
Context-Dependent Recommendations with Items Splitting

Linas Baltrunas
Free University of Bozen-Bolzano,

Piazza Università 1,
Bolzano, Italy

lbaltrunas@unibz.it

Francesco Ricci
Free University of Bozen-Bolzano,

Piazza Università 1,
Bolzano, Italy

fricci@unibz.it

ABSTRACT
Recommender systems are intelligent applications that help
on-line users to tackle information overload by providing
recommendations of relevant items. Collaborative Filter-
ing (CF) is a recommendation technique that exploits users’
explicit feedbacks on items to predict the relevance of items
not evaluated yet. In classical CF users’ ratings are not
specifying in which contextual conditions the item was eval-
uated (e.g., the time when the item was rated or the goal of
the consumption). But, in some domains the context could
heavily influence the relevance of the item and this must be
taken into account. This paper analyzes the behavior of a
technique which deals with context by generating new items
that are restricted to a contextual situation. The ratings’
vectors of some items are split in two vectors containing the
ratings collected in two alternative contextual conditions.
Hence, each split generates two fictitious items that are used
in the prediction algorithm instead of the original one. We
evaluated this approach on semi-synthetic data sets measur-
ing precision and recall while using a matrix-factorization
algorithm for generating rating predictions. We compared
our approach to the previously introduced reduction based
method. We show that item splitting can improve system
accuracy. Moreover, item splitting leads to a better recall
than the reduction based approach.

1. INTRODUCTION
The Internet, interconnecting information and business

services, has made available to on-line users an over abun-
dance of information and very large product catalogues.
Hence, users trying to decide what information to consult or
what products to choose may be overwhelmed by the num-
ber of options. Recommender systems are intelligent appli-
cations that try to solve information overload problem by
recommending relevant items to a user [2, 11]. Here an item
is usually a descriptive information about a product such as
a movie, a book or a place of interest. Recommender sys-
tems are personalized Information Retrieval systems where
users make generic queries, such as, ”suggest a movie to be
watched with my family this night”.

Collaborative Filtering (CF) is a recommendation tech-
nique that emulates a simple and effective social strategy

Appears in the Proceedings of the 1st Italian Information Retrieval
Workshop (IIR’10), January 27–28, 2010, Padova, Italy.
http://ims.dei.unipd.it/websites/iir10/index.html

Copyright owned by the authors.

called “word-of-mouth” and is now largely applied in the
“social” web. For example, amazon.com recommends items
that user could be interested to buy or delicious.com recom-
mends the links that were tagged by alike users with com-
monly used tags. CF recommendations are computed by
leveraging historical log data of users’ online behavior [12].
The relevance of an item is usually expressed and modeled
by the explicit user’s rating. The higher is the rating that a
user assigned to an item, the more relevant is the item for
the user. CF assumes that the user’s recorded ratings for
items can help in predicting the ratings of like-minded users.
We want to stress that this assumption is valid only to some
extent. In fact, the user’s general interests can be relatively
stable, but, the exact evaluation of an item can be influenced
by many additional and varying factors. In certain domains
the consumption of the same item can lead to extremely dif-
ferent experiences when the context changes [1, 4]. There-
fore, relevance of an item can depend on several contextual
conditions. For instance, in a tourism application the visit-
ing experience to a beach in summer is strikingly different
from the same visit in winter (e.g., during a conference meet-
ing). Here context plays the role of query refinement, i.e.,
a context-aware recommender system must try to retrieve
the most relevant items for a user, given the knowledge of
the current context. However, most CF recommender sys-
tems do not distinguish between these two experiences, thus
providing a poor recommendation in certain situations, i.e.,
when the context really matters.

Context-aware recommender systems is a new area of re-
search [1]. The classical context-aware reduction based ap-
proach [1] extended the classical CF method adding to the
standard dimensions of users and items new ones represent-
ing contextual information. Here recommendations are com-
puted using only the ratings made in the same context as
the target one. For each contextual segment, i.e., sunny
weekend, algorithm checks (using cross validation) if gener-
ated predictions using only the ratings of this segment are
more accurate than using full data set. The authors use
a hierarchical representation of context, therefore, the ex-
act granularity of the used context is searched (optimized)
among those that improve the accuracy of the prediction.
Similarly, in our approach we enrich the simple 2-dim. CF
matrix with a model of the context comprising a set of fea-
tures either of the user, or the item, or the evaluation. We
adopt the definition of context introduced by Dey, where
“Context is any information that can be used to character-
ize the situation of an entity” [8]. Here, the entity is an item
consumption that can be influenced by contextual variables

u1
u2
u3

u4

u5

5

1
4

2

2

n items

i

n+1 items

5

4

i1

1

2

2

i2

u1
u2
u3

u4

u5

Splitting
of a single

item i

Figure 1: Item splitting

describing the state of the user and the item. In this paper
we propose a new approach for using these contextual di-
mensions to pre-filter items’ ratings. Actually, to be precise,
the set of ratings for an item is not filtered but it is split into
two subsets according to the value of a contextual variable,
e.g., ratings collected in“winter”or in“summer”(the contex-
tual variable is the season of the rating/evaluation). These
two sets of ratings are then assigned to two new fictitious
items (e.g. beach in winter and in summer).

This paper extends the results presented in [5, 6]. Here
we evaluate the same item splitting technique in a differ-
ent set of experiments, namely we measure precision and
recall, whereas previously we used MAE. Also the nine semi-
synthetical data sets are generated differently. Moreover, we
extended our analyzes by studying the behavior of item split-
ting with respect to the various Information Gain thresholds.

2. ITEM SPLITTING
Our approach extends the traditional CF data model by

assuming that each rating rui in a m×n users-items matrix,
is stored (tagged) together with some contextual information
c(u, i) = (c1, . . . , cn), cj ∈ Cj , describing the conditions un-
der which the user experience was collected (cj is a nominal
variable). The proposed method identifies items having sig-
nificant differences in the ratings (see later the exact test
criteria). For each one of these items, our algorithm splits
its ratings into two subsets, creating two new artificial items
with ratings belonging to these two subsets. The split is
determined by the value of one contextual variable cj , i.e.,
all the ratings in a subset have been acquired in a context
where the contextual feature cj took a certain value. So,
for each item the algorithm seeks for a contextual feature cj
that can be used to split the item. Then it checks if the two
subsets of ratings have some (statistical significant) differ-
ence, e.g., in the mean. If this is the case, the split is done
and the original item in the ratings matrix is replaced by the
two newly generated items. In the testing phase, the rating
predictions for the split item are computed for one of the
newly generated item. For example, assume that an item
i has generated two new items i1 and i2, where i1 contains
ratings for item i acquired in the contextual condition cj =
v, and i2 the ratings acquired in context cj v̄, hence the two
sets partition the original set of ratings. Now assume that
the system needs to compute a rating prediction for the item
i and user u in a context where cj = x. Then the prediction
is computed for the item i1 if x = v, or i2 if x 6= v, and is
returned as the prediction for i.

Figure 1 illustrates the splitting of one item. As input,
the item splitting step takes a m × n rating matrix of m
users and n items and outputs a m × (n + 1) matrix. The
total number of ratings in the matrix does not change, but

a new item is created. This step can be repeated for all the
items having a significant dependency of their ratings on the
value of one contextual variable. In this paper we focus on
a simple application of this method where an item is split
only into two items, using only one selected contextual vari-
able. A more aggressive split of an item into several items,
using a combination of features, could produce even more
“specialized” items, but potentially increasing data sparsity.
We note again, that for the same user, and different items,
one can in principle obtain ratings in different contexts, as in
our context model context depends on the rating. Therefore,
items i1 and i2 could overlap, i.e., could be rated both by
the same user in different contextual conditions. However,
such situation are not very common.

We conjecture that the splitting could be beneficial if the
ratings within each newly obtained item are more homoge-
nous, or if they are significantly different in the new items
coming from a split. One way to accomplish this task is to
define an impurity criteria t [7]. So, if there are some can-
didate splits s ∈ S, which divide i into i1 and i2, we choose
the split s that maximizes t(i, s) over all possible splits in
S. A split is determined by selecting a contextual variable
and a partition of its values in two sets. Thus, the space of
all possible splits of item i is defined by the context model
C. In this work we analyzed tIG impurity criteria. tIG(i, s)
measures the information gain (IG), also known as Kullback-
Leibler divergence [10], given by s to the knowledge of the
item i rating: tIG = H(i)−H(i1)Pi1 +H(i2)Pi2 where H(i)
is the Shannon Entropy of the item i rating distribution and
Pi1 is the proportion of ratings that i1 receives from item
i. To ensure reliability of this statistic we compute it only
for a split S that could potentially generate items each con-
taining 4 or more ratings. Thus, algorithm never generates
items with less than 4 ratings in the profile.

3. EXPERIMENTAL EVALUATION
We tested the proposed method on nine semi-synthetic

data sets with ratings in {1, 2, 3, 4, 5}. The data sets were
generated using Yahoo!1 Webscope movies data set contains
221K ratings, for 11,915 movies by 7,642 users. The semi-
synthetic data sets were used to analyze item splitting when
varying the influence of the context on the user ratings. The
original Yahoo! data set contains user age and gender fea-
tures. We used 3 age groups: users below 18 (u18), between
18 and 50 (18to50), and above 50 (a50). We modified the
original Yahoo! data set by replacing the gender feature
with a new artificial feature c ∈ {0, 1} that was assigned
randomly to the value 1 or 0 for each rating. This feature c
is representing a contextual condition that could affect the
rating. We randomly choose α ∗ 100% items from the data
set and then from these items we randomly chose β∗100% of
the ratings to modify. We increased (decreased) the rating
value by one if c = 1 (c = 0) and if the rating value was
not already 5 (1). For example, if α = 0.9 and β = 0.5 the
corresponding synthetic data set has 90% of altered items’
profiles that contains 50% of changed ratings. We gener-
ated nine semi-synthetic data sets varying α ∈ {0.1, 0.5, 0.9}
and β ∈ {0.1, 0.5, 0.9}. So, in these data set the contextual
condition is more “influencing” the rating value as α and β
increase.

In this paper we used matrix factorization (FACT) as the

1Webscope v1.0, http://research.yahoo.com/

0.80
0.82
0.84
0.86
0.88
0.90
0.92

10% Items 10% Ratings
0.80
0.82
0.84
0.86
0.88
0.90
0.92

10% Items 50% Ratings
0.80
0.82
0.84
0.86
0.88
0.90
0.92

10% Items 90% Ratings

0.80
0.82
0.84
0.86
0.88
0.90
0.92

50% Items 10% Ratings
0.80
0.82
0.84
0.86
0.88
0.90
0.92

50% Items 50% Ratings
0.80
0.82
0.84
0.86
0.88
0.90
0.92

50% Items 90% Ratings

0.80
0.82
0.84
0.86
0.88
0.90
0.92

90% Items 10% Ratings
0.80
0.82
0.84
0.86
0.88
0.90
0.92

90% Items 50% Ratings
0.80
0.82
0.84
0.86
0.88
0.90
0.92

90% Items 90% Ratings

No Context
Reduction
Item-Split

(a) Precision

0.56
0.58
0.60
0.62
0.64
0.66
0.68

10% Items 10% Ratings
0.56
0.58
0.60
0.62
0.64
0.66
0.68

10% Items 50% Ratings
0.56
0.58
0.60
0.62
0.64
0.66
0.68

10% Items 90% Ratings

0.56
0.58
0.60
0.62
0.64
0.66
0.68

50% Items 10% Ratings
0.56
0.58
0.60
0.62
0.64
0.66
0.68

50% Items 50% Ratings
0.56
0.58
0.60
0.62
0.64
0.66
0.68

50% Items 90% Ratings

0.56
0.58
0.60
0.62
0.64
0.66
0.68

90% Items 10% Ratings
0.56
0.58
0.60
0.62
0.64
0.66
0.68

90% Items 50% Ratings
0.56
0.58
0.60
0.62
0.64
0.66
0.68

90% Items 90% Ratings

No Context
Reduction
Item-Split

(b) Recall

Figure 2: Comparison of contextual pre-filtering methods.

rating prediction technique. We used the algorithm imple-
mented and provided by Timely Development2. FACT uses
60 factors and the other parameters are set to the same
values optimized for another data set (Netflix), so it might
not be the best setting, but all the system variants that we
compared used the same settings. To evaluate the described
methods we used 5-fold cross-validation and measured pre-
cision and recall. The usage of precision and recall in recom-
mender systems needs some clarification. These measures,
in its purest sense, are impossible to measure as they would
require the knowledge of the rating (relevance) of each item
and user combination [9]. Usually there are thousands of
candidate items to recommend (11K in our case) and just
for a small percentage of them we know the true user’s evalu-
ation (typically less than 1%) . Herlocker et al. [9] proposed
to approximate these measures by computing the prediction
just for user × item pairs that are present in the ratings
data set, and consider items worth recommending (relevant
items) only if the user rated them 4 or 5. We computed the
measures on full test set (of each fold), while trained the
models on the train set. Please refer to [5] for additional
experiments. These include the evaluation of other impu-
rity criteria, the performance of the proposed method on
the original Yahoo! data set, and experiments using other
prediction methods such as user-based CF while computing
Mean Absolute Error (MAE).

3.1 Context-aware Prediction Methods
To understanding the potential of item splitting in a context-

dependent set of ratings we tested this approach on the
semi-synthetical data sets described earlier, i.e., replacing
the gender feature with a new contextual variable that does
influence the ratings. The baseline method is FACT when
no contextual information is considered. It is compared
with the context-aware reduction based approach [1], and
our item splitting technique. Figure 2 shows comparison of
three methods for the nine semi-synthetic data sets. For
each data set we computed precision and recall. We con-
sidered item as worth recommending if algorithm made a
prediction greater or equal to 4. For all the nine data sets
the algorithm splits an item if any split leads to an IG bigger
than 0.01. The small IG threshold value led to a good re-
sults in our previous experiments [6] and it allows algorithm
to split up to 15% of items (depending on the data set). In

2http://www.timelydevelopment.com

Subsection 3.3 we report result while choosing bigger values
that typically decrease the impact of item splitting. As we
expected, the smaller is the impact of the contextual fea-
ture c, the smaller is the improvement of the performance
measure obtained by the methods that do use the context.
In fact, item splitting improved the performance of baseline
method for 4 data sets: α ∈ {0.5, 0.9}, β ∈ {0.5, 0.9}. The
highest improvement for precision of 9.9% was observed for
the data set α = 0.9, β = 0.9 where most items and most
ratings were influenced by the artificial contextual feature.
Increasing the value of α and β, i.e., increasing the number
of items and ratings that are correlated to the value of the
context feature, decreased the overall precision and recall
of the baseline method. We conjecture, that the contextual
condition plays the role of noise added to the data, even if
this is clearly not noise but a simple functional dependency
from a hidden variable. In fact, FACT cannot exploit the
additional information brought by this feature and cannot
effectively deal with the influence of this variable.

Reduction based approach increased precision by 1.3%
only for α = 0.9, β = 0.9 data set. This is the data set,
where artificial contextual feature has highest influence on
the ratings and 90% of items are modified. In [1] the authors
optimized MAE when searching for the contextual segments
where the context-dependent prediction improves the de-
fault one (no context). Here, we searched for the segments
where precision and recall is improved and we used all better
performing segments to make the predictions. For example,
Figure 2(a) reports the precision of reduction based. To con-
duct this experiment, the algorithm first sought (optimized)
the contextual segments where precision is improved (using a
particular split of train and test data). Then, when it has to
make a rating prediction, used either only the data in one of
these segments, i.e., if the prediction is for a item-user com-
bination in one of the found segments, or all the data, i.e., if
the item-rating is in one contextual conditions where no im-
provements can be found with respect to the baseline. Note,
that in all three data sets where α = 0.5, β ∈ {0.1, 0.5, 0.9}
the results are similar to the baseline approach. In these
cased the reduction base approach does consider the seg-
ments generated using the artificial feature. However, the
data set was constructed in such a way that half of the items
do not have ratings’ dependencies on the artificial feature,
and no benefit is observed.

These experiments show that both context-aware pre-filtering

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.70

0.75

0.80

0.85

0.90

0.95

1.00

P
re

ci
si

o
n

90%i-50%r

No Context

Reduction

Item-Split

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.70

0.75

0.80

0.85

0.90

0.95

1.00
90%i-90%r

No Context

Reduction

Item-Split

Figure 3: Precision/recall curves for two data sets.

approaches can outperform the base line FACT CF method,
when the context influences the ratings. It is worth noting
that item splitting is computationally cheaper and it per-
formed better than reduction based. Note also that, accu-
racy could depend on the particular baseline prediction al-
gorithm, i.e., FACT in our experiments. However, we choose
FACT as it is now currently largely used, and in our previ-
ous experiments it outperformed traditional user-based CF
method [5].

3.2 Precision Versus Recall
In this section we illustrate the precision/recall curves for

the three selected methods. For this experiments we reused
the three data sets: α = 0.1, β ∈ {0.1, 0.5, 0.9}. As was done
in the previous experiment, we set the IG threshold to 0.01.
For the reduction based approach we optimized precision.
The results can be seen in Figure 3. The left figure shows
results for α = 0.9, β = 0.5 data set and the right figure for
α = 0.9, β = 0.9. We skip the α = 0.9, β = 0.1 data set, as
for this data set all three methods perform similarly to each
other. Each curve was computed by varying the threshold
at which a recommendation is done. For example, all meth-
ods obtained the highest precision when recommending the
items that were predicted as rating 5. In this case, we do
not recommend the items that were predicted with a lower
rating. Note that we always count recommendation as rel-
evant if user rated the item 4 or 5. We set the threshold
to values equal to {1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}. Note,
that previous experiment (see. Figure 2) was done with the
recommendation threshold equal to 4. The recall is equal to
1 if we recommend all the items, i.e., those predicted with
a rating of 1 and higher. Even at this level of recall, the
precision is more than 70%. This can be explained by the
high fraction of high ratings in the data set.

Recommender systems usually try to improve precision.
Having recall as small as 0.01, we could still be able to rec-
ommend too many items for user to consume, i.e., approx-
imately 119 items in our data set. Interestingly, as we can
see it is also much harder to make precise recommendations
than to obtain high recall. The curves for all three meth-
ods get flat when approaching precision 0.97. At this point
we recommend only the items that were predicted with rat-
ing 5. This is the maximum possible predicted rating by
FACT and precision can not be improved by varying the
threshold at which recommendation is done. We also ob-
serve, that we can achieve higher maximum precision for
item splitting method comparing to other methods. When
α = 0.9 and β = 0.9, the highest precision value for item
split improves by 7% the baseline method. The improve-
ment when α = 0.9 and β = 0.5 is 2.7%. This experiment

gives valuable insights into the behavior of reduction base
approach. We see, that at each level of the recommendation
threshold it shows a higher recall value than the other two
methods. At the highest level of precision, reduction based
approach is close to item splitting and gives improvement of
6.1% in precision for α = 0.9, β = 0.9 data set and 1.3% for
α = 0.9, β = 0.5 data set. But, the precision/recall curve of
reduction based is always below than that of item split.

In conclusion we want to note that considering both pre-
cision and recall, we see that both context-aware recommen-
dation methods yields quite similar results. More noticeably,
both methods outperforms baseline CF which does not take
context into account.

3.3 Item Splitting for Various IG Thresholds
To better understand the item splitting method we fur-

ther analyzed the prediction processes. We looked at the
number of items the algorithm splits and also on which at-
tribute the split was performed. For this purpose we var-
ied the item splitting threshold parameter. For this experi-
ment we used tIG impurity measure and the three data sets:
α = 0.9β ∈ {0.1, 0.5, 0.9}. The summary of the results are
shown in Figure 4. Figures 4(a), 4(b), 4(c) show the number
of splits that the item split algorithm performs varying the
IG threshold for the three considered data sets. When using
α = 0.9, β = 0.1 the algorithm chooses the artificial fea-
ture approximately twice as often as the age feature. More
precisely, when the threshold is IG = 0.2 item split splits
101.8 items (on average in 5 folds); the artificial feature was
chosen 69.8 and age feature was chosen 32 times. When
the influence of artificial feature increases, a higher propor-
tion of items are split using the artificial feature. For the
α = 0.9, β = 0.9 data set and IG = 0.2 it splits 576.8 items
using the artificial feature and 29.8 using the age feature.
Note, that despite IG favors attributes with many possible
values [10] item splitting chooses the attribute having larger
influence on the rating. We further observe that the number
of split items is not large. For all three data sets we split
no more than 2050 items (17%). This low number can be
explained by looking at the size of items’ profiles. Note that
in the considered data sets the average number of ratings
per item is 18.5. Algorithm splits item only if the newly
generated item has at least 4 ratings. Therefore, item must
have a minimum of 8 ratings to be considered for splitting.
Lowering the minimum number of ratings in the item pro-
file, could cause unreliable computation of statistics and was
observed to decrease the overall performance.

Figures 4(d), 4(e) shows precision and recall accuracy
measures for three data sets. We observe, that item split-
ting is only beneficial when context (i.e., artificial feature
here) has an high influence on the rating. The best perfor-
mance for the α = 0.9, β = 0.1 data set, both for recall and
precision, is obtained when no items are split. Each split
of an item affects also the prediction for the items that are
not split. Splitting an item is equivalent to create two new
items and deleting one, therefore, it causes a modification of
the data set. When CF generates a prediction for a target
user-item pair all the other items’ ratings, including those
in the new items coming from some split, are used to build
that prediction. In [5] we observed that we can increase
the performance on split items, but at the same time the
decrease of performance on the untouched items can cancel
any benefit. When α = 0.9, β = 0.5 the situation is dif-

0.0 0.2 0.4 0.6 0.8 1.0
treshold (IG)

0

200

400

600

800

1000

1200

1400

1600

1800

#
It

e
m

s
S
p
lit

Artificial
Age

(a) 90%i-10%r

0.0 0.2 0.4 0.6 0.8 1.0
treshold (IG)

0

200

400

600

800

1000

1200

1400

1600

1800

#
It

e
m

s
S
p
lit

Artificial
Age

(b) 90%i-50%r

0.0 0.2 0.4 0.6 0.8 1.0
treshold (IG)

0

200

400

600

800

1000

1200

1400

1600

1800

#
It

e
m

s
S
p
lit

Artificial
Age

(c) 90%i-90%r

0.0 0.2 0.4 0.6 0.8 1.0
treshold (IG)

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

p
re

ci
si

o
n

90%i-10%r
90%i-50%r
90%i-90%r

(d) precision

0.0 0.2 0.4 0.6 0.8 1.0
treshold (IG)

0.56

0.58

0.60

0.62

0.64

0.66

0.68

re
ca

ll

90%i-10%r
90%i-50%r
90%i-90%r

(e) recall

Figure 4: Item splitting behavior for different thresholds.

ferent. We observe, that here splitting more items leads to
an increase in precision and decrease in recall. Finally, for
α = 0.9, β = 0.9 splitting more items increase the precision
and recall, and this is maximum when the IG threshold is
equal to 0.1. In conclusion, we could regard item split as a
more dynamical version of reduction based. Here the split
is done for each item separately and using an external mea-
sure (such as IG) to decide if the split is needed. Using the
IG criteria, splitting items is beneficial when context highly
influences the ratings.

4. CONCLUSIONS AND FUTURE WORK
This paper evaluates a contextual pre-filtering technique

for CF, called item splitting. Based on the assumption
that certain items may have different evaluations in dif-
ferent contexts, we proposed to use item splitting to cope
with this. The method is compared with a classical context-
aware pre-filtering approach [1] which uses extensive search-
ing to find the contextual segments that improve the base-
line prediction. As a result we observed that despite the
increased data sparsity, item splitting is beneficial, when
some contextual feature separates the item ratings into two
more homogeneous rating groups. However, if the contex-
tual feature is not influential the splitting technique some-
times produced a minor decrease of the precision and re-
call. Item-splitting outperforms reduction based context-
aware approach when FACT CF method is used. Moreover,
the method is more time and space efficient and could be
used with large context-enriched data bases.

The method we proposed can be extended in several ways.
For instance one can try to split the users (not the items)
according to the contextual features in order to represent
the preferences of a user in different contexts by using vari-
ous parts of the user profile. Another interesting problem is
to find a meaningful item splitting in continuous contextual
domains such as time or temperature. Here, the splitting
is not easily predefined but have to be searched in the con-
tinuous space. Finally, item splitting could ease the task of
explaining recommendations. The recommendation can be
made for the same item in different context. The contextual
condition on which the item was split could be mentioned
as justifications of the recommendations. For example, we
recommend you to go to the museum instead of going to the
beach as it will be raining today. We would also like to ex-
tend our evaluation of the proposed algorithm. First of all,
we want to use real world context-enriched data. Moreover,
we want to evaluate precision and recall at top-N recommen-
dation list. At the end, we want to develop a solution to be
able to deal with missing contextual values.

5. REFERENCES
[1] G. Adomavicius, R. Sankaranarayanan, S. Sen, and

A. Tuzhilin. Incorporating contextual information in
recommender systems using a multidimensional
approach. ACM Transactins on Information Systems,
23(1):103–145, 2005.

[2] G. Adomavicius and A. Tuzhilin. Toward the next
generation of recommender systems: A survey of the
state-of-the-art and possible extensions. IEEE
Transactions on Knowledge and Data Engineering,
17(6):734–749, 2005.

[3] G. Adomavicius and A. Tuzhilin. Context-aware
recommender systems. In P. Pu, D. G. Bridge,
B. Mobasher, and F. Ricci, editors, RecSys, pages
335–336. ACM, 2008.

[4] S. S. Anand and B. Mobasher. Contextual
recommendation. In Lecture Notes In Artificial
Intelligence, volume 4737, pages 142–160.
Springer-Verlag, Berlin, Heidelberg, 2007.

[5] L. Baltrunas and F. Ricci. Context-based splitting of
item ratings in collaborative filtering. In L. D.
Bergman, A. Tuzhilin, R. Burke, A. Felfernig, and
L. Schmidt-Thieme, editors, RecSys, pages 245–248.
ACM, 2009.

[6] L. Baltrunas and F. Ricci. Context-dependent items
generation in collaborative filtering. In
G. Adomavicius and F. Ricci, editors, Proceedings of
the 2009 Workshop on Context-Aware Recommender
Systems, 2009.

[7] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J.
Stone. Classification and Regression Trees.
Statistics/Probability Series. Wadsworth Publishing
Company, Belmont, California, U.S.A., 1984.

[8] A. K. Dey. Understanding and using context. Personal
Ubiquitous Comput., 5(1):4–7, February 2001.

[9] J. L. Herlocker, J. A. Konstan, L. G. Terveen, John,
and T. Riedl. Evaluating collaborative filtering
recommender systems. ACM Transactions on
Information Systems, 22:5–53, 2004.

[10] J. R. Quinlan. C4.5: Programs for Machine Learning
(Morgan Kaufmann Series in Machine Learning).
Morgan Kaufmann, 1 edition, January 1993.

[11] P. Resnick and H. R. Varian. Recommender systems.
Communications of the ACM, 40(3):56–58, 1997.

[12] J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen.
Collaborative filtering recommender systems. In The
Adaptive Web, pages 291–324. Springer Berlin /
Heidelberg, 2007.

