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Abstract. Intraoperative imaging is used more frequently today since this en-
ables the surgeon to localize structures inside the brain more accurately and helps
to detect shape changes. In order to combine informations derived at different
time points, we describe a nonrigid registration algorithm that aligns MR scans
of the brain.

Based on a set of feature points, an initial sparse estimate of the displacement field
is found by optimizing a local cost function. A linear elastic model is then used
to infer the volumetric deformation across the image. Inhomogeneous elasticity
parameters are generated using empirically observed variability of the brain from
a dataset of 154 young adults. Initial results are generated on intraoperative image
sequences showing brain shift.

1 Motivation

Shape changes of the brain (brain shift) during neurosurgery caused by the intervention
and physiological changes are today commonly considered as nonrigid deformation.
Since the time constraints for preoperative imaging are usually less crucial, more image
information for example due to segmentations can be obtained before surgery. In order
to use this information during surgery, an important issue is to develop robust and ac-
curate nonrigid registration algorithms that align the pre- and intraoperative data. Since
it is often not feasible to measure directly the deformation occurring at each voxel, the
deformation field is first estimated at sparse locations which have to be interpolated
throughout the image.

Works concerning registration based on physical models of the underlying defor-
mable objects have become popular [1,2], since they have the potential to constrain the
underlying deformation in a plausible manner.

A large amount of work has been done in the field of image guided surgery. A so-
phisticated biomechanical model was proposed in [3] with the drawback of its limitation
to 2D images and a required manual interaction. Another finite element approach was
proposed in [4]. Warfield et al. [5] described a fast parallel implementation using an ap-
proach for image guided neurosurgery that was applied during surgery. They proposed



a biomechanical model similar to that in [2], constrained at the boundaries of the brain
and ventricles.

In our work we propose a linear elastic model based on continuum mechanics con-
strained everywhere the image provides sufficient information to estimate the true dis-
placement, rather than to restrict the method to certain areas of the brain. For compu-
tational efficiency, a parallel implementation was developed for each part of the algo-
rithm. Furthermore, we introduce a new model for inhomogeneous elasticities based on
an entropy measure.

2 Method

We formulate the registration process as an energy minimization problem between a
reference and a template image.

In order to obtain suitable feature points that can be used to automatically generate
a correspondence between the two images, we calculate the gradient magnitude out of
blurred image intensities, using a nonlinear diffusion filter [6] at first. The associated
partial differential equation is solved by an additive operator splitting (AOS) scheme.
Only voxels higher than two standard deviations above the mean of the magnitude of
the gradient are then used for the following correspondence detection.

The correspondence between reference and template image for the extracted feature
points is computed by a template matching approach. Our work uses the local normal-
ized cross-correlation, which is maximized with an exhaustive search strategy.

The sparse deformation estimates computed before are now introduced as external
forces into a linear elastic model. The underlying idea is to restrict the registration
process so that the resulting deformation field is a priori fixed by the estimates at these
points. Changes in the object’s shape result in an equilibrium state of energy with a
displacement u that minimizes the total potential energy given as

E(u)=%/QGTsdQ—/QuTFdQ,

where the first term describes the work provided by the stress o along the strain € = Lu
and the second term the external work. The relationship between stress and strains is
described by Hooke’s law as o = Ce with elasticity matrix C. The associated equation is
solved by a finite element approach [7] using linear shape functions and a regular mesh
of tetrahedra. For a typical volume size (256x256x124), the total execution time for 12
750MHz UltraSPARC-I11 CPUs is about 5 1/2 minutes.

2.1 Inferring empirically observed anatomical variability

As our approach is limited to isotropic material, two parameters are needed for the elas-
ticity matrix C to describe the mechanical behavior of tissue undergoing a deformation:
Young’s modulus E as a measure of stiffness and Poisson’s ratio v as a measure of
incompressibility. Typically, elasticity parameters have been set arbitrarily and homo-
geneously [1,2] which is only a rough approximation of the underlying tissue.



We present here a new scheme in that inhomogeneous elasticity parameters are de-
rived from an empirical estimate of anatomical variability, so that each discrete element
can obtain its own material properties during the matrix assembly of the linear elastic
model. The entropy of the segmented tissue classes [8] (white matter, gray matter, CSF,
and background) present at each voxel [9] is

4
h(s) = — ; p(s)log(p(s))

with the probabilities p(s;) determined from alignment of the tissue classifications of
154 subjects using a global affine transformation [10] and our nonrigid method. Since
regions with low entropy represent regions with empirically determined low anatomical
variability and regions with high entropy represent regions with empirically determined
high anatomical variability, a linear mapping is used to assign elasticity parameters
based upon the entropy of each voxel, i.e. low entropy values are assigned to low elas-
ticity parameters. Furthermore, the background is set to a low elasticity value.

This model of anatomical variability is most suited for inter-subject registration.
Here we apply this model in the context of intra-subject registration. We intend to con-
struct a model for intra-subject brain shift from MRI observations of the variation of
brain shift in these surgeries using the method describes above, as soon as a sufficiently
large number of observations have been made.

3 Experimental results

We applied our method to three neurosurgical cases showing brain shift. Since a lin-
ear elastic model cannot cope with the massive change of a patients anatomy during
craniotomy, when part of the skull is opened and removed and the skin flap is folded
back, the algorithm was applied only to the brain and not the whole MR scan. Figure 1
displays a slice of an MR scan before and after craniotomy, the deformed brain, and the
difference image before and after registration. It can be observed that the brain shift was
successfully captured. The norm of the difference image decreased by about 20% in all
cases. More validation experiments with appropriate landmarks defined by physicians
are required to accurately assess the potential of this method.

4 Discussion and Conclusion

The physics-based linear elastic model provides us with the ability to simulate realis-
tic deformations. Furthermore, timing experiments show that our algorithm could be
suitable for the real-time constraints of neurosurgery.

Future work will investigate alternative similarity measures and feature extractions.
We also plan to enhance this approach incorporating the anisotropy of certain brain
tissue structures.
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Fig.1. Elastic matching applied to MR scan of the brain obtained during neurosurgery. (a) Slice
from an early stage of the surgery; (b) Slice after craniotomy; (c) Deformed image; (d) Difference
image before alignment; (e) Difference image after alignment.
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