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ABSTRACT
Given a classifier trained on relatively few training exam-
ples, active learning (AL) consists in ranking a set of un-
labeled examples in terms of how informative they would
be, if manually labeled, for retraining a (hopefully) better
classifier. An important text learning task in which AL is
potentially useful is information extraction (IE), namely, the
task of identifying within a text the expressions that instan-
tiate a given concept. We contend that, unlike in other text
learning tasks, IE is unique in that it does not make sense
to rank individual items (i.e., word occurrences) for anno-
tation, and that the minimal unit of text that is presented
to the annotator should be an entire sentence. In this paper
we propose a range of active learning strategies for IE that
are based on ranking individual sentences, and experimen-
tally compare them on a standard dataset for named entity
extraction.

Keywords
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ing, selective sampling

1. INTRODUCTION
In many applicative contexts involving supervised learning,
labeled data may be scarce or expensive to obtain, while
unlabeled data, even sampled from the same distribution,
may abound. In such situations it may be useful to employ
an algorithm that ranks the unlabeled examples and asks
a human annotator to label a few of them, starting from
the top-ranked ones, so as to provide additional highly in-
formative training data. The task of this algorithm is thus
to rank the unlabeled examples in terms of how informa-
tive they would be, once labeled, for the supervised learning
task. The discipline that studies these algorithms is called
(pool-based) active learning (aka selective sampling). This
paper focuses on the application of active learning to infor-
mation extraction (IE), the task of annotating sequences of
one or more words (aka tokens) in a text by means of tags
representing concepts of interest. The hypothetically per-
fect IE system is thus the one for which, for each tag in the
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tagset of interest, the predicted sequences of tokens coincide
with the true sequences.

In text classification and other text learning tasks differ-
ent from IE, the units of ranking and the units of annotation
are the same; e.g., in text classification, it is the texts them-
selves that are ranked, and it is the texts themselves that
are then annotated in their entirety by the human anno-
tator. IE is peculiar from this standpoint since, while the
units of annotation are the tokens, it does not make sense to
rank individual tokens: if this were to happen, an annotator
would be presented with “tokens in context” (i.e., a token in
the fixed-size window of text in which the token occurs) and
asked to annotate the token, with the consequence that she
might be asked to read the same context several times, for
annotating neighbouring tokens.

In this paper we take the view that the optimal unit of
ranking is the sentence. This means that all the sentences
of the automatically annotated texts are going to be ranked
and presented to the annotator, who will then annotate all
the tokens of a few sentences, starting from the top-ranked
ones. This is different from several other works in the field
[6, 8, 12], in which the unit of ranking is a portion of text
smaller than a sentence, i.e., a predicted sequence embedded
in a fixed-sized text window a few words long. The problem
with the latter approach is that, by focusing on predicted se-
quences, the classification mistakes that the annotator cor-
rects are the false positives, while the false negatives are
never brought to the light. This results in an imbalanced
training set being fed to the learner.

We deem the sentence to be the optimal unit of ranking
for additional reasons:

• An entire sentence offers more context for actually in-
terpreting the tokens and the sequences within it than
the fixed-size window often used in the literature. This
is especially important in complex IE tasks such as
opinion extraction (see e.g., [2, 5]), in which, given the
variety of devices that language has for conveying opin-
ions, and given the uncertain boundary between fact
and opinion, the annotator needs to take very subtle
decisions.

• Different sentences never overlap, while different fixed-
length windows may do. The sentence-based approach
results in smaller annotation effort, since the same to-
ken is never examined twice by the annotator.

• From a semantic point of view, sentences are fairly
self-contained units. This means that using portions of



text larger than sentences (e.g., paragraphs) as rank-
ing units is unnecessary, also given that it is hardly the
case that an annotation crosses the boundary between
two consecutive sentences. Conversely, with a fixed-
size window centered around a predicted sequence, an-
other true sequence may cross the boundary between
the window and its neighbouring text.

In the past, typical strategies adopted in AL for generic
learning tasks have relied on ranking objects based either
on the classification score attributed by the classifier to the
object (relevance sampling), or on the confidence score with
which the classifier has classified it (uncertainty sampling)
[9]. In IE, if we want to rank entire sentences we have to
come to terms with the fact that each token in the sentence
has obtained a classification and a confidence score for each
tag in the previous classification round, and we thus have to
generate a sentence-specific score out of the token- and tag-
specific scores, for all the tokens contained in the sentence
and all the tags in the tagset.

The main contribution of this paper consists in proposing
several alternative strategies for combining the token- and
tag-specific scores into a sentence-specific score, and com-
paring these strategies experimentally.

We remark that this paper does not deal with active learn-
ing algorithms for specific supervised learning devices (such
as e.g., [13] for text classification), but presents active learn-
ing strategies that are independent of the learning device
and that are thus in principle suitable for use with any such
device.

The rest of the paper is organized as follows. Our strate-
gies for performing AL in IE are described in Section 2. In
Section 3 we move to describing our experiments and the
experimental protocol we have followed. We conclude in
Section 4 by pointing out avenues for future work.

2. ACTIVE LEARNING STRATEGIES FOR
INFORMATION EXTRACTION

2.1 Preliminaries: Information Extraction
This paper focuses on the application of active learning to
(single-tag) information extraction (STIE, or simply IE).
Let a text T consist of a sequence T = {t1 ≺ s1 ≺ . . . ≺
sn−1 ≺ tn} of tokens (i.e., word occurrences) and separators
(i.e., sequences of blanks and punctuation symbols), where
“≺” means “precedes in the text”. Let C = {c1, . . . , cm}
be a predefined set of tags (aka labels, or classes), and let
c∅ 6∈ C be a special tag (to be read as “no tag”). We define
(single-tag) information extraction as the task of estimating
an unknown target function Φ : T → C ∪ {c∅} that specifies
the true tag in C∪{c∅} attached to each token ti ∈ T and to

each separator si ∈ T . The result Φ̂ : T → C ∪ {c∅} of this
estimation is called the tagger (or wrapper, or classifier)1. A

further property of both Φ and Φ̂ is that they can attribute
a tag cj to a separator si only if they also attribute the same
tag to both ti−1 and ti.

In most IE tasks it is actually the case that, rather than
isolated tokens and separators, sequences of consecutive to-
kens and separators are annotated with a given tag; e.g.,
the sequence“George W. Bush”, containing three tokens and

1Consistently with most mathematical literature we use the
caret symbol (ˆ) to indicate estimation.

two separators, might be annotated with the PER (“person
name”) tag. Such sequences of tokens will here be referred
to as annotated sequences (ASs); the expressions true AS

and predicted AS will refer to ASs according to Φ and Φ̂,
respectively. Note that the reason for considering separa-
tors to be the object of tagging too is that the IE system
should correctly identify sequence boundaries. For instance,
given the expression “Barack Obama, Hillary Clinton and
Joe Biden”the perfect IE system will attribute the PER tag,
among others, to the tokens “Barack”, “Obama”, “Hillary”,
“Clinton”, and to the separators (in this case: blank spaces)
between “Barack” and “Obama” and between “Hillary” and
“Clinton”, but not to the separator “, ” between “Obama”
and “Hillary”. If the IE system does so, this means that
it has correctly identified the boundaries of the sequences
“Barack Obama” and “Hillary Clinton”.

Note that “single-tag” IE means that each token (resp.,
separator) has exactly one tag. This is different from multi-
tag IE, in which it is assumed that a given token (resp.,
separator) may have more than one tag (opinion extraction
– see e.g., [5] – is an instance of multi-tag IE).

2.2 Sentence-Based AL strategies for IE
Our experimental work is focused on comparing a range of
active learning strategies for IE that are based on ranking
individual sentences. This section describes the strategies
and the intuitions supporting them.

In this work we test two alternative learning devices, sup-
port vector machines (SVMs) (see e.g., [1]), and conditional
random fields (CRFs) [7]. For SVMs we have adopted a
widely used method to realize a multiclass classifier as a com-
bination of binary classifiers, i.e., a one versus all method.
The one versus all method consists in learning m binary clas-
sifiers Φ̂c : T → R, each one trained using as the positive
examples all the tokens in the training set Tr that are la-
beled with c, and as negative examples all the other tokens,
regardless of the original label. The multiclass classifier is
then defined as Φ̂(t) = arg maxc∈C∪{c∅} Φ̂c(t), i.e., the as-
signed label is the one whose binary classifier scored the
maximum confidence.

CRFs are a discriminative probabilistic learning method
based on an undirected graph model, and is frequently used
for labeling sequential data, e.g., a sequence of words com-
posing a text. Given a token t, a CRFs classifier estimates
the likelihood Φ̂c(t) = P (c|t) for each c ∈ C∪{c∅} and, simi-
larly to SVMs, the assigned label is the one scoring the high-
est Φ̂c(t) value. CRFs are nowadays considered the state-
of-the-art learning device for information extraction [11].

The strategies we propose are based on two concepts,
label score and tag score. The label score of a token is
equal to ls(t) = maxc∈C∪{c∅} Φ̂c(t), i.e., the maximum con-
fidence score that determines the decision taken by the clas-
sifier Φ̂(t). The tag score is instead defined as ts(t) =

max{c∈C} Φ̂c(t), i.e., the maximum confidence that the clas-
sifier as on considering a token as belonging to a tag, regard-
less of the confidence with respect to c∅.

2.2.1 Tag score-based strategies
The following strategies are based on combining the label
scores assigned to the tokens in the sentence, following the
intuition that the elements on which the classifier has low
confidence could be more useful to the learner, so as to
gather knowledge on “difficult” cases.



The Min Min Confidence (MMC) strategy assigns to the
sentence a value equal to the minimum tag score value among
the tokens composing it, i.e.,

MMC(s) = mint∈s(ts(t)) (1)

Sentence ranking is performed in increasing order ofMMC(s)
value.

Min Average Confidence (MAC) is a version of MMC that
tries instead to be robust to single “extreme” evaluations,
averaging the tag scores of all the tokens composing the
sentence, i.e.,

MAC(s) = avgt∈s(ts(t)) (2)

2.2.2 Label score-based strategies
Symmetrically to the tag-score-based strategies, the label-
score-based strategies follow the somehow different intuition
that the elements on which the classifier has high confidence
could be useful, so that the strong beliefs of the learner are
confirmed when correct or corrected when a blatant error is
found.

The Max Max Score (MMS) strategy assigns to each sen-
tence a value equal to the highest label score among the
tokens composing it, i.e.,

MMS(s) = maxt∈s(ls(t)) (3)

Sentence ranking is performed in decreasing order ofMAS(s).
Similarly to MAC, Max Average Score (MAS) instead

averages the label scores of all the tokens composing the
sentence, i.e.,

MAS(s) = avgt∈s(ls(t)) (4)

2.2.3 Tag count-based strategies
The following strategies are instead based on counting the
number of tokens that are given a tag different from c∅ by
the classifier.

The Max Tag Count (MTC) strategy counts the number
of tokens in the sentence that are given a tag different from
c∅, i.e.,

MTC(s) = |{t ∈ s|Φ̂(t) ∈ C}| (5)

Sentence ranking is performed in decreasing order ofMTC(s)
value.

Since MTC naturally favours long sentences, we have also
tested a strategy (Max Tag Ratio – MTR) that normalizes
the values by sentence length, i.e.,

MTR(s) =
|{t ∈ s|Φ̂(t) ∈ C}|

|s| (6)

The Medium Tag Ratio (MedTR) strategy instead top-ranks
the sentences with a tag ratio closer to the average tag ratio
measured on the training set, i.e.,

MedTR(s) =
MTR(s)

avgs′∈TrMTR(s′)
(7)

2.2.4 Round Robin-based strategies
While the previous strategies always combine the confidence
values returned on the various tag types, the following strate-
gies are based on computing values separately for each tag,
then selecting the most informative sentences using a“round
robin” selection process across all the tags.

The Round Robin Max Score (RRMS) strategy assigns,
for each c ∈ C, a relevance score to the sentence equal to
the maximum score obtained by the tokens contained in it,
i.e.,

RRMSc(s) = maxt∈s(Φ̂c(t)) (8)

Then a round robin selection process is performed on the
|C| rankings produced.

Similarly to MAS, Round Robin Average Score (RRAS)
uses averaging instead of maximization, i.e.,

RRASc(s) = avgt∈s(Φ̂c(t)) (9)

The Round Robin Max Tag Ratio (RRMTR) strategy ap-
plies instead the MTR strategy considering the various tags
separately from each other, so as to avoid favouring the most
frequent tags over the most infrequent.

3. EXPERIMENTS

3.1 Experimental setting
The dataset we have used for evaluating our strategies is the
CoNLL2003 named entity extraction dataset. The dataset
consists of 1,393 Reuters newswire articles, for a total of
301,418 tokens. The tagset consists of 4 tags (LOC, PER,
ORG, MISC, standing for “location”, “person”, “organiza-
tion”, and “miscellaneous”, respectively) plus the special tag
O, which tags any token / separator not tagged by any tag
in {LOC, PER, ORG, MISC}. The tokens inside the cor-
pus are tagged as follows: 10,645 tokens are tagged as LOC,
9,323 as ORG, 10,059 as PER, 5,062 as MISC, while the
remaining 266,329 are tagged as O. We used a version of
the CoNLL corpus already preprocessed with Pianta and
Zanoli’s Tagpro system [10], a PoS-tagging system based on
YamCha that computes features such as prefixes, suffixes,
orthographic information (e.g., capitalization, hyphenation)
and morphological features, as well as PoS tags and chunk
tags. These features altogether form the vectorial represen-
tations of tokens and separators that are fed to the learning
device.

For this latter, we have tested two alternative, off-the-shelf
packages, i.e., YamCha2 and CRF++3, respectively based
on support vector machines and conditional random fields.

We evaluate the results of our experiments using the F1

measure on a token & separator evaluation model [3]. The
token & separator model considers each token and each sep-
arator as being the objects of tagging; for instance, given
tag c, the TP (“true positives”) entry of the contingency ta-
ble for c consists in the number of tokens that are correctly
assigned token c plus the number of separators that are cor-
rectly assigned token c. Once the contingency tables for all
the tags in C have been filled, the evaluation is done by
using standard micro-averaged and macro-averaged F1.

3.2 Experimental protocol
In this work we adopt the following iterative experimental
protocol. The protocol has three integer parameters α, β,
and γ. Let Ω be a set of natural language sentences parti-
tioned into a training set Tr and a test set Te, and let σ be
an active learning strategy:

1. Set an iteration counter t = 0;
2http://www.chasen.org/~taku/software/YamCha/
3http://crfpp.sourceforge.net/



2. Set the current training set Trt to the set of the first α
sentences of Tr; set the current “unlabeled set” Ut ←
Tr/Trt;

3. For t = 1, . . . , β repeat the following steps:

(a) Generate a classifier Φ̂t from the current training
set Trt;

(b) Evaluate the effectiveness of Φ̂t on Te;

(c) Classify Ut by means of Φ̂t;

(d) Rank Ut according to strategy σ, thus generating
the ranking σ(Ut);

(e) Let r(Ut, γ) be the smallest prefix of σ(Ut) (i.e.,
the smallest number of top-ranked elements of
σ(Ut)) that contains at least γ tokens; set Trt+1 ←
Trt ∪ r(Ut, γ); set Ut+1 ← Ut/r(Ut, γ).

It is important to remark that Step 3b has only the purpose
of collecting the results for experimental purposes (i.e., for
producing the tables of Section 3.3); since it uses the test
set Te, its results should obviously not be (and are not)
accessible to the algorithm.

The above protocol simulates the activity of a human an-
notator who, at the beginning of the process, has available a
training set Tr0 consisting of α manually tagged sentences,
and an “unlabeled set” U0 consisting of |Tr| − α untagged

sentences. The annotator generates a classifier Φ̂0 from Tr0,
uses it to tag the sentences in U0, asks the active learning
agent to rank them, manually labels the top-ranked ones for
a total of roughly γ tokens, generates a new classifier Φ̂1

from an augmented training set that comprises Tr0 and the
newly tagged sentences, and repeats this process β times.

In our experiments we have set α = 110 (in the CoNLL
2003 dataset this means approximately 2000 tokens), β =
20, and γ = 200; this means that each strategy will be eval-
uated by testing the accuracy of the classifiers generated
from training sets consisting of approximately 2000, 2200,
. . . , 5800, 6000 training tokens, for a total 20 experiments
per strategy. We think these parameters are realistic, since
they simulate a situation in which

• there are only about 100 manually tagged sentences at
the beginning; (this is reasonable, since in many ap-
plications in which significantly more training data are
available, human annotators might not find it worth-
while to annotate any further);

• every time the human annotator manually labels 200
unlabeled tokens, he/she wants to retrain the system;
(this is reasonable, since he/she wants the operate on a
ranking of the unlabeled documents that incorporates
as much as possible the feedback he/she has already
given to the system;)

• the human annotator does not want to do any further
manual labeling once about 6,000 training tokens are
available; (this seems reasonable, since at this point
the cost-effectiveness of the manual effort has probably
decreased significantly.)

As the baseline strategy for the evaluation of our results
we adopt the one that consists in adding further labeled
sentences to the training set by picking them at random.
This simulates the behaviour of a human annotator that
picks unlabeled sentences and labels them in no particular
order.

3.3 Results
The main results of our experiments are summarized in Ta-
ble 1. This table reports, for each individual strategy, the
values of Fµ1 and FM1 obtained after 20 training sessions
resulting from the protocol of Section 3.2, with α = 110,
β = 20, and γ = 200, using the two different learners, SVMs
and CRFs.

Quite surprisingly, the only genuine strategy that outper-
forms the random baseline is the MAC strategy. The rel-
ative improvement of MAC over RAND ranges from 3.9%
up to 6.3%. This improvement matches our expectations,
given the close relation between the MAC strategy with the
uncertainty sampling [9] method which already proved to be
effective for AL.

Surprisingly, all the other strategies perform worse or no
better than the random baseline. In order to understand the
possible motivations behind these results we have inspected
the sentences selected by the various strategies at the var-
ious iterations. This inspection allowed us to draw some
specific conclusions on some of the strategies, and a general
observation for the entire pool of strategies.

The MTR and RRMTR strategies tend to select very
short sentences (two/three words) composed just by named
entities. This allows gathering a lot of different instances
of named entities, but without a context of use, which is
important in order to learn how to perform extraction from
longer, more articulated sentences.

The MTC strategy selects sentences of variable length,
but tends to exceed in selecting sentences full of named en-
tities, thus with a very limited amount of O-tagged tokens.

A common aspect of all the strategies is that, the more
similar two sentences are, the more similar are the scores
that the various strategies assign them. If the dataset con-
tains a lot of similar sentences, and such sentences obtain
high scores, the contribution of relevant information to the
training set is limited, because of the redundancy contained
in the set of sentences selected.

A comparison between the strategies based on round robin
(RRAS, RRMS, RRMTR) against the respective “single-
rank” versions (MAS, MMS, MTR) shows that the RR-
strategies produce an improvement in the FM1 measure, as
should be expected when using a class-balancing method as
RR.

The comparison of the averaging-based strategies (MAC,
MAS, RRAS) against the respective versions based on max-
imization / minimization (MMC, MMS, RRMS) shows that
averaging always perform better than maximization / min-
imization. This indicates that the smoothing introduced by
the averaging helps the strategies to filter out the single
“false-relevant” tokens that may appear in otherwise non-
relevant sentences.

4. CONCLUSIONS
We have argued that, in active learning for information ex-
traction, the sentence should be the unit of ranking. We
have thus studied several strategies for scoring a given sen-
tence for ranking, based on the classification score and the
confidence score obtained by each token in the sentence. On
the positive side, the experimental results that we have ob-
tained by testing these strategies on a named entity extrac-
tion task show one such strategy (Min Average Confidence)
to outperfom the others, irrespectively of learning device



base MAC MAS MMC MMS RRAS RRMS MTR RRMTR MTC MedTR

Fµ1
YamCha .650 .683 .583 .645 .530 .639 .596 .628 .607 .632 .555
CRF++ .656 .697 .610 .654 .463 .643 .573 .622 .509 .626 .544

FM1
YamCha .634 .661 .525 .633 .526 .644 .577 .593 .597 .613 .538
CRF++ .639 .664 .546 .634 .473 .633 .564 .563 .519 .606 .517

Table 1: Values of F1 obtained after the last training session, i.e., with classifiers trained on approximately
2,000 training tokens plus approximately 4,000 tokens manually annotated as a result of the active learning
strategy. Boldface indicates the best performance.

used (support vector machines or conditional random fields)
and evaluation measure (microaveraged or macroaveraged
F1) used. On the negative side, the same results show that
all the other strategies, that seem based on solid intuitions,
tend to be roughly equivalent to a random strategy. In the
future we plan to test these strategies further, possibly on
IE tasks more difficult than named entity extraction such as
opinion extraction.
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