home to the OBO ontology editor OBO-Edit. Our implementation is part of the
OBO API that provides data structures for storing OBO ontologies, as well as read
and write capabilities for OBO and OWL, among other operations. The source code



Table 4: Identifying the semantics for OBO constructs using OWL mappings.

Description OBO OWL Semantics*
X is a is a rdfs:subClassOf CEXT(x) < CEXT(y)
subclass of y
xisa is a rdfs:subPropertyOf EXT(x) < EXT(y)
subproperty of y
x is the domain domain rdfs:domain <z,w> € EXT(y) implies
of property y z € CEXT(x)
x is the range of | range rdfs:range <w,z> € EXT(y) implies
property y z € CEXT(x)
x is disjoint disjoint_from owl:disjointWith CEXT(x) N CEXT(y) = {}
from y

p is a transitive

is_transitive

owl:TransitiveProperty

<x,y>,<y,z> € EXT(p) implies

property <x,z> € EXT(p)
* CEXT(c): the set of instances of class ¢c; EXT(p): the set of pairs <x,y> related by property p

for our transformation tool is available at[[22]] Our tool is also used in Morphster
a knowledge acquisition tool for systematic biology that demonstrates the use of
the Semantic Web technologies on OBO ontologies. We elaborate on this further in a
later discussion on interconnecting OBO with the Semantic Web.

Finally, we have deployed our transformation as a web service for general use:
http://www.cs.utexas.edu/~hamid/oboowl. html

In the OBO API, we have created NCBOOboIlnOWLMetadataMapping class in the
package org.obo.owl.datamodel.impl. This class implements the roundtrip mapping
between OBO and OWL. In order to provide console-based use of the transformation
tool, we have created Obo20wl and Owl2Obo classes in org.obo.owl.test package.

In order to evaluate the OWL output of our implementation, we have tested our
tool on Gene Ontology, Zebrafish Anatomical Ontology, Spider Ontology and Adult
Mouse Gross Anatomy, obtained from NCBO BioPortal. After transformation of
these ontologies into OWL, we have successfully loaded the OWL files into Protégé
an ontology development tool for the Semantic Web. Using the ‘summary’ fea-
ture of Protégé, we have compared the overall class and object property count with the
term and typedef count obtained for the original OBO file, using OBO-Edit’s ‘ex-
tended information’ feature The results of the comparison show equal val-
ues for both versions of the ontologies. Similarly, for testing the roundtrip, we com-
pared the original OBO file with the roundtrip version, again using OBO-Edit’s fea-
ture. Our evaluation showed that the two OBO ontologies had the same term and

typedef counts (Table 3).

6 Discussion: Implications of Transformation

6.1 OBO Semantics by Transformation

The transformation system has the additional effect of formalizing the semantics of
the OBO language. The semantics of OBO are operationally defined by means of GO



and the software systems that support GO. The semantics of OWL have been formally
defined using model theory[[26]][[27]] Though we have not written it out, a formal
document specifying OBO semantics can be created, mechanically, from the contents
of this paper and the OWL semantics documents. The contents of that document
would comprise an enumeration of the pairwaise mapping of constructs between the
two languages, restating, in each mapping, the semantics stated for the involved OWL
construct.

In[Table 4] we present a few examples where our transformation mapping could
provide formal semantics for OBO constructs, taken directly from OWL semantics
specifications. So,

1. xis_ay: all instances of x are also instances of y.

2. x is domain of y: the subject entity for all relationships of type y is an instance

of x.

3. xisdisjoint from y: x and y do not have any common instances.

While the identification is straightforward in these cases, in certain other situations,
it is not very clear. Finding the semantics of relationships in OBO is one such case.
OBO specifications do not provide the semantics of the construct used to specify rela-
tionships between two terms using a typedef. Therefore, it is hard to decide which of
the available relationship  constraints in  OWL  (owl:allValuesFrom,
owl:someValuesFrom) to use, the former being similar to a universal quantifier, and
the latter to an existential quantifier. In our transformations, we use
owl:someValuesFrom, since already built ontologies show examples of use of OBO
relationship construct in a way compatible to that of owl:someValuesFrom. We rec-
ommend that the semantics of relationships should always be defined to match
owl:someValuesFrom restriction.

Other OBO tags that do not clearly match with OWL elements, such as synonyms
and subsets, as well as the semantics for the ‘obsolete’ tag also present a more signifi-
cant challenge in the identification of semantics.

6.2 Updating OBO Ontologies in OWL

The set of constructs for ontology representation provided by OWL is considerably
larger than the set of constructs provided by OBO. Therefore, in order to allow
roundtrip transformations on OBO ontologies, it is important to restrict the editing of
such ontologies per some guidelines while they are being represented in OWL.

Our transformation mappings essentially provide a subset of OWL elements that
may be used for adding or updating contents of the ontology. We refer to this subset
of OWL as OWL-Bio, for biomedical ontologies hosted by OBO. Since our mapping
produces OWL DL, OWL-Bio is a subset of OWL DL by definition.

Compared to the general use of OWL, there are two key points to keep in mind:

1. To create relationships, use owl:someValuesFrom relations. Since OBO does
not have a corresponding relationship mechanism for owl:alValuesFrom, it is
not a part of OWL-Bio.

2. Obsolescence of terms in the ontology should be done using the obsolete ele-
ments obolnOwl:ObsoleteClass and obolnOwl:ObsoleteProperty instead of
built in deprecation elements in OWL.



6.3 Interconnecting OBO and Semantic Web

The implications of our work in providing semantics to OBO as well as in defining a
“biomedical flavor” for OWL strongly suggest the use of this mapping as a potential
bridge between the OBO and the Semantic Web worlds. Compared to the existing
work by Golbreich et al.[[2]] our ability to make roundtrips between OBO and OWL-
Bio could enable fluid interconnections between the two worlds. While OWL-Bio
could serve as a common ground for the two languages, our roundtrip tool could be
used as a validator for ontologies updated in OWL.

It is common for biologists to develop and refine their OBO ontologies as their
work progresses. Our work provides a path for accessing and querying the Semantic
Web as well as OBO content in an integrated fashion, and to assimilate linked data
available on the Semantic Web.

The Morphster tool exercises our rountrip transformation mechanism to
jumpstart the integration of OBO ontologies with the Semantic Web. Morphster has
successfully accomplished the use of a Semantic Web based triple store Jena SDB
[[30] for storage of large OBO ontologies and querying by the SPARQL query lan-
guage for RDF. It also enables the use of XML Web Services with OBO ontologies to
obtain and link diverse data such as images from Morphbank [[14]] and authoritative
taxonomic names from uBio|[38]]etc.

7 Conclusion

Building ontologies is not a new idea for the biology community, and precedes the
development of the Semantic Web. While ontologies are a central part of the architec-
ture of the Semantic Web, the Semantic Web vision inclues a broad range of technol-
ogies from the Artificial Intelligence field, such as inference and querying mechan-
isms, as well as anticipating additional elements of distributed computation, such as
global identifiers and the use of XML and HTTP as middleware. OBO, on the other
hand, has appropriate tool support for building ontologies and hosts a number of im-
portant biomedical ontologies. Hence the OBO community has the biggest and most
immediate need for the features being developed by the Semantic Web community.

We have standardized the mapping between the two systems to allow the OBO
community to utilize the tool base developed for the Semantic Web world, and will
also standardize the transformation across OBO tools. We have indirectly formalized
the semantics of OBO by creating a roundtrip transformation between OBO and
OWL. We have also implemented our transformation tool in Java and it is available as
a part of open source Gene Ontology project, and also as a web service. We believe
our work is an important step towards building interoperable knowledge bases be-
tween OBO and the Semantic Web communities.

A key difference between the OBO community and the Semantic Web is the me-
thodology for content development across ontologies. The Semantic Web has adapted
a completely distributed development mechanism for ontologies that may be inte-
grated using URIs. On the other hand, the OBO community uses a hybrid of centra-
lized and distributed development. While the users of OBO develop ontologies inde-



pendently, the OBO foundry has the goal of creating a suite of orthogonal interopera-
ble reference ontologies, such as the Relations Ontology, in the biomedical domain.
Our transformation system enriches the Semantic Web by providing this this addition-
al structured ontology content and the access to the wealth of data annotated using it.
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