
A Cluster Manipulation Paradigm for Mobile Web Search
Interaction

Gloria Bordogna Alessandro Campi Stefania Ronchi Giuseppe Psaila
CNR-IDPA Politecnico di Milano Università di Bergamo

Via Pasubio 5 DEI Facoltà di Ingegneria
24044 Dalmine (BG) Piazza L. da Vinci 32 Viale Marconi 5

Italy 20133 Milano 24044 Dalmine (BG)
gloria.bordogna@idpa.cnr.it Italy Italy

campi@elet.polimi.it ronchi@polimi.it psaila@unibg.it

ABSTRACT
This paper describes a new interaction paradigm well suited
to perform web searches though a mobile device. The proto-
typal system that implements this novel interaction frame-
work is named Matrioshka, that is a multi-modal system. In
this paper we focus on the interaction framework and will
introduce briefly an overview of the mobile version of Ma-
trioshka. This framework is based on cluster manipulation
operations. The results of a user request, yielded by one
or more search engines, are organized into labelled clusters.
Then, some manipulation operators can be applied to re-
rank clusters or to combine them to generate new clusters.
These facilities allow the user to capture the relevant doc-
uments hidden in the large set of retrieved ones in the first
ranked clusters.

Keywords
Web searches, mobile information retrieval, results cluster-
ing, ranking strategies

1. INTRODUCTION
The large diffusion of Internet connections from anywhere

at anytime has arisen the problem of more effective ways
of searching the Web from mobile devices. In this paper,
a mobile interaction framework for web meta-searching is
proposed, whose definition is motivated by the observation
that the visualization method based on the ranked list of
web pages is too long to fit small screens such as those of
mobile devices. Further, with the aid of a mobile keyboard,
the usual way of interacting with search engines based on
repeated cycles of query reformulation imposes too much
burden to the user. At the same time, it is too expensive in
terms of the high cost of mobile connections. In fact, if users
do not find what they are looking for in the first one or two
result pages, they are more keen to reformulate a new query
than to analyze successive pages, or to submit the current
query to another search engine.

To overcome these drawbacks, some search services such
as vivisimo, clusty, Snaket, Ask.com (at [1]), MS AdCenter

Appears in the Proceedings of the 1st Italian Information Retrieval
Workshop (IIR’10), January 27–28, 2010, Padova, Italy.
http://ims.dei.unipd.it/websites/iir10/index.html

Copyright owned by the authors.
IIR ’09 Padova, Italy

Labs Search Result Clustering, etc., proposed to cluster the
results of Web searches. W.r.t. the ranked list, clustered
results are more compact and offer an overview of the main
topics dealt with in much more documents than those con-
tained in the first few pages, that would be missed otherwise
[8, 16, 11]. As far as we know, in the literature we found
only one academic mobile search engine, named Credino [2]
that exploits clustered results.

On the other side, one problem users encounter with such
clustered results, is the inability of fully understanding the
contents of the clusters. This is mainly due to the short and
sometimes bad quality of the clusters’ labels, which generally
consist of a few terms, or individual short phrases, which are
automatically extracted from the documents within clusters.
Often, several clusters have similar labels, which differ just
for a single term. To effectively explore the cluster contents,
users have no other means than clicking on the cluster labels
and browsing the clusters themselves. On a mobile device,
this modality would again require too much scrolling.

The idea of our proposal is to maintain the result clus-
tering paradigm, and to provide users with a language to
manipulate clusters. Both several ranking criteria to dif-
ferently order the clusters, and operators to combine the
clusters themselves are defined whose final aim is to make
possible the exploration of the retrieved contents.

The literature on mobile search engines mainly focuses on
modelling the user context, considering primarily the user
geographic location, in order to filter the retrieved results
[10]; other topics are the summarization of documents [7],
and the definition and use of data visualization schemes [13].
In [6] the clustering of retrieved results is proposed as a use-
ful way of presenting the search results on small screens, but,
to the best of our knowledge, only the mobile search engine
Credino [2] performs clustering.
The manipulation language as a basis for a flexible interac-
tion makes our proposal substantially different from Credino
[2], where the focus is the clustering algorithm it adopts
w.r.t. other clustering methods, and does not offer criteria
to explore the cluster contents.

A motivation of utility of the manipulation language can
be found in [12] which advocates the need of tools for giv-
ing the user more immediate control over the clusters of
retrieved web documents. Our proposal can be particularly
useful when groups of clusters with same or almost same la-
bels are generated by distinct requests or by the same query
submitted to distinct search engines. In such situations it

dibuccio
Rettangolo

becomes necessary to explore the contents of the clusters
and their relationships in terms of number of contained doc-
uments, relevance of contents, homogeneity of contents, or
common and distinct contents with other clusters. This
task an exploratory task, that may last for a long time, and
may require to reuse the intermediate results several times.
For this reason, storing of the intermediate results into a
database is essential for successive manipulation. Further-
more, the local manipulation of results avoids the useless
overloading of both the network and the search engines. In
fact, in current practices, several modified queries are sub-
mitted to the search engines, trying to capture relevant doc-
uments in the first positions of the ranked list; note that
most of these documents were already retrieved by the pre-
vious queries, although hidden to the user since they did not
occur in the first positions.

In [4] and [5], we proposed and defined the operators for
combining the clusters for revealing their implicit relation-
ships. In [3] a prototypal mobile meta search system was
proposed that allows easily using the combination operators.

In this paper we propose an extension of the manipulation
language by introducing a ranking operator that makes pos-
sible the exploration of the cluster contents based on distinct
properties of the clusters.

2. THE INTERACTION FRAMEWORK
Data Model. Here we describe the data model on which
the proposed interaction framework is based. We start con-
sidering a query q submitted to a search engine; its result is
a ranked list of documents, that we call items.

Definition 1: Item An item i represents (an instance of)
a document retrieved by a web search. It is described by
the following attributes: uri, which is the Uniform Resource
Identifier of the ranked web document; title and snippet
which are, respectively, the document title and snippet1;
finally, irank is a score (in the range [0, 1]) that expresses
the estimated relevance of the retrieved document w.r.t. the
query. 2

The same document (web page) may be represented by
distinct items in distinct result lists. In facts, we assume
that a document is uniquely identified by its uri [9], while it
may have distinct snippets, irank and title, when retrieved
by different search services (or by different queries). We
assume that irank is a function of the position of the item
in the query result list.
In our system, the results of a user request (or exploration)
are not simply a ranked list of documents, but they are
gathered in ordered clusters.

Definition 2: Cluster A cluster c is a set of items, having
a rank. It is defined by two attributes: label is a set of
terms that semantically synthesize the main content of the
cluster; crank is a score (in the range [0, 1]) depending on
some property of the cluster. 2

A cluster label is automatically generated by a specific
labelling algorithm on the basis of frequent terms in cluster
items [3].
At this point we define the main element of the data model.

Definition 3: Group A group g is a non empty, ordered
set of clusters. It is described by the following attributes:

1The snippet is an excerpt of the document, made by a set
of sentences that may contain the keywords of the query

label, a set of terms that semantically synthesizes the main
content of the group; s, the name of the search engines used
to retrieve the items in the clusters of the group. 2

Finally we define the users’ History repository.

Definition 4: History A history H is a set of items. It
can be the empty set, at the beginning of a search session,
and it can be updated by explicit action of the user when
he/she decides to save a retrieved document. 2

Manipulating Clusters. The procedure that generates
a group is initially activated by a search operator, named
CQuery, that allows users to query a search engine (e.g.,
Google, Yahoo!, MSN Search) and to cluster the results. In
the implementation we considered a maximum of N docu-
ments, with n ≥ 30, i.e., a number of documents greater
than that retrieved in the first three pages, those usually
analyzed by a common user.

On this basis, for each retrieved document, the operator
builds an item i, whose irank value depends on the position
of the document in the result list: i.irank = (N − Pos(d) +
1)/N (where Pos(d) is the position of the document in the
query result list). In this way, a document in the first posi-
tions has a rank r.irank very close to 1. This is done in order
to achieve independence and comparability of the ranking
produced by distinct search engines.

The ranked list obtained as a result by the search opera-
tor, is then clustered by applying the Lingo algorithm [14].
Lingo is used to perform a flat crisp clustering of the query
results on the basis of their snippets and titles. Once clus-
ters are obtained, they are labelled. Finally also the groups
are labelled (see [3] for the labelling algorithm) to synthesize
the most central contents retrieved by all their clusters.

Successively, one can decide either to explore the groups of
clusters retrieved by a single query by applying some ranking
operation described in 2.1 which evaluates a cluster property,
or one can generate other groups by combining the obtained
ones through the operators defined in Section 2.2.

2.1 Cluster Ranking Methods
Once the results of a query are obtained as a group of

ranked clusters, in which the default crank score is computed
as the average of the irank of its documents, the user has
the possibility to re-rank the clusters based on the evaluation
of some other clusters’ property. This allows to obtain, in
the first positions of the ranked list of clusters, those clusters
that previously could appear in the last positions. This is the
novel contribution of the paper w.r.t. our previous work: the
user is this way provided with the possibility of evaluating
groups by different perspectives.

The cluster properties that can be considered for the rank-
ing are the following:

• Relevance: this is defined as the average of the relevance
scores of documents belonging to the cluster and is the de-
fault property for the ordering of clusters; the relevance
scores of clusters are the irank values computed as previously
defined from the documents’ positions in the ranked list re-
turned by the search engine. Ordering clusters by decreasing
values of their relevance means being interested primarily in
the relevance of documents contained in the clusters.
• Ponderosity : this is defined as the cluster cardinality, and
it measures how many documents belong to the clusters; the
ranking of clusters in decreasing order of their ponderosity
can be useful for users interested in high recall.

• Heterogeneity : this is defined as the variance of the doc-
uments vectors, represented in the space of index terms ex-
tracted from their titles and snippets, and weighted by their
relative frequency, w.r.t. the cluster centroid vector, defined
as the average vectors of all the documents vectors belonging
to the cluster. The greater the variance the more heteroge-
neous is the cluster: by choosing to rank clusters in increas-
ing order of their heterogeneity means being interested in
contents focalized on the specific meaning expressed by the
label of the cluster, since the cluster label is generated from
its centroid vector. This can be useful in target searches.
Conversely, by choosing to rank clusters in decreasing or-
der of their heterogeneity means being more tolerant on the
meaning expressed by the cluster label; this can be useful
when one is unsure to have expressed by the query the actual
information needs and wants to soften the selection condi-
tions.
• Novelty : this is defined as the proportion of novel docu-
ments contained in the cluster w.r.t. previously already seen
documents, that the user has saved in the history reposi-
tory; choosing a novelty ranking means being interested in
new documents on the topics of a search and can be useful
in the context of bibliographic surveys.

In order to rank clusters of a group based on one of the
above properties the operation ClusterRank is defined:

g′ = ClusterRank(g, property, order)
in which g and g′ are the input and output groups of clusters,
property takes values in a set of strings {Relevance, Pon-
derosity, Etherogeneity, Novelty} denoting a cluster prop-
erty; order ∈ {increasing, decreasing} indicates the desired
ordering, i.e., increasing and decreasing w.r.t. the value of
the specified cluster property, respectively.
g′ has the same label of g and contains the same clusters of
g with the only difference that the clusters’ crank scores are
computed based on the specified proverty of the clusters:

cranki = property(ci)
MAXk(property(ck))

2.2 Combining Groups of Clusters
The system provides users with the possibility to interact

with the results of search services organized in groups of
clusters, in order to get more satisfactory and refined results
to their needs. To this aim, the user can choose to apply
different sequences of operators on selected groups, in order
to recombine (modify, explore) their structure and content.

The operators that we are going to illustrate are formally
defined in [4]; they are inspired by the operators provided by
the Relational Algebra (i.e. intersection, join, union etc.),
thought they are specifically defined for groups of clusters.
They generate, starting from two input groups g1 and g2,
one group g′ that may contain one ore more clusters; it can
also be empty, in the case no common items are detected.

First of all, we describe two basic operations that combine
items belonging to two input clusters to get a new cluster.

We define two basic operations: Cluster Intersection and
Cluster Union. They work on the uri of the items of two
input clusters, assuming that uri is the document’s unique
identifier. The rationale of this assumption is the fact that
the same document, retrieved by two different search ser-
vices, may have different title and snippet, but maintains
the same uri. Consider the intersection of two clusters c1

and c2, denoted as:
c′ = ClusterIntersection(c1, c2).

The irank of i′ ∈ c′, the cluster resulting from the intersec-
tion, is defined as the minimum irank value of i1 and i2.

2

In the case of cluster union, denoted as
c′ = ClusterUnion(c1, c2),

the irank of i′ is the maximum irank value of i1 and i2.
3 In

both cluster intersection and union, the title and the snippet
of the resulting items are obtained by selecting either i1.title
or i2.title, and either i1.snippet or i2.snippet, respectively.

In particular, to obtain the title and the snippet of the
items belonging to the clusters of the resulting groups we
select as resulting title and snippet, those belonging to the
document having the smallest (in the case of Cluster Inter-
section) or the greatest (in the case of Cluster Union) value
of irank, without making any changes. The rationale of this
choice is the fact that in the aggregation based on the in-
tersection (union), we want to represent the document by
its worst (best) representative, in accordance with the mod-
elling of the AND and the OR within fuzzy set theory.

2.2.1 Group Operators
The first group operators we describe are not properly

combination operators: they are the Group Selection and
the Group Deletion. The Group Selection operator allows
to select the clusters in a group. In the resulting group, the
selected clusters maintain the original order.
Similarly, the Group Deletion operator allows the user to
delete clusters. Like for the Cluster Selection operator, the
original order is maintained in the resulting group.

The following operators combine and generate groups.

Group Intersection. Group Intersection is defined to sup-
port the straightforward wish of users to intersect clusters in
two groups, to find more specific clusters. The assumption is
that the more search services (or the more distinct queries)
retrieve the same document, the more the document content
is worth analyzing.

Definition 5: The Group Intersection operator generates
a new group composed of all the combination of clusters in
the original groups having a not empty intersection.
In particular, given g1 and g2 the groups of cluster to inter-
sect, the resulting group g′ is composed of all the clusters c′

such that: c′= ClusterIntersect(c1, c2) with |c′| 6= 0. 2

Group Join A key operator of the language, closely related
to the previous one, is the Group Join. It lets the user ex-
pand the original clusters in a group with clusters, possibly
belonging to another group, that share one or more doc-
uments. The group Join operator can be used to explicit
indirect correlations between the topics represented by the
clusters in the two input groups. The basic idea underlying
its definition is that if two clusters have a non empty inter-
section (i.e. have some common items), this means that the
texts of their items are related with both topics represented
by the clusters. This may hint the existence of an implicit
relationship between the topics of the two clusters.
By merging the two overlapping clusters into a single one,
the more general topic representing the whole content of the
new cluster can be revealed, which subsumes, as more spe-
cific topics, those of the original clusters.

2This definition is consistent with the definition of the in-
tersection operation between fuzzy sets [15].
3This is also consistent with the definition of union of fuzzy
sets.

Definition 6: The Group Join operator allows the user
to obtain, from two or more input groups, a resulting group
composed by the union of all those pairs of original clusters
that present a not empty intersection.
In particular, given g1 and g2 the input groups, for each pair
of clusters c1 ∈ g1 and c2 ∈ g2, the cluster

c’ = ClusterUnion(c1, c2) ∈ g′,
if and only if ClusterIntersection(c1, c2) 6= ∅, with g′ the
resulting group. 2

Group Refinement The Group Refinement operator is
aimed at refining clusters in a group, based on clusters in
another group. While the group join operator generates a
cluster representing a more general topic than the topics in
both the original clusters, the refinement operator can be
regarded as generating clusters specializing the topics of the
clusters in the first group on the basis of the topics of any
cluster in the second group. The idea underlying this opera-
tor is that we want to collect, in a unique cluster, the items
(that are considered by the user as more interesting) which
belong to both a cluster c1 of the first group g1 and any of
the second group g2. This way, by eliminating some items
from c1, we generate a cluster representing a more specific
topic w.r.t. c1, but not necessarily more specific w.r.t. the
clusters of the second group.

Definition 7: The Group Refinement operator allows the
user to keep, from the original group g1, only the clusters ci

containing documents presents in at least one of the clusters
cj of the most interesting group g2.
In particular, given g1 (group of clusters to refine) and g2

(interesting group), and being c1 a cluster such that c1 ∈ g1,
for each cluster cj ∈ g2 we compute the cluster union of the
intersections cj , cj = ClusterIntersection(c1, cj).
If the union c′ of cj is not empty, then c′ ∈ g′. 2

The operators so far introduced constitute the core of our
proposal; the others are sketched hereafter.

Group Union. The Group Union operator unites together
two groups. It generates the resulting group g′ in such a
way it contains all clusters in the input groups g1 and g2.
Group Coalescing. Complex processing of retrieved doc-
uments may need to be performed by fusing all clusters in
a group into one global cluster. The Group Coalescing
operator generates a resulting group g′ in such a way that
g′ contains only one cluster, obtained by uniting together all
clusters in the input group g.
Reclustering. After complex transformations, it might be
necessary to reapply the clustering method to a group. In
fact, reclustering documents in a group may let new and
unexpected semantic information emerge.
The Reclustering operator coalesces all clusters in the input
group g and generates a new group g′ in such a way that it
contains all the clusters obtained by clustering all items.
The Closure Property of Group Operators holds: operators
are defined on groups and generate groups [5].

3. THE MOBILE SYSTEM MATRIOSHKA
The interaction framework introduced in the previous sec-

tion has been implemented in the mobile version of the pro-
totypal system Matrioshka.

It is constituted by three main parts: the client side com-
ponents handle the user interaction; the server side compo-
nent interfaces the search engines and executes the cluster-
ing and the manipulation operations specified by the user;

Figure 1: Mobile Matrioshka: the interrogation panel
(left), Groups generated by the Group Intersection
(center) and Group Join (right) operators.

finally, the Communication Layer dispatches the messages
between client and server. Specifically, the client provides
a query editor for the user, the server either executes the
queries and builds the groups of clusters or executes the op-
erations on previously generated groups of clusters. Let us
describe the functionality of each architectural component.

On the client side the Matrioshka User Interface col-
lects users requests, displays the results of queries and/or
the application of manipulation operations. The Client-
side components are thin clients compliant, and commu-
nicate with the server-side by exchanging XML messages.
Specifically, the component for mobile devices (called Mo-
bile Matrioshka), is a Javascript application based on the
AJAX (Asynchronous JavaScript and XML) web develop-
ment technique.

The Server Side exposes a web service interface, based
on XML messages: it receives requests to perform queries
on search services, or to apply the operators; it replies with
groups of clusters. All the data received from the search
engines, and those resulting from the operations, are stored
in an XML native database; this way, the entire process is
stored and can be accessed to carry on the exploratory task.
The server side is entirely implemented in the Java Lan-
guage. The interaction with search services usually exploits
web service APIs provided by the search engines, otherwise
the standard HTTP interaction model is exploited.

Document clustering is performed on the indexes extracted
from the titles and snippets of retrieved documents (gen-
erated by using Lucene functions): the Lingo multilingual
algorithm, provided by the Carrot2 libraries is used.

The interpreter of the combination operators has been im-
plemented from scratch.

The Communication Layer is a pool of JSP scripts,
executed on top of the Tomcat web server. It carries out
the client/server communication through XML format mes-
sages, according with AJAX web development techniques,
and by the support of the Tomcat Java servlet container.

When the user logs into the system, a specific instance of
the database is created, in which the entire exploratory pro-
cess performed by the user will be stored. When logged-in,
the user has the possibility to submit queries to the chosen
search engine (as shown in the left-hand side of Figure 1).

In order to organize a trip to visit London, let us submit
the query "visit London" to the search engines Google, Ya-
hoo! and MSN search. Groups g1, g2, g3 in Figure 2 are the
resulting groups clusters; the three groups being generated
by the same query "Visit London" have the same label.

Terminated the inspection of clusters in the groups, we
can interactively ask for executing some operators, in an
attempt of obtaining clusters with labels that more closely

g1"Visit London"

cl.1: Visit London
cl.2: When to visit London
cl.3: Destination marketing
cl.4: London tourist information
cl.5: Visit London services
cl.6: The Royal Parks
cl.7: London Theater Guides

g2"Visit London"

cl.1: Visit London
cl.2: Visit London-official web site
cl.3: Attractions in London
cl.4: London City Guide 2008
cl.5: Family-Visit London
cl.6: Visit London Organizers
cl.7: London Travel Maps
cl.8: Business-Visit London

g3"Visit London"

cl.1: Travel - Visit London
cl.2: Visit London Organizers
cl.3: Special Offers - Visit London
cl.4: London Accommodation Guide
cl.5: Visit London Corporate
cl.6: London Maps - Visit London
cl.8: Places to go - Visit London

g4"Visit London"

cl.1: Visit London
cl.2: Visit London-official website
cl.3: Visit London-official website

g5"Mayor of London"

cl.1: Visit London
cl.2: London Accommodation Guide
cl.3: Mayor of London

Figure 2: Resp., resulting groups from the query Visit London submitted to Google (group g1), Yahoo! (group
g2), and MSN live search engines (group g3), Group Intersection and Group Join of groups g1, g2. .

meet our needs. At first, we ask to intersect the three groups
to retrieve the most reliable documents. By observing clus-
ters in the resulting group g4, we then decide to request a
join of the three original groups g1 g2 and g3, in order to
expand the contents obtained by the intersection (see the
screen shots in Figure 1). A new group g5 is generated with
more populous clusters: these clusters are the union of the
original clusters that share some common document. We
can see that the obtained clusters are identified by labels
which hints the presence of new correlated contents w.r.t.
the labels of the clusters obtained by the intersections of the
same groups (see groups g4 vs group g5 in Figure 2).

4. CONCLUSIONS
In this paper, we described a novel interaction framework

for web searches implemented by the prototypal mobile ver-
sion of the system Matrioshka.
The features that make this framework particularly suitable
for mobile searches are several: first, it presents clustered
results of the searches so as to better render them on the
small screen of mobile devices; it makes available ranking
and combination operators defined for clusters manipula-
tion which allow easily exploring the retrieved results, thus
alleviating network overloading caused by the submission of
repeated refined queries to search engines. The large number
of documents retrieved by such engines constitute a serious
obstacle for users of mobile devices, who generally engages
long trial and error query reformulation phases to retrieve
relevant results in first few positions.
The operator provided by the interaction framework are the
basis for complex exploratory tasks; users can issue opera-
tions through the mobile interface, but certainly they must
be skilled users; certainly, generic users are in troubles. Cur-
rently we are performing an evaluation study to understand
the effectiveness for end users, in order to define novel, more
user friendly interaction paradigms on the client side, more
suitable for generic users.

5. REFERENCES
[1] Ask.com clustering.

www.ask.com/reference/dictionary/49514/cluster.

[2] The GRASS system. http://credino.dimi.uniud.it/.

[3] G. Bordogna, A. Campi, G. Psaila, and S. Ronchi. An
interaction framework for mobile web searches results.
MOMM-2008.

[4] G. Bordogna, A. Campi, G. Psaila, and S. Ronchi. A
language for manipulating clustered web documents
results. CIKM-2008.

[5] G. Bordogna, A. Campi, G. Psaila, and S. Ronchi. A
flexibkle language for exploring clusterd search results.
Scalable Fuzzy Algs. for Data Mgmt. and Anal., 2009.

[6] G. Buchnan, M. Jones, and G. Marsden. Exploring
small screen digital library access with the greenstone
digital library. Eur. Conf. on Digital Libraries, 2003.

[7] O. Buyukkokten and et al. Efficient web browsing on
handheld devices using page and form summarization.
ACM Trans. on Inf. Systems, 20(1):82–115, 1999.

[8] H. Chen and S. Dumais. Bringing order to the web:
Automatically categorizing search results. SIGCHI
Conf. on Human factors in computing systems, 2000.

[9] T. Coates and al. Uris, urls, and urns: Clarifications
and recommendations 1.0. W3C Tech. report, 2001.

[10] F. Crestani, M. Dunlop, M. Jones, S. Jones, and
S. Mizzaro (eds.). Special issue on interactive mobile
inf. access. J. of Personal and Ubiquitous Comp., 2006.

[11] M. A. Hearst and J. O. Pederson. Reexamining the
cluster hypothesis: Scatter/gather on retrieval results.
Conf. on Research and Devel. in Inf. Retrieval, 1996.

[12] A. V. Leouski and W. B. Croft. An evaluation of
techniques for clustering search results. Tech. Rep. of
the Dept. of Computer Science f University of
Massachusetts at Amherst, IR-76:122–133, 1996.

[13] M. Noirhomme-Fraiture and al. Data visualizations on
small and very small screens. Conf. on Applied
Stocastics Models and Data Analysis, 2005.

[14] S. Osinski. An algorithm for clustering of web search
results. Master’s thesis, 2009, Poznan’ Univ. of Tech.

[15] L. Zadeh. Fuzzy sets. Information and control, 1965.

[16] O. Zamir and O. Etzioni. Grouper: a dynamic
clustering interface to web search results. WWW 1999.

