Integration of information from different
ontologies

Julia Dmitrieva and Fons J. Verbeek

Universiteit Leiden, Leiden Institute of Advanced Computer Science,
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
{jdmitrie, fverbeek}@liacs.nl
http://bio-imaging.liacs.nl/

Key words: information integration, ontology integration, ontology mapping,
module extraction, ontology visualization

1 Introduction

In this work we describe our approach directed to the integration of information
from different ontologies. We propose a method to extract and integrate mod-
ules from ontologies. These modules are generated as subgraphs from original
ontologies on the basis of a term defined by the user. The module extraction is re-
lated to the view traversal method [1]. The difference is that we not only extract
modules from OWL ontologies but use these modules for further integration.

The small modules are integrated to one graph structure on basis of map-
pings. These mappings are based on the similarity between concepts in different
ontologies. With these mappings we introduce merged nodes in the integrated
graph which connect concepts from different ontologies. The integrated graph
can be considered as a view or as a query answer and contains information col-
lected from different ontologies. The method can also be useful to check the
correctness of the mappings, because the user can see whether the merged con-
cept is correctly placed in the hierarchy.

2 Ontologies Mapping

In order to find similar concepts we use the string similarity. For each concept

we extract the following characteristics which are used for the calculation of the

similarity.

Label The label of the concept. This is in most cases the name of the concept.

Description Description of the concept. This is an annotation property, where
a description of the meaning of the concept is given in a human language.
At this moment, we make only use of English language in our prototype.

ID This is a concept identifier. In some ontologies this is a unique string auto-
matically generated during the serialization of the ontology. In other ontolo-
gies the concept ID can be the same as the name of the concept. Because this
property depends on how an ontology is serialized, a little weight is assigned
to it during the calculation of the similarity.



The comparison of concepts from different ontologies is done on the basis of Lev-
enstein distance algorithm [2]. By this mapping the concepts from ontology O
(seed ontology) are mapped to the concepts from other ontologies Oy, Os, ..., O,,.

3 Modules extraction: Graph-based Approach

We introduce a graph-based approach for module extraction. Although we are
aware that our approach can lead to information loss, it is easy to implement
and is sufficient for testing our prototype.

In our previous work [3] we have explained how to represent an ontology as
a graph structure. In this work we elaborate further on this approach. The most
important difference and difficulty that we have to cope with during a module
extraction is that the interesting term is matched not by one but by multiple
concepts in the ontology. It means that we have to redesign our graph extraction
algorithm, and apply it for multiple nodes.

The backbone of the graph that represents an ontology module is a spanning
tree. Nodes in the spanning tree represent classes in the ontology and edges
represent hierarchical relations as well as other kinds of relations between classes.
These relations are extracted with the help of the reasoner [4]. Inferring that two
classes C' and FE are related to each other via R requires extraction of properties
from axioms of the concept. Then the reasoner can be asked whether the concept
C M —3JR.FE is satisfiable, if not then it is necessary for the class C' to have the
property R with the filler E.

In order to extract a module we need to collect multiple graphs created on
the basis of concepts matched by the interesting term. Let Sy be a set of the
concepts which are matched during the term search procedure. This procedure
is implemented as the comparison of label, comment and id of each concept
from the ontology with the user query. We are constructing a graph G that
corresponds to the extracted module, where G, is the set of nodes, and G, is
the set of edges. The algorithm for module extraction works as follows:

1. Initialize Gy = Sy

2. Gg = Go U Py, where Py is a set of parents of Sy .

3. Gy = GyU S, where S; contains the siblings of the nodes in Sy, if the parent
of ¢; € Sy has 2 or more children in Sy.

4. Gy = GoU Py, where P; contains the parents of nodes in Gy, if these parents
have 2 or more children in Gg.

5. G = Uey;, where e;; is an edge between nodes ¢; € Gy and ¢; € Go that
exists in the original ontology.

6. After this point we have the set of probably unconnected trees. The trees
are connected by the following algorithm:

- if the root r of tree t; is descendant of some node s' of tree t;, then make
s parent of . Introduce an edge from s to 7.

! With descendant here we mean that s and r are in the transitive closure of the
sublClassOf relation. Whether r is a subclass of s can be solved by Description
Logics[5] (DL) reasoner.



- otherwise we have trees tq,to,...,t, which are not subtrees of each oth-
ers. For these trees we need to find the least common subsumer? a. This
node will be the parent of trees t1,ta,...,%,, and need to be added to
the set Gy. For each t; introduce an edge from node a to root of ;.

From this tree an ontology can be created, where the hierarchical relation A
is_subclass_of B is represented as subclass axiom A C B, and relations of the type
A Relation B are represented as A C JRelation.B. The annotation properties,
e.g. label, comment, description, etc., can be copied from the original ontology.

4 Integrated Graph

We are interested in the integration of a set of different ontologies in one graph
structure. We begin with the term that was chosen by the user during the on-
tology extraction procedure (root concept). For each ontology we connect the
children of the most general Thing with this root concept. Then we traverse
each ontology and add the children recursively until we reach the leaves of the
hierarchy. During this walk, for each concept Cp, we interrogate the mapping
file in order to check whether there is a mapping for this concept. If this is the
case then we merge the information from every concept in this mapping and
introduce a merged concept M. The concept M will represent Cy and all other
concepts which are mapped to M. When another ontology is traversed and a
concept Cs is found which is also mapped to M, we don’t insert this concept
into the graph. Instead, we introduce a new link from the parent of Cs to M.

The integrated graph structure can be visualized with our visualization ap-
proach [3] and further explored by the user. It can also be transformed to the
new ontology.

Acknowledgements

This work has been partially supported by the BioRange program of the Nether-
lands BioInformatics Centre (NBIC, BSIK grant).

References

1. Noy, N.F., Musen, M.A.: Specifying ontology views by traversal. LNCS 3298 (2004)
713-725

2. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. (1966)

3. Dmitrieva, J., Verbeek, F.J.: Multi-view ontology visualization. In: The 11th Inter-
national Protégé Conference, June 23-26, 2009 - Amsterdam

4. Pellet: Owl 2 reasoner for java. http://clarkparsia.com/pellet

5. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The
Description Logic Handbook. Cambridge University Press, Cambridge (2002)

2 Least common subsumer can be calculated by a DL reasoner.



